SOME RESULTS ON LIE IDEALS WITH SYMMETRIC REVERSE BI-DERIVATIONS IN SEMIPRIME RINGS II

Emine Koç Sögütcü, Öznur Gölbaşı, Havva Ünalan

Abstract

Let R be a semiprime ring, U a square-closed Lie ideal of R and $D: R \times R \rightarrow R$ a symmetric reverse bi-derivation and d be the trace of D. In the present paper, we shall prove that R contains a nonzero central ideal or $D=0$ if any one of the following holds: i) $d(U)=(0)$, ii) $d(x y)+d(x) d(y) \pm x y \in Z$, iii) $d(x y)+d(x) d(y) \pm y x \in Z$, iv $) d(x y)-d(y x) \pm[x, y] \in Z$, v) D acts as left or right homomorphism on U, vi) $D(d(x), x)=0$ vii $) d(d(x))=g(x)$, for all $x, y \in U$, where $G: R \times R \rightarrow R$ is symmetric reverse bi-derivations such that g is the trace of G.

1. Introduction

Throughout R will represent an assosiative ring with center Z. A ring R is said to be prime if $x R y=(0)$ implies that either $x=0$ or $y=0$ and semiprime if $x R x=(0)$ implies that $x=0$, where $x, y \in R$. A prime ring is obviously semiprime. However, the opposite is not always true. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $x y-y x$ and the symbol $x o y$ stands for the commutator $x y+y x$. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$, for all $u \in U, r \in R . U$ is called a square-closed Lie ideal of R if U is a Lie ideal and $u^{2} \in U$ for all $u \in U$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. Also, an additive mapping $d: R \rightarrow R$ is said to be a reverse derivation if $d(x y)=d(y) x+y d(x)$ holds for all $x, y \in R$. A mapping $D(.,):. R \times R \rightarrow R$ is said to be symmetric if $D(x, y)=D(y, x)$ for all $x, y \in R$. A mapping $d: R \rightarrow R$ is called the trace of $D(.,$.$) if d(x)=D(x, x)$ for all $x \in R$. It is obvious that if $D(.,$.$) is bi-additive (i.e., additive in both arguments),$

[^0]then the trace d of $D(.,$.$) satisfies the identity d(x+y)=d(x)+d(y)+2 D(x, y)$, for all $x, y \in R$. If $D(.,$.$) is bi-additive and satisfies the identities$
$$
D(x y, z)=D(x, z) y+x D(y, z)
$$
and
$$
D(x, y z)=D(x, y) z+y D(x, z)
$$
for all $x, y, z \in R$. Then $D(.,$.$) is called a symmetric bi-derivation. If D(.,$.$) is$ reverse bi-additive and satisfies the identity
$$
D(x y, z)=D(y, z) x+y D(x, z)
$$
and
$$
D(x, y z)=D(x, z) y+z D(x, y)
$$

Then $D(.,$.$) is called a symmetric reverse bi-derivation.$
In 1980, Maksa [7] introduced the concept of a symmetric biderivation on a ring R. It was shown in [8] that symmetric biderivations are related to general solution of some functional equations. Some results on a symmetric biderivation in prime and semiprime rings can be found in [11] and [12]. Typical examples are mappings of the form $(x, y) \longmapsto \lambda[x, y]$ where $\lambda \in C$. We shall call such maps inner biderivations. It was shown in [4] that every bi-derivation D of a noncommutative prime ring R is of the form $D(x, y)=\lambda[x, y]$ for some $\lambda \in C$. Moreover, in [5], Bresar extended this result to semiprime rings.

We shall say that a mapping $D(.,):. R \times R \rightarrow R$ acts as a right (resp. left) R homomorphism on I if $D(r x, y)=D(x, y) r$ and $D(x, r y)=D(x, y) r$ (resp. $D(x r, y)=r D(x, y)$ and $D(x, y r)=r D(x, y))$ for all $x, y, z \in R$. In [13], Yeşilgül and Argaç investigated that a prime ring and semiprime ring with D acts homomorphism and symmetric bi-derivation on R. In [6], Daif and Bell showed that if a semiprime ring R admits a derivation d such that $x y \pm d(x y)=y x \pm d(y x)$, for all $x, y \in R$, then R is commutative ring. In [2], Ashraf showed that commutativity of a prime ring R which admits a symmetric bi-derivation and Reddy et al. generalized this for the semiprime ring in [9]. Also, in [1], Ashraf and Rehman showed that a prime ring R with a nonzero ideal I must be commutative if it admits a derivation d satisfying either of the properties $d(x y)-x y \in Z$ or $d(x y)-y x \in Z$ for all $x, y \in R$. Many authors have investigated these conditions for different derivations. On the other hand, in [12], Vukman proved that if a semiprime ring R with symmetric bi-derivation D and d be the trace of D such that $D(d(x), x)=0$ and $d(d(x))=g(x)$, for all $x \in R$, then $D=0$ and Reddy et al. studied symmetric reverse bi-derivations this theorem in [10].

In this paper, we shall extend the above results for a square-closed Lie ideal of semiprime rings with symmetric reverse bi-derivations. Throughout the present paper, we shall make use of the following basic identities without any specific mention:
i) $[x, y z]=y[x, z]+[x, y] z$
ii) $[x y, z]=[x, z] y+x[y, z]$
iii) $x y o z=(x o z) y+x[y, z]=x(y o z)-[x, z] y$
iv) $x o y z=y(x o z)+[x, y] z=(x o y) z+y[z, x]$.

2. Results

LEMMA 2.1. [3, Theorem 1.3] Let R be a $2-$ torsion free semiprime ring and U a noncentral square-closed Lie ideal of R. Then there exist a nonzero ideal I of R such that $I \subseteq U$.

LEMMA 2.2. [6, Lemma 2 (b)] If R is a semiprime ring, then the center of a nonzero ideal of R is contained in the center of R.

LEMMA 2.3. Let R be a 2 -torsion free semiprime ring and I a nonzero ideal of R. If $[I, I] \subset Z$, then R contains a nonzero central ideal.

Proof. By the hypothesis, we get

$$
[x, y] \in Z, \text { for all } x, y \in I
$$

Replacing y by $y x$ in above expression, we have

$$
[x, y] x \in Z, \text { for all } x, y \in I
$$

Commuting this term with $r, r \in R$, we obtain that

$$
[[x, y] x, r]=0, \text { for all } x, y \in I, r \in R
$$

Using the hypothesis in the last expression, we get

$$
[x, y][x, r]=0, \text { for all } x, y \in I, r \in R .
$$

Replacing r by $r y$ in the above equation and using this expression, we see that

$$
[x, y] R[x, y]=0, \text { for all } x, y \in I
$$

Since R is semiprime ring, we get

$$
[x, y]=0, \text { for all } x, y \in I
$$

That is, $[I, I]=(0)$. By Lemma 2.2 , we get $I \subseteq Z$. We conclude that R contains a nonzero central ideal. This completes the proof.

LEMMA 2.4. Let R be a 2-torsion free semiprime ring, I an ideal of R, D : $R \times R \rightarrow R$ a symmetric reverse bi-derivation, d be the trace of D and $D(R, R) \subset I$. If $d(I)=(0)$, then $D=0$.

Proof. By the hypothesis, we have

$$
d(x)=0, \text { for all } x \in I
$$

Replacing x by $x+y, y \in I$ in this equation and using this equation, we get

$$
2 D(x, y)=0, \text { for all } x, y \in I
$$

Since R is 2 -torsion free, we have

$$
D(x, y)=0, \text { for all } x, y \in I
$$

Taking x by $x r, r \in R$ in the above equation and using this equation, we obtain that

$$
D(r, y) x=0, \text { for all } x, y \in I, r \in R
$$

Replacing y by $y s, s \in I$, we have

$$
D(r, s) y x=0, \text { for all } x, y \in I, r, s \in R .
$$

Taking x by $t D(r, s) y, t \in R$, we have

$$
D(r, s) y t D(r, s) y=0, \text { for all } y \in I, r, s, t \in R
$$

That is,

$$
D(r, s) y R D(r, s) y=(0), \text { for all } y \in I, r, s \in R
$$

By the semiprimeness of R, we get

$$
D(r, s) y=0, \text { for all } y \in I, r, s \in R .
$$

Replacing y by $t D(r, s), t \in R$, we find that

$$
D(r, s) R D(r, s)=0, \text { for all } y \in I, r, s \in R
$$

Since R is semiprime, we get $D=0$. This completes the proof.
In this section, we examined the above-mentioned commutativity conditions for symmetric reverse bi-derivation on Lie ideal in the semiprime ring.

THEOREM 2.5. Let R be a 2 -torsion free semiprime ring, U a noncentral square-closed Lie ideal of R and $D: R \times R \rightarrow R$ a symmetric reverse bi-derivation and d be the trace of D. If $d(x y)+d(x) d(y) \pm x y \in Z$, for all $x, y \in U$, then R contains a nonzero central ideal.

Proof. By Lemma 2.1, there exist a nonzero ideal I of R such that $I \subseteq U$. Thus, using the hypothesis, we get

$$
d(x y)+d(x) d(y) \pm x y \in Z, \text { for all } x, y \in I
$$

Replacing y by $y+z, z \in I$, we have

$$
d(x y)+d(x z)+d(x) d(y)+d(x) d(z)+2 D(x y, x z)+2 d(x) D(y, z) \pm x y \pm x z \in Z
$$

Using the hypothesis, we obtain that

$$
2(D(x y, x z)+d(x) D(y, z)) \in Z
$$

Since R is $2-$ torsion free, we see that

$$
D(x y, x z)+d(x) D(y, z) \in Z, \text { for all } x, y, z \in I
$$

Replacing z by y in this expression, we have

$$
D(x y, x y)+d(x) D(y, y) \in Z, \text { for all } x, y \in I
$$

and so,

$$
d(x y)+d(x) d(y) \in Z, \text { for all } x, y \in I
$$

By the hypothesis, we have

$$
\begin{equation*}
x y \in Z, \text { for all } x, y \in I \tag{2.1}
\end{equation*}
$$

Commuting this term with $r, r \in R$, we get

$$
\begin{equation*}
[x y, r]=0, \text { for all } x, y \in I, r \in R, \tag{2.2}
\end{equation*}
$$

and so

$$
[x, r] y+x[y, r]=0, \text { for all } x, y \in I, r \in R .
$$

Replacing y by $y z$ in this equation and using equation (2.2), we have

$$
[x, r] y z=0, \text { for all } x, y, z \in I, r \in R .
$$

Writting z by $[x, r]$ in above equation, we arrive at

$$
[x, r] y[x, r]=0, \text { for all } x, y \in I, r \in R .
$$

That is,

$$
[x, r] y R[x, r] y=0, \text { for all } x \in I, r \in R .
$$

By the semiprimeness of R, we have

$$
[x, r] y=0, \text { for all } x \in I, r \in R
$$

Taking y by $t[x, r], t \in R$ in the last equation, we see that

$$
[x, r] R[x, r]=0, \text { for all } x \in I, r \in R .
$$

Since R is semiprime, we get

$$
[x, r]=0, \text { for all } x \in I, r \in R .
$$

That is, $I \subset Z$. By Lemma 2.2, we obtain that R contains a nonzero central ideal. This completes the proof.

THEOREM 2.6. Let R be a 2 -torsion free semiprime ring, U a noncentral square-closed Lie ideal of R and $D: R \times R \rightarrow R$ a symmetric reverse bi-derivation and d be the trace of D. If $d(x y)+d(x) d(y) \pm y x \in Z$, for all $x, y \in U$, then R contains a nonzero central ideal.

