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ON TOPOLOGICAL INDICES OF JUMP GRAPHS

Anandkumar Velusamy, Radha Rajamani Iyer, and Ivan Gutman

Abstract. Combinatorial expressions are obtained for the jump graph of the

first and second Zagreb indices, the forgotten index, and their coindices, valid

for any simple connected graph.

1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). The order
and size of G are V (G)| = n and E(G)| = m, respectively. The degree d(u) of the
vertex u ∈ V (G) is the number of vertices adjacent to u. The edge connecting the
vertices u and v will be denoted by uv.

By L(G) is denoted the line graph of the graph G, in which the vertices pertain
to the edges of G, and two vertices of L(G) are adjacent if and only if the respective
edges of G are incident. By G we denote the complement of the graph G, i.e.,
V (G) = V (G) and uv ∈ E(G) if and only if uv /∈ E(G). For other graph-theoretical
terminology and notation see in respective textbooks [2, 5].

The jump graph J(G) of G is the graph whose vertices are the edges of G, and
two vertices of J(G) are adjacent if and only if they are not adjacent in G.

Equivalently, the jump graph J(G) of G is the complement of the line graph
L(G) of G. Hevia et al. [14] studied the planarity of jump graphs. Wu and Meng
[19] characterized hamiltonian jump graphs and settled two conjectures posed by
Chartrand et al. [4].

In the contemporary literature, a large number of vertex-degree-based graph
invariants (usually referred to as“topological indices”) are being considered [9, 15,
18], many of which found applications in chemistry. Among them we consider here
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here the first Zagreb and second indices M1 and M2 [13, 12, 10, 3, 17] and the
forgotten index F [8, 6, 16], defined as

M1(G) =
∑

u∈V (G)

d(u)2 =
∑

uv∈E(G)

[
d(u) + d(v)

]
, M2(G) =

∑
uv∈E(G)

d(u) d(v)

and

F (G) =
∑

u∈V (G)

d(u)3 =
∑

uv∈E(G)

[
d(u)2 + d(v)2

]
.

The coindex of a vertex-degree-based topological index is defined by replacing
the summation

∑
uv∈E(G) by

∑
uv/∈E(G) , assuming that u 6= y [7, 1]. For the two

Zagreb indices, the following identities are known [11]:

M1(G) = 2m(n− 1)−M1(G)(1.1)

M2(G) = 2m2 − 1

2
M1(G)−M2(G) .(1.2)

2. Main results

In this section, we derive explicit formulas for first and second zagreb indices
and their coindices, forgotten index and its coindex of the jump graph of a graph
G.

Theorem 2.1. Let G be a graph of order n and size m respectively. Then

(2.1) M1[J(G)] = m(m− 1)(m + 3)− 2(m− 1)M1(G) + M1[L(G)] .

Proof.

M1[J(G)] =
∑

u′,v′∈V [J(G)]

d(u′v′) =
∑

uv∈V [L(G)]

[
(m− 1)d(uv)

]2
=

∑
uv∈V [L(G)]

[
(m− 1)2 + d(uv)2 − 2(m− 1)d(uv)

]

= m(m− 1)2 + M1[L(G)]− 2(m− 1)

1

2

∑
v∈V (G)

d(v)2 −m


= m(m− 1)2 + M1[L(G)]− 2(m− 1)[M1(G)− 2m]

from which Eq. (2.1) directly follows. �

Theorem 2.2. Let G be graph of order n and size m respectively. Then

(2.2) M2[J(G)] =
1

2
[m(m+1)−M1(G)](m−1)2− (m−1)M1[L(G)]+M2[L(G)] .
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Proof.

M2[J(G)] =
∑

u′v′,w′x′∈E[J(G)]

d(u′v′) d(w′x′)

=
∑

uv,wx/∈E[L(G)]

[(m− 1)− d(u, v)][(m− 1)− d(w, x)]

=
∑

uv,wx/∈E[L(G)]

[(m− 1)2 − (m− 1)[(d(u, v) + d(w, x)) + d(u, v)d(w, x)]

=
m(m−1)

2
−

1

2

∑
v∈V (G)

d(v)2−m

 (m−1)2 − (m− 1)M1[L(G)] + M2[L(G)]

=
m(m− 1)

2
−
[

1

2
M1(G) + m

]
(m− 1)2 − (m− 1)M1[L(G)] + M2[L(G)]

from which Eq. (2.2) directly follows. �

Theorem 2.3. For any (m,n)-graph G,

(2.3) M1[J(G)] = (m− 1)
(
M1(G)− 2m

)
−M1[L(G)] .

