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ON THE PADOVAN ARRAYS

Orhan Dişkaya and Hamza Menken

Abstract. In the present work, two new recurrences of the Padovan sequence

given with delayed initial conditions are defined. Some identities of these

sequences which we call the Padovan arrays were examined. Also, generating
and series functions of the Padovan arrays are examined.

1. Introduction

The Padovan numbers are an integer sequence named after the Italian architect
Richard Padovan. The Padovan sequence is a kind of relative of a better-known
Fibonacci sequence and has many interesting properties and applications to al-
most every field of science, nature, and art. The Padovan family has charming
applications to architecture, geometrical shapes, and number theory. Another fea-
ture that makes the Fibonacci sequence important is that it has the golden ratio,
which maintains its modernity today. The importance of the Padovan sequence
is that it is mentioned with the plastic ratio. Hans van der Laan discovered a
new and unique architectural proportion system in 1928. This ratio, which he
calls the number of plastics, is based on the irrational value, which is one of the
roots of the Padovan sequence. In this study, we first are briefly mentioned the
Padovan sequence. Then we defined two new iterations of the Padovan sequence
and looked at some of their identities. For more information on this sequence, see
[3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20].
The Padovan sequence {Pn}n>0 is defined by the delayed initial values P0 = 0,
P1 = 0 and P2 = 1 and the recurrence relation

(1.1) Pn+3 = Pn+1 + Pn, n > 0.
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The first few terms of this sequence are 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21.
The recurrence (1.1) involves the characteristic equation

x3 − x− 1 = 0.

If its roots are denoted by α, β and γ then, the following equalities can be derived

α+ β + γ = 0

αβ + αγ + βγ = −1

αβγ = 1.

Moreover, the Binet-like formula for the Padovan sequence is

Pn = aαn + bβn + cγn(1.2)

where,

a =
1

(α− β)(α− γ)
, b =

1

(β − α)(β − γ)
, c =

1

(γ − α)(γ − β)
.

In [16], the Padovan numbers have the QP−matrix

QP =

 0 1 0
0 0 1
1 1 0


such that

QnP =

 Pn−3 Pn−1 Pn−2

Pn−2 Pn Pn−1

Pn−1 Pn+1 Pn

 .
2. Recurrences of the Padovan sequence

In [1], Carlitz defined a Fibonacci array. Some Remarks on Carlitz’s Fibonacci
Array are given in [2]. Based on this study, we defined the Padovan array as follows.
The Padovan array {pm,n}m>0,n>0 is defined by the two recurrences

pm,n = pm,n−2 + pm,n−3, n > 3(2.1)

pm,n = pm−2,n + pm−3,n, m > 3.(2.2)

where defined

p0,n = Pn, p1,n = Pn+3, p2,n = Pn+5(2.3)

as the 0−th, 1−th and 2−th row of the Padovan array, respectively.
The following table is readily computed.



ON THE PADOVAN ARRAYS 499

m�n 0 1 2 3 4 5 6 7 8 9 10
0 0 0 1 0 1 1 1 2 2 3 4
1 0 1 1 1 2 2 3 4 5 7 9
2 1 1 2 2 3 4 5 7 9 12 16
3 0 1 2 1 3 3 4 6 7 10 13
4 1 2 3 3 5 6 8 11 14 19 25
5 1 2 4 3 6 7 9 13 16 22 29
6 1 3 5 4 8 9 12 17 21 29 38
7 2 4 7 6 11 13 17 24 30 41 54
8 2 5 9 7 14 16 21 30 37 51 67
9 3 7 12 10 19 22 29 41 51 70 92
10 4 9 16 13 25 29 38 54 67 92 121

Table 1. The first few members of the Padovan array

As can be seen from the table, the symmetry property

pm,n = pn,m

is readily proved by making use of equalities (2.1) and (2.2).

Proposition 2.1. The following equation is valid:

pm,n = PmPn+5 + Pm+1Pn+3 + Pm−1Pn.(2.4)

Proof. Considering equalities (2.2) and (2.3), we have

p3,n = p1,n + p0,n = Pn+3 + Pn

p4,n = p2,n + p1,n = Pn+5 + Pn+3

p5,n = p3,n + p2,n = Pn+3 + Pn + Pn+5

p6,n = p4,n + p3,n = Pn+5 + 2Pn+3 + Pn

p7,n = p5,n + p4,n = 2Pn+5 + 2Pn+3 + Pn

. . .

pm,n = pm−2,n + pm−3,n = PmPn+5 + Pm+1Pn+3 + Pm−1Pn

�

Some identities given below are proven for the Fibonacci sequence. Look at
[7, 8].