Proof. By Lemma 2.1, there exist a nonzero ideal I of R such that $I \subseteq U$. By the hypothesis, we have

$$
d(x y)+d(x) d(y) \pm y x \in Z, \text { for all } x, y \in I
$$

Writting y by $y+z, z \in I$, we have

$$
d(x y)+d(x z)+d(x) d(y)+d(x) d(z)+2 D(x y, x z)+2 d(x) D(y, z) \pm y x \pm z x \in Z
$$

Appliying the hypothesis, we get

$$
2(D(x y, x z)+d(x) D(y, z)) \in Z
$$

Since R is 2 -torsion free and taking z by y, we see that

$$
D(x y, x y)+d(x) D(y, y) \in Z, \text { for all } x, y \in I
$$

That is,

$$
d(x y)+d(x) d(y) \in Z, \text { for all } x, y \in I
$$

By the hypothesis, we have

$$
y x \in Z, \text { for all } x, y \in I
$$

Using the same arguments after (2.1) in the proof of Theorem 2.5, we get the required results.

THEOREM 2.7. Let R be a 2 -torsion free semiprime ring, U a noncentral square-closed Lie ideal of R and $D: R \times R \rightarrow R$ a symmetric reverse bi-derivation and d be the trace of D. If $d(x y)-d(y x) \pm[x, y] \in Z$, for all $x, y \in U$, then R contains a nonzero central ideal.

Proof. By Lemma 2.1, there exist a nonzero ideal I of R such that $I \subseteq U$. We get

$$
d(x y)-d(y x) \pm[x, y] \in Z, \text { for all } x, y \in I
$$

Taking y by $y+z, z \in I$, we have

$$
d(x y)+d(x z)+2 D(x y, x z)-d(y x)-d(z x)-2 D(y x, z x) \pm[x, y] \pm[x, z] \in Z
$$

Using the hypothesis, we obtain that

$$
2 D(x y, x z)-2 D(y x, z x) \in Z
$$

Since R is 2 -torsion free, we get

$$
D(x y, x z)-D(y x, z x) \in Z, \text { for all } x, y \in I
$$

Replacing z by y, we see that

$$
D(x y, x y)-D(y x, y x) \in Z, \text { for all } x, y \in I
$$

and so

$$
d(x y)-d(y x) \in Z, \text { for all } x, y \in I
$$

By the hypothesis, we have

$$
[x, y] \in Z, \text { for all } x, y \in I
$$

Using Lemma 2.3, we see that R is commutative ring.
THEOREM 2.8. Let R be a 2-torsion free semiprime ring, I an ideal of $R, D: R \times R \rightarrow R$ a symmetric reverse bi-derivation, d be the trace of D and $D(R, R) \subset I$. If D acts as a left (resp. right) homomorphism on I, then $D=0$.

Proof. By our hypothesis, we get D acts as a left homomorphism on I. That is,

$$
D(x, y z)=z D(x, y) \text { for all } x, y, z \in I
$$

On the other hand, since D is reverse bi-derivation, we get

$$
D(x, y z)=z D(x, y)+D(x, z) y
$$

Then,

$$
D(x, z) y=0, \text { for all } x, y, z \in I
$$

Taking y by $r D(x, z), r \in R$ in the above equation, we get

$$
D(x, z) r D(x, z)=0, \text { for all } x, z \in I, r \in R .
$$

That is,

$$
D(x, z) R D(x, z)=(0), \text { for all } x, z \in I .
$$

By the semiprimeess of R, we obtain that $D(x, z)=0$, for all $x, z \in I$. Replacing z by x, we get $d(x)=0$, for all $x \in I$. We conclude that $D=0$ by Lemma 2.4. If D acts as a right homomorphism on I, it can be proved by using the same techniques.

THEOREM 2.9. Let R be a 2 -torsion free semiprime ring, U a noncentral square-closed Lie ideal of R and $D: R \times R \rightarrow R$ a symmetric reverse bi-derivation and d be the trace of D. If $D(d(x), x)=0$, for all $x \in U$, then $D=0$.