Proof. Recall that M1(G) =
∑

uv/∈G[d(u) + d(v)] . The number of edges in

the jump graph, J(G) is 1
2

∑
u∈V (G) d(u)2 −m. Using Eq. (1.1), we have

M1[J(G)] = 2

m(m− 1)

2
−

1

2

∑
u∈V (G)

d(u)2 −m)

 (m− 1)−M1[J(G)]

=
[
m(m− 1)−M1(G) + 2m

]
(m− 1)−M1[J(G)]

= m3 − 2m2 + m− (m− 1)M1(G) + 2m2 − 2m−M1[J(G)]

= m3−m−(m− 1)M1(G)−m3−2m2−3m+2(m− 1)M1(G)−M1[L(G)]

= 2m− 2m2 + (m− 1)M1(G)−M1[L(G)]

from which Eq. (2.3) directly follows. �

Theorem 2.4. For any (m,n)-graph G,

M2[J(G)] = m(m2 + 1)− M1(G)

2
(m2 + 2m + 1)

+
1

2

(
M1(G)2 −M1[L(G)]

)
+ (m− 1)M1[L(G)]−M2[L(G)] .(2.4)

Proof. By Eq. (1.2),

M2[J(G)] = 2

(
m(m− 1)

2
− 1

2
M1(G) + m

)2

− 1

2
M1[J(G)]−M2[J(G)] .
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Applying Theorems 2.1 and 2.2, we get

M2[J(G)] =
1

2

[
m2(m2 + 2m + 1)− (m2 −m)(m + 3)− (m2 + m)(m2 − 2m + 1)

]
− M1(G)

2
(2m2 + 2m− 2m + 2−m2 + 2m− 1)

+
1

2
M1(G)2 −M1[L(G)] + (m− 1)M1[L(G)]−M2[L(G)]

from which Eq. (2.4) follows. �

Theorem 2.5. For any (m,n)-graph G,

F [J(G)] = m(m + 5)(m− 1)2

− 3(m− 1)
[
M1(G)(m− 1)−M1[L(G)]

]
− F [L(G)] .(2.5)

Proof.

F [J(G)] =
∑

u′v′∈V [J(G)]

d(u′v′)3 =
∑

uv∈V [L(G)]

((m− 1)− d(uv))3

=
∑

uv∈V [L(G)]

[
(m− 1)3 − 3(m− 1)2 d(uv) + 3d(uv)2 (m− 1)− d(uv)3

]

= m(m−1)3−3(m−1)2

1

2

∑
u∈V (G)

d(u)2−m

+3(m−1)M1[L(G)]−F [L(G)]

= m(m− 1)3 − 3(m− 1)2
(
M1(G)− 2m

)
+ 3(m− 1)M1[L(G)]− F [L(G)]

from which Eq. (2.5) directly follows. �

Theorem 2.6. For any (m,n)-graph G,

(2.6) F [J(G)] =
[
M1(G)− 2m

]
(m− 1)2 − 2(m− 1)M1[L(G)] + F [L(G)] .

Proof. Note first that

F [J(G)] =
∑

u′v′/∈E[J(G)]

[
d(u′)2 + d(v′)2

]
.
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Therefore

F [J(G)] =
∑

uv∈E[L(G)]

[
(m− 1)− d(u)

]2
+
[
(m− 1)− d(v)

]2

=
∑

uv∈E[L(G)]

[
(m−1)2−2(m−1)d(u)+d(u)2+(m−1)2−2(m−1)d(v)+d(v)2

]

=
∑

uv∈E[L(G)]

[
2(m− 1)2 − 2(m− 1)

[
d(u) + d(v)

]
+ d(u)2 + d(v)2

]

= 2

1

2

∑
x∈V (G)

d(x)2 −m

 (m− 1)2 − 2(m− 1)M1[L(G)] + F [L(G)]

and Eq. (2.6) follows. �
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