Theorem 2.1. The Binet-like formula for the sequence {pm,n} is
pm,n = aamα

n + bbmβ
n + ccmγ

n, n > 0

where
am = Pmα

2 + Pm+3α+ Pm+4,

bm = Pmβ
2 + Pm+3β + Pm+4

and
cm = Pmγ

2 + Pm+3γ + Pm+4.
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Proof. From the definition of nth Padovan arrays {pm,n} in equality (2.2)
and the Binet-like formula for nth Padovan sequence {Pn} in equality (1.2), we
write

p3,n = p1,n + p0,n = aαn(1 + α3) + bβn(1 + β3) + cγn(1 + γ3)

p4,n = p2,n + p1,n = aαn(α3 + α5) + bβn(β3 + β5) + cγn(γ3 + γ5)

p5,n = p3,n + p2,n = aαn(1 + α3 + α5) + bβn(1 + β3 + β5) + cγn(1 + γ3 + γ5)

p6,n = p4,n + p3,n = aαn(1 + 2α3 + α5) + bβn(1 + 2β3 + β5) + cγn(1 + 2γ3 + γ5)

p7,n = p5,n+p4,n=aαn(1 + 2α3 + 2α5) + bβn(1 + 2β3 + 2β5) + cγn(1 + 2γ3 + 2γ5)

. . .

pm,n = pm−2,n+pm−3,n=aαn(Pmα
2+Pm+3α+Pm+4)+bβn(Pmβ

2+Pm+3β+Pm+4)

+ cγn(Pmγ
2 + Pm+3γ + Pm+4)

Thus, the proof is completed. �

Theorem 2.2. The generating function for the sequence {pm,n} is

Gp(x, y) =

∞∑
m=0

∞∑
n=0

pm,nx
nym =

y2x2 + 4y2x+ 2y2 + 3yx+ 2y + x+ 1

(1− x2 − x3)(1− y2 − y3)

Proof. Let

pm(x) =

∞∑
n=0

pm,nx
n.

In particular, it follows from equalities (2.3) that

p0(x) =

∞∑
n=0

p0,nx
n =

∞∑
n=0

Pnx
n =

x+ 1

1− x2 − x3
,(2.5)

p1(x) =

∞∑
n=0

p1,nx
n =

∞∑
n=0

Pn+3x
n =

x2 + 2x+ 2

1− x2 − x3
,(2.6)

p2(x) =

∞∑
n=0

p2,nx
n =

∞∑
n=0

Pn+5x
n =

2x2 + 4x+ 3

1− x2 − x3
,

and by equality (2.2), we have also

pm(x) = pm−2(x) + pm−3(x).(2.7)

Using equalities (2.5) and (2.7), we prove easily that

pm(x) =

∞∑
n=0

pm,nx
n =

xPm+2 + (x+ 2)Pm−1 + Pm−2 + (x2 + 2x)Pm−4

1− x2 − x3
.
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So,

Gp(x, y) =

∞∑
m=0

∞∑
n=0

pm,nx
nym =

x

1− x2 − x3

∞∑
m=0

Pm+2y
m +

x+ 2

1− x2 − x3

∞∑
m=0

Pm−1y
m

+
1

1− x2 − x3

∞∑
m=0

Pm−2y
m +

x2 + 2x

1− x2 − x3

∞∑
m=0

Pm−4y
m

=
x

1− x2 − x3

y2 + 2y + 1

1− y2 − y3
+

x+ 2

1− x2 − x3

y2 + y

1− y2 − y3

+
1

1− x2 − x3

1

1− y2 − y3
+

x2 + 2x

1− x2 − x3

y2

1− y2 − y3

=
y2x2 + 4y2x+ 2y2 + 3yx+ 2y + x+ 1

(1− x2 − x3)(1− y2 − y3)
.

Thus, the proof is completed. �

Theorem 2.3. The exponential generating function for the sequence {pm,n} is
∞∑
n=0

pm,n
n!

xn = aame
αx + bbme

βx + ccme
γx.

Proof. We know that,

eαx =

∞∑
n=0

αnxn

n!
, eβx =

∞∑
n=0

βnxn

n!
, eγx =

∞∑
n=0

γnxn

n!

Let’s multiply each side of the equalities above by aam, bbm and ccm and addition
the above equalities to side to side, respectively.

aame
αx + bbme

βx + ccme
γx =

∞∑
n=0

(aamα
n + bbmβ

n + ccmγ
n)

1

n!
xn

=

∞∑
n=0

pm,n
n!

xn

Thus, the proof is completed. �

Theorem 2.4. The series for the sequence {pm,n} is

Sp(x, y) =

∞∑
m=0

∞∑
n=0

pm,n
xnym

=
x3y3 + x2y3 + 2x3y2 + 2x3y + 2x2y2 + 3x2y + 2xy

(x3 − x− 1)(y3 − y − 1)
.

Proof. Let

pm(x) =

∞∑
n=0

pm,n
xn

.
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In particular, it follows from equalities (2.3) that

p0(x) =

∞∑
n=0

p0,n

xn
=

∞∑
n=0

Pn
xn

=
x3 + x2

x3 − x− 1
,(2.8)

p1(x) =

∞∑
n=0

p1,n

xn
=

∞∑
n=0

Pn+3

xn
=

2x3 + 2x2 + x

x3 − x− 1
,(2.9)

p0(x) =

∞∑
n=0

p0,n

xn
=

∞∑
n=0

Pn+5

xn
=

3x3 + 4x2 + 2x

x3 − x− 1
,

and by equality (2.2) we have also

pm(x) = pm−2(x) + pm−3(x).(2.10)

Using equalities (2.8) and (2.10), we prove easily that

pm(x) =

∞∑
n=0

pm,n
xn

=
x2Pm+1 + x3Pm + (x3 + x2 + x)Pm−1 + (x3 + x2 + x)Pm−4

x3 − x− 1
.

So,

Sp(x, y) =

∞∑
m=0

∞∑
n=0

pm,n
xnym

=
x2

x3 − x− 1

∞∑
m=0

Pm+1

ym
+

x3

x3 − x− 1

∞∑
m=0

Pm
ym

+
x3 + x2 + x

x3 − x− 1

∞∑
m=0

Pm−1

ym
+
x3 + x2 + x

x3 − x− 1

∞∑
m=0

Pm−4

ym

=
x2

x3 − x− 1

y3 + y2 + y

y3 − y − 1
+

x3

x3 − x− 1

y3 + y2

y3 − y − 1

+
x3 + x2 + x

x3 − x− 1

y2 + y

y3 − y − 1
+
x3 + x2 + x

x3 − x− 1

y

y3 − y − 1

=
x3y3 + x2y3 + 2x3y2 + 2x3y + 2x2y2 + 3x2y + 2xy

(x3 − x− 1)(y3 − y − 1)

Thus, the proof is completed. �

Theorem 2.5. The partial sum for the sequence {pm,n} is

Tp =

m∑
t=0

n∑
k=0

pt,k =
PmPn+5 + Pm+1Pn+3 + Pm−1Pn

4
.

Proof. Considering equality (2.4), we have

Tp =

m∑
t=0

Pt

n∑
k=0

Pk+5 +

m∑
t=0

Pt+1

n∑
k=0

Pk+3 +

m∑
t=0

Pt−1

n∑
k=0

Pk

= (Pn+9 + Pn+5 − 3)

m∑
t=0

Pt + (Pn+6 + Pn+5 − 2)

m∑
t=0

Pt+1 + (Pn+5 − 1)

m∑
t=0

Pt−1

=(Pn+9+Pn+5−3)(Pm+5−1)+(Pn+6+Pn+5−2)(Pm+6−1)+(Pn+5−1)(Pm+5−Pm+1).

Thus, the proof is completed. �
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3. Topics for future study

Above we have given the various identities of the Padovan array. We leave it
to the researchers to obtain the various identities of the Padovan matrix array that
we have defined below. The Padovan matrix array

{
Qm,np

}
m,n>0

is defined by the

two recurrences

Qm,np = Qm,n−2
p +Qm,n−3

p , n > 3(3.1)

Qm,np = Qm−2,n
p +Qm−3,n

p , m > 3.(3.2)

where the initial conditions are defined as

Q0,n
p =

 Pn−1 Pn+1 Pn
Pn Pn+2 Pn+1

Pn+1 Pn+3 Pn+2

 , Q1,n
p =

 Pn+2 Pn+4 Pn+3

Pn+3 Pn+5 Pn+4

Pn+4 Pn+6 Pn+5

 ,(3.3)

Q2,n
p =

 Pn+4 Pn+6 Pn+5

Pn+5 Pn+7 Pn+6

Pn+6 Pn+8 Pn+7

 .
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6. Z. İşbilir and N. Gürses, Pell–Padovan generalized quaternions. Notes on Number Theory and

Discrete Mathematics, 27(1) (2021), 171—187.
7. T. Koshy, Fibonacci and Lucas Numbers with Applications Volume 1, John Wiley & Sons,

New Jersey, 2018.

8. T. Koshy, Fibonacci and Lucas Numbers with Applications Volume 2, John Wiley & Sons,
New Jersey, 2019.

9. S. Kritsana, Matrices formula for Padovan and Perrin Sequences. Appl. Math. Sci., 7(142)

(2013).
10. A. D. Nezhad and Z. Aral, Some recent results in plastic structure on Riemannian manifold.

Turkish Journal of Mathematics, 46(8) (2022), 3057-3068.
11. R. Padovan, Dom Hans van der Laan: modern primitive, Amsterdam, Architectura & Natura

Press, 1994.

12. M. C. dos Santos Mangueira, R. P. M. Vieira, F. R. V. Alves, and P. M. M. C. Catarino, The
hybrid numbers of Padovan and some identities. In Annales Mathematicae Silesianae, 34(2)

(2020), 256-267).

13. A. G. Shannon, A. F. Anderson, and P. R. Anderson, The Auxiliary Equation Associated
with the Plastic Numbers. Notes Number Theory Discrete Math., 12(1) (2006), 1–12.

14. A. G. Shannon, P. G. Anderson, and A. F. Horadam, Van der Loan numbers. International
Journal of Mathematics Education in Science & Technology, 37(7) (2006), 825–831.

15. N. J. A. Sloane, Sequences A000931 in The On-Line Encyclopedia of Integer Sequences.
available at

https://oeis.org/A000931
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ARQ., 16 2012.

Received by editors 14.6.2022; Revised version 27.12.2022; Available online 31.12.2022.
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