BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **12**(3)(2022), 445-452 DOI: 10.7251/BIMVI2203445C

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

V-MODULES, SSI-MODULES, AND IDEMPOTENT OF HEREDITARY PRETORSION CLASSES IN $\sigma[M]$

Nega Arega Chere

ABSTRACT. A module M is called a V-module (cosemisimple module) if every simple module in $\sigma[M]$ is M-injective. A module M is an SSI-module if every semisimple module in $\sigma[M]$ is M-injective. The main objective of this paper is to prove that a module M is an SSI-module if and only if M is a locally noetherian V-module. We also prove that an R-module M over a commutative ring R is semisimple if and only if every hereditary pretorsion class in ptors-Mis an idempotent radical.

1. Introduction

By a ring R we mean an associative ring with unity unless otherwise stated. By the word R-module we mean unitary right R-module unless stated otherwise, and the category of unital right R-modules shall be denoted by Mod-R. The symbol \subseteq denotes containment and \subset proper containment for sets. When we write $L \leq_e M$, we mean L is an essential submodule of M or M is an essential extension of L. For a functor τ , σ : Mod- $R \rightarrow$ Mod-R, τ is a subfunctor of σ if for any morphism $f: M \rightarrow N, \tau(M) \subseteq \sigma(M)$ and $\tau(f) = \sigma(f)|_{\tau(M)}$ is the restriction of $\sigma(f)$ to $\tau(f)$. A preradical τ is a subfunctor of the identity functor id: Mod- $R \rightarrow$ Mod-R. For a preradical τ and a module M, M is τ -torsion if $\tau(M) = M$ and τ -trosion free if $\tau(M) = 0$. A preradical τ is idempotent (resp. radical) if $\tau^2 = \tau$, i.e., $\tau(\tau(M)) = \tau(M)$ (resp. $\tau(M/\tau(M)) = 0$, i.e., $\tau(M) = M$) for all modules M in Mod-R. A preradical τ is left exact if the sequence $0 \rightarrow \tau(A) \rightarrow \tau(B) \rightarrow \tau(C)$ is exact for every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$. A preradical class τ is

445

²⁰¹⁰ Mathematics Subject Classification. Primary 16S90; Secondary 13C12.

Key words and phrases. Hereditary preradical class, hereditary pretorsion class, locally noetherian (artinian) modules, semisimple modules, SSI-modules, V-modules.

Communicated by Dusko Bogdanic.

idempotent radical if it is both idempotent and radical. A class of modules is called hereditary if it is closed under submodules and a preradical class τ is herediatry if τ is idempotent and the class of modules $T_{\tau} = \{M \in \text{Mod-}R : \tau(M) = M\}$ is hereditary. We call a class of modules pretorsion (resp. hereditary pretorsion) class if it is closed under factor module and (arbitrary) direct sums (resp. factor modules, (arbitrary) direct sums, and submodules). A hereditary pretorsion class which is closed under extension is called herediraty torsion class. Associated to a preradical τ there are two classes of modules in Mod-R, namely $T_{\tau} = \{N \in \text{Mod-}R : \tau(N) = N\}$ and $F_{\tau} = \{N \in \text{Mod-}R : \tau(N) = 0\}$. Note that T_{τ} is a pretorsion class and F_{τ} is a pretorsion free class. When we say an idempotent of a herediatry pretorsion classes in $\sigma[M]$, we mean an idempotent hereditary preradical class τ for which the class of modules $T_{\tau} = \{N \in \sigma[M] : \tau(N) = N\}$ is pretorsion in $\sigma[M]$ see [2, 4].

A subcategory S of a category C is called full subcategory if for each pair of objects N and M of S, $\operatorname{Mor}_S(N,M) = \operatorname{Mor}_C(N,M)$ (where Mor starnd for morphism). In the above definition if we take $S = \sigma[M]$ and $C = \operatorname{Mod} R$, then we say $\sigma[M]$ is a full subcategory of the category Mod-R if for each pair of modules N and M in $\sigma[M]$, $\operatorname{Hom}_{\sigma[M]}(N,M) = \operatorname{Hom}_{Mod-R}(N,M)$ see [9].

If R is a ring, we denote the set of all hereditary pretorsion classes of right Rmodules by ptor- R_R and the set of all hereditary torsion classes by tors- R_R . If N, M are right *R*-modules, then we say that N is subgenerated by M, or M is a subgenerator for N if N is isomorphic to a submodule of an M-generated module. We denote by $\sigma[M]$, the full subcategory of Mod-R whose objects are all R-modules subgenerated by M see [9]. Let M and N be R-modules. We call N, M-injective if for every submodule K of M every R-homomorphism from K to N can be lifted to an R-homomorphism from M to N. A module M is called a V-module (cosemisimple module in [5]) if every simple module in $\sigma[M]$ is M-injective. A module M is SSI-module if every semisimple module in $\sigma[M]$ is M-injective. A module N in $\sigma[M]$ is said to be uniform if any two non-zero submodules of N has nonzero intersection in $\sigma[M]$. For $M \in \text{Mod-}R$ we denote the set of all hereditary pretorsion classes of the full subcategory $\sigma[M]$ of Mod-R by ptors-M and we denote the set of all hereditary torsion classes by tors-M. For any R-module M its injective hull is denoted by E(M) and if $N \in \sigma[M]$, then the M-injective hull of N is denoted by the symbol $E_M(N)$. If $\tau \in \text{tors-}R_R$ and $M \in \text{Mod-}R$, then there is a (unique) largest submodule of M belonging to τ , denoted by $\tau(M)$, and called the τ -torsion submodule of M. If $\tau(M) = M$, or equivalently $M \in \tau$, we say that M is τ -torsion and if $\tau(M) = 0$ we say that M is τ -torsion free. We call $\tau \in$ ptors-M splitting if $\tau(N)$ is a direct summand of N for each $N \in \sigma[M]$. We call a module M locally noetherian (artinian) if every finitely generated submodule of M is noetherian (artinian). This is equivalent to the requirement that all finitely generated (cyclic) modules in $\sigma[M]$ are notherian(artinian) in $\sigma[M]$ see [5].

Let M be an R-module. A socle of M (= Soc(M), Soc M) we denote the sum of all simple (minimal) submodules of M [9], i.e.,

Soc
$$M = \sum \{ N \leq M \mid N \text{ is simple} \}.$$

The socle of M is the largest submodule of M generated by simple modules or equivalently, it is the largest semisimple module of M. Dually the radical of M is the submodule which is the intersection of all maxiaml submodule of M

Rad $M = \bigcap \{ N \leq M \mid N \text{ is maximal in } M \}.$

It is proved in [1, Theorem 2.5] that the direct sum of any family of M-injective modules is M-injective if and only if every cyclic submodule of M is noetherian, that is, M is locally noetherian. It is also shown in [9] that any M-injective module U is also N-injective whenever N is a submodule, a factor module or direct sum of copies of M. It follows immediately that a module is injective in $\sigma[M]$ if it is Minjective. This is a Baer's like criterion. Thus, there are enough injectives in $\sigma[M]$ [9]. It is proved in [4, Proposition 1, p.236] that R is a right SSI-ring if and only if R is a right noetherian right V-ring. We prove in Theorem 1.3 that an R-module M is an SSI-module if and only if M is a locally noