ON TOPOLOGICAL INDICES OF JUMP GRAPHS

Anandkumar Velusamy, Radha Rajamani Iyer, and Ivan Gutman

Abstract

Combinatorial expressions are obtained for the jump graph of the first and second Zagreb indices, the forgotten index, and their coindices, valid for any simple connected graph.

1. Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The order and size of G are $V(G) \mid=n$ and $E(G) \mid=m$, respectively. The degree $d(u)$ of the vertex $u \in V(G)$ is the number of vertices adjacent to u. The edge connecting the vertices u and v will be denoted by $u v$.

By $L(G)$ is denoted the line graph of the graph G, in which the vertices pertain to the edges of G, and two vertices of $L(G)$ are adjacent if and only if the respective edges of G are incident. By \bar{G} we denote the complement of the graph G, i.e., $V(\bar{G})=V(G)$ and $u v \in E(\bar{G})$ if and only if $u v \notin E(G)$. For other graph-theoretical terminology and notation see in respective textbooks $[\mathbf{2}, \mathbf{5}]$.

The jump graph $J(G)$ of G is the graph whose vertices are the edges of G, and two vertices of $J(G)$ are adjacent if and only if they are not adjacent in G.

Equivalently, the jump graph $J(G)$ of G is the complement of the line graph $L(G)$ of G. Hevia et al. [14] studied the planarity of jump graphs. Wu and Meng [19] characterized hamiltonian jump graphs and settled two conjectures posed by Chartrand et al. [4].

In the contemporary literature, a large number of vertex-degree-based graph invariants (usually referred to as "topological indices") are being considered $[\mathbf{9 , 1 5 ,}$ 18], many of which found applications in chemistry. Among them we consider here

[^0]here the first Zagreb and second indices M_{1} and $M_{2}[\mathbf{1 3}, \mathbf{1 2}, \mathbf{1 0}, \mathbf{3}, \mathbf{1 7}]$ and the forgotten index $F[\mathbf{8}, \mathbf{6}, \mathbf{1 6}]$, defined as
$$
M_{1}(G)=\sum_{u \in V(G)} d(u)^{2}=\sum_{u v \in E(G)}[d(u)+d(v)] \quad, \quad M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v)
$$
and
$$
F(G)=\sum_{u \in V(G)} d(u)^{3}=\sum_{u v \in E(G)}\left[d(u)^{2}+d(v)^{2}\right] .
$$

The coindex of a vertex-degree-based topological index is defined by replacing the summation $\sum_{u v \in E(G)}$ by $\sum_{u v \notin E(G)}$, assuming that $u \neq y[\mathbf{7}, \mathbf{1}]$. For the two Zagreb indices, the following identities are known [11]:

$$
\begin{align*}
& \bar{M}_{1}(G)=2 m(n-1)-M_{1}(G) \tag{1.1}\\
& \bar{M}_{2}(G)=2 m^{2}-\frac{1}{2} M_{1}(G)-M_{2}(G) \tag{1.2}
\end{align*}
$$

2. Main results

In this section, we derive explicit formulas for first and second zagreb indices and their coindices, forgotten index and its coindex of the jump graph of a graph G.

Theorem 2.1. Let G be a graph of order n and size m respectively. Then

$$
\begin{equation*}
M_{1}[J(G)]=m(m-1)(m+3)-2(m-1) M_{1}(G)+M_{1}[L(G)] \tag{2.1}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
M_{1}[J(G)] & =\sum_{u \prime, v \prime \in V[J(G)]} d(u \prime v \prime)=\sum_{u v \in V[L(G)]}[(m-1) d(u v)]^{2} \\
& =\sum_{u v \in V[L(G)]}\left[(m-1)^{2}+d(u v)^{2}-2(m-1) d(u v)\right] \\
& =m(m-1)^{2}+M_{1}[L(G)]-2(m-1)\left[\frac{1}{2} \sum_{v \in V(G)} d(v)^{2}-m\right] \\
& =m(m-1)^{2}+M_{1}[L(G)]-2(m-1)\left[M_{1}(G)-2 m\right]
\end{aligned}
$$

from which Eq. (2.1) directly follows.
Theorem 2.2. Let G be graph of order n and size m respectively. Then
(2.2) $M_{2}[J(G)]=\frac{1}{2}\left[m(m+1)-M_{1}(G)\right](m-1)^{2}-(m-1) \bar{M}_{1}[L(G)]+\bar{M}_{2}[L(G)]$.

Proof.

$$
\begin{aligned}
& M_{2}[J(G)]=\sum_{u \prime v \prime, w \prime x \prime \in E[J(G)]} d(u \prime v \prime) d(w \prime x \prime) \\
= & \sum_{u v, w x \notin E[L(G)]}[(m-1)-d(u, v)][(m-1)-d(w, x)] \\
= & \sum_{u v, w x \notin E[L(G)]}\left[(m-1)^{2}-(m-1)[(d(u, v)+d(w, x))+d(u, v) d(w, x)]\right. \\
= & \frac{m(m-1)}{2}-\left[\frac{1}{2} \sum_{v \in V(G)} d(v)^{2}-m\right](m-1)^{2}-(m-1) \bar{M}_{1}[L(G)]+\bar{M}_{2}[L(G)] \\
= & \frac{m(m-1)}{2}-\left[\frac{1}{2} M_{1}(G)+m\right](m-1)^{2}-(m-1) \bar{M}_{1}[L(G)]+\bar{M}_{2}[L(G)]
\end{aligned}
$$

from which Eq. (2.2) directly follows.
Theorem 2.3. For any (m, n)-graph G,

$$
\begin{equation*}
\bar{M}_{1}[J(G)]=(m-1)\left(M_{1}(G)-2 m\right)-M_{1}[L(G)] \tag{2.3}
\end{equation*}
$$

Proof. Recall that $\bar{M}_{1}(G)=\sum_{u v \notin G}[d(u)+d(v)]$. The number of edges in the jump graph, $J(G)$ is $\frac{1}{2} \sum_{u \in V(G)} d(u)^{2}-m$. Using Eq. (1.1), we have

$$
\begin{aligned}
\bar{M}_{1}[J(G)] & \left.=2\left[\frac{m(m-1)}{2}-\left(\frac{1}{2} \sum_{u \in V(G)} d(u)^{2}-m\right)\right)\right](m-1)-M_{1}[J(G)] \\
& =\left[m(m-1)-M_{1}(G)+2 m\right](m-1)-M_{1}[J(G)] \\
& =m^{3}-2 m^{2}+m-(m-1) M_{1}(G)+2 m^{2}-2 m-M_{1}[J(G)] \\
& =m^{3}-m-(m-1) M_{1}(G)-m^{3}-2 m^{2}-3 m+2(m-1) M_{1}(G)-M_{1}[L(G)] \\
& =2 m-2 m^{2}+(m-1) M_{1}(G)-M_{1}[L(G)]
\end{aligned}
$$

from which Eq. (2.3) directly follows.
Theorem 2.4. For any (m, n)-graph G,

$$
\begin{align*}
\bar{M}_{2}[J(G)] & =m\left(m^{2}+1\right)-\frac{M_{1}(G)}{2}\left(m^{2}+2 m+1\right) \\
& +\frac{1}{2}\left(M_{1}(G)^{2}-M_{1}[L(G)]\right)+(m-1) \bar{M}_{1}[L(G)]-\bar{M}_{2}[L(G)] \tag{2.4}
\end{align*}
$$

Proof. By Eq. (1.2),

$$
\bar{M}_{2}[J(G)]=2\left(\frac{m(m-1)}{2}-\frac{1}{2} M_{1}(G)+m\right)^{2}-\frac{1}{2} M_{1}[J(G)]-M_{2}[J(G)]
$$

Applying Theorems 2.1 and 2.2, we get

$$
\begin{aligned}
M_{2}[J(G)] & =\frac{1}{2}\left[m^{2}\left(m^{2}+2 m+1\right)-\left(m^{2}-m\right)(m+3)-\left(m^{2}+m\right)\left(m^{2}-2 m+1\right)\right] \\
& -\frac{M_{1}(G)}{2}\left(2 m^{2}+2 m-2 m+2-m^{2}+2 m-1\right) \\
& +\frac{1}{2} M_{1}(G)^{2}-M_{1}[L(G)]+(m-1) \bar{M}_{1}[L(G)]-\bar{M}_{2}[L(G)]
\end{aligned}
$$

from which Eq. (2.4) follows.

Theorem 2.5. For any (m, n)-graph G,

$$
\begin{align*}
F[J(G)] & =m(m+5)(m-1)^{2} \\
& -3(m-1)\left[M_{1}(G)(m-1)-M_{1}[L(G)]\right]-F[L(G)] \tag{2.5}
\end{align*}
$$

Proof.

$$
\begin{aligned}
& F[J(G)]=\sum_{u \prime v \prime \in V[J(G)]} d(u \prime v \prime)^{3}=\sum_{u v \in V[L(G)]}((m-1)-d(u v))^{3} \\
= & \sum_{u v \in V[L(G)]}\left[(m-1)^{3}-3(m-1)^{2} d(u v)+3 d(u v)^{2}(m-1)-d(u v)^{3}\right] \\
= & m(m-1)^{3}-3(m-1)^{2}\left[\frac{1}{2} \sum_{u \in V(G)} d(u)^{2}-m\right]+3(m-1) M_{1}[L(G)]-F[L(G)] \\
= & m(m-1)^{3}-3(m-1)^{2}\left(M_{1}(G)-2 m\right)+3(m-1) M_{1}[L(G)]-F[L(G)]
\end{aligned}
$$

from which Eq. (2.5) directly follows.

Theorem 2.6. For any (m, n)-graph G,

$$
\begin{equation*}
\bar{F}[J(G)]=\left[M_{1}(G)-2 m\right](m-1)^{2}-2(m-1) M_{1}[L(G)]+F[L(G)] . \tag{2.6}
\end{equation*}
$$

Proof. Note first that

$$
\bar{F}[J(G)]=\sum_{u \prime v \not \not \notin E[J(G)]}\left[d(u \prime)^{2}+d(v \prime)^{2}\right] .
$$

Therefore

$$
\begin{aligned}
& \bar{F}[J(G)]=\sum_{u v \in E[L(G)]}[(m-1)-d(u)]^{2}+[(m-1)-d(v)]^{2} \\
= & \sum_{u v \in E[L(G)]}\left[(m-1)^{2}-2(m-1) d(u)+d(u)^{2}+(m-1)^{2}-2(m-1) d(v)+d(v)^{2}\right] \\
= & \sum_{u v \in E[L(G)]}\left[2(m-1)^{2}-2(m-1)[d(u)+d(v)]+d(u)^{2}+d(v)^{2}\right] \\
= & 2\left[\frac{1}{2} \sum_{x \in V(G)} d(x)^{2}-m\right](m-1)^{2}-2(m-1) M_{1}[L(G)]+F[L(G)]
\end{aligned}
$$

and Eq. (2.6) follows.

References

[1] A. R. Ashrafi, T. Došlić, A. Hemzeh, Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem. 65 (2011) 85-92.
[2] J. A. Bondy, U. S. R. Murty, (Graph Theory, Springer, London, 2008.
[3] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[4] G. Chartrand, H. Hevia, E. B. Jarrett, M. Schultz, Subgraph distances in graphs defined by edge transfers, Discrete Math. 170 (1997) 63-79.
[5] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, CRC Press, Boca Raton, 2016.
[6] Z. Che, Z. Chen, Lower and upper bounds of the forgotten topological index, MATCH Commun. Math. Comput. Chem. 76 (2016) 635-648.
[7] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66-80.
[8] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[9] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[10] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[11] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
[12] I. Gutman, B. Rušćić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[13] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[14] H. Hevia, D. W. Van der Jagt, P. Zhang, On the planarity of jump graphs, Discrete Math. 220 (2000), 119-129.
[15] V. R. Kulli, Graph indices, in: M. Pal, S. Samanta, A. Pal (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, pp. 66-91.
[16] I. Ž. Milovanović, M. M. Matejić, E. I. Milovanović, Remark on forgotten topological index of a line graph, Bull. Int. Math. Virt. Inst. 7 (2017) 473-478.
[17] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 60 (1996) 959-969.
[18] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, WileyVCH, Weinheim, 2009.
[19] B. Wu, J. Meng, Hamiltonian jump graphs, Discrete Math. 289 (2004), 95-106.
Received by editors 22.10.2022; Revised version 22.12.2022; Available online 31.12.2022.

Anandkumar Velusamy, Department of Mathematics, EASA College of Engineering and Technology, Coimbatore, India

Email address: anandkumarv11@gmail.com
Radha Rajamani Iyer, Department of Mathematics, Amrita School of Engineeringe, Amrita Vishwa Vidyaeetham, Amrita University, Coimbatore, India

Email address: r_radhaiyer@cb.amrita.edu
Ivan Gutman, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
Email address: gutman@kg.ac.rs

[^0]: 2010 Mathematics Subject Classification. Primary 05C07; Secondary 05C09.
 Key words and phrases. jump graph; line graph; Zagreb index; forgotten index; coindex.
 Communicated by Dusko Bogdanic.