Proof. By Lemma 2.1, there exist a nonzero ideal I of R such that $I \subseteq U$. We get

$$
D(d(x), x)=0 \text { for all } x \in I
$$

Replacing x by $x+y, y \in I$ in this equation, we have
$D(d(x), x)+D(d(x), y)+D(d(y), x)+D(d(y), y)+2(D(x, y), x)+2(D(x, y), y)=0$
By the hypothesis, we get

$$
D(d(x), y)+D(d(y), x)+2 D(D(x, y), x)+2 D(D(x, y), y)=0
$$

Taking x by $-x$ in this equation, we obtain that

$$
D(d(x), y)-D(d(y), x)+2 D(D(x, y), x)-2 D(D(x, y), y)=0
$$

We obtained from the last two equations

$$
\begin{equation*}
D(d(x), y)+2 D(D(x, y), x)=0 \tag{2.3}
\end{equation*}
$$

Writtig y by $y x$ in equation (2.3), we obtain that

$$
x D(d(x), y)+2 D(x, y) d(x)+2 D(D(x, y), x) x+2 D(y, x) d(x)=0 .
$$

Multipliying in equation (2.3) by x on right hand side, we see that

$$
D(d(x), y) x+2(D(x, y), x) x=0
$$

Combining the last two equations are used, we obtain

$$
\begin{equation*}
[x, D(d(x), y)]+4 D(x, y) d(x)=0 \tag{2.4}
\end{equation*}
$$

Replacing y by $y x$ in equation (2.4), we get

$$
[x, x D(d(x), y)+D(d(x), x) y]+4 x D(x, y) d(x)+4 D(x, x) y d(x)=0
$$

By the hypothesis, we have

$$
x\{[x, D(d(x), y)]+4 D(x, y) d(x)\}+4 d(x) y d(x)=0
$$

Appliying equation (2.4) and using 2 -torsion free, we find that

$$
d(x) y d(x)=0 \text { for all } x, y \in I
$$

That is,

$$
d(x) y R d(x) y=(0) \text { for all } x, y \in I
$$

By the semiprimeness of R, we have

$$
d(x) y=0 \text { for all } x, y \in I
$$

Replacing y by $r d(x), r \in R$ in the last equation, we have

$$
d(x) r d(x)=0 \text { for all } x \in I, r \in R
$$

Since R is semiprime, we get $d(x)=0$, for all $x \in I$. We conclude that $D=0$ by Lemma 2.4. This completes proof.

THEOREM 2.10. Let R be a 2 -torsion free and 3 -torsion free semiprime ring, I an ideal of R and $D: R \times R \rightarrow R, G: R \times R \rightarrow R$ two symmetric reverse bi-derivations where d is the trace of D and g is the trace of G such that $G(R, R) \subset I$. If $d(d(x))=g(x)$ for all $x \in I$, then $G=0$.

Proof. By our hypothesis, we have

$$
d(d(x))=g(x) \text { for all } x \in I
$$

Replacing x by $x+y, y \in I$, we get

$$
\begin{aligned}
& d(d(x))+d(d(y))+2 D(d(x), d(y))+4 d(D(x, y))+4 D(d(x), D(x, y))+4 D(d(y), D(x, y)) \\
& =g(x)+g(y)+2 G(x, y)
\end{aligned}
$$

By the hypothesis and since R is 2 -torsion free, we obtain that
$D((d(x), d(y))+2 d(D(x, y))+2 D(d(x), D(x, y))+2 D(d(y), D(x, y))-G(x, y)=0$.
Taking x by $-x$ in this equation, we see that
$D((d(x), d(y))+2 d(D(x, y))-2 D(d(x), D(x, y))-2 D(d(y), D(x, y))+G(x, y)=0$.
If the last two equations are used, we obtain

$$
4 D(d(x), D(x, y))+4 D(d(y), D(x, y))=2 G(x, y)
$$

Since R is 2 -torsion free, we get

$$
\begin{equation*}
2 D(d(x), D(x, y))+2 D(d(y), D(x, y))=G(x, y) \text { for all } x, y \in I \tag{2.5}
\end{equation*}
$$

Taking x by $2 x$ in equation (2.5), we see that

$$
16 D(d(x), D(x, y)+4 D(d(y), D(x, y))=2 G(2 x, y)
$$

If the last two equations are used, we obtain

$$
12 D(d(x), D(x, y))=0
$$

Since R is 2 -torsion free and 3 -torsion free, we get

$$
D(d(x), D(x, y))=0, \text { for all } x, y \in I
$$

Replacing y by x in this equation, we see that

$$
D(d(x), D(x, x))=0
$$

and so, $d(d(x))=0$ for all $x \in I$. By the hypothesis, we get $g(x)=0$ for all $x \in I$. By Lemma 2.4, we have $G=0$. This completes proof.

3. Acknowledgement

The authors wishes to thank the referee for his/her valuable comments and suggestion.

References

1] M. Ashraf and N. Rehman, On derivations and commutativity in prime rings. East-West J. Math., 3(1)(2001), 87-91.
[2] M. Asharf, On symmetric bi-derivations in rings. Rend. Istit. Mat. Univ. Trieste, XXXI(1991), 25-36.
[3] Z. Bedir and O. Gölbaşı, Some commutativity on Lie ideals on semiprime rings. Adıyaman University Journal of Science, $\mathbf{1 0}(2)(2020), 548-556$.
[4] M. Bresar, W. S. Martindale, and C. R. Miers, Centralizing maps in prime rings with involution. J. Algebra, 161(2)(1991), 342-257.
[5] M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings. Trans. Amer. Math. Soc., 335(2)(1993), 525-546.
[6] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings. Internat J. Math. Math. Sci., 15(1)(1992), 205-206.
[7] Gy. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization. Glasnik. Mat., 15(35)(1980), 279-282.
[8] Gy. Maksa, On the trace of symmetric biderivations. C. R. Math. Rep. Acad. Sci. Canada, 9(1987), 303-307.
[9] C.J. Reddy, G. V. B. Rao, and K.M. Reddy, Symmetric Left Bi-Derivations in Semiprime Rings. IOSR Journal of Mathematics, 11(5)(2015), 25-26.
[10] C. J. Reddy and M. R. Naik, Symmetric Reverse Bi-Derivations in Semiprime Rings. International Journal of Innovative Research in Science, Engineering and Technology, 6(13)(2017).
[11] J. Vukman, Symmetric biderivations on prime and semiprime rings. Aequationes Math., 38(1989), 245-254.
[12] J. Vukman, Two results concerning symmetric biderivations on prime rings. Aequationes Math., 40(1990), 181-189.
[13] M. Ş. Yeşilgül and N. Argaç, Idelas and symmetric bi-derivations of prime semiprime ring. Math. J. Okayama Univ., (1993), 189-192.

Received by editors 31.1.2020; Revised version 17.11.2022; Available online 22.12.2022.
Emine Koç Sögütcü, Department of Mathematics, Sivas Cumhuriyet University, Sivas, TURKEY

Email address: eminekoc@cumhuriyet.edu.tr
Öznur Gölbaşı, Department of Mathematics, Sivas Cumhuriyet University, Sivas, TURKEY

Email address: ogolbasi@cumhuriyet.edu.tr
Havva Ünalan, Department of Mathematics, Sivas Cumhuriyet University, Sivas, TURKEY

[^0]: 2010 Mathematics Subject Classification. Primary 16W25; Secondary16W10, 16U80.
 Key words and phrases. Semiprime rings, Lie ideals, derivations, symmetric bi-derivations, reverse derivations, symmetric reverse bi-derivations.

 Communicated by Daniel A. Romano.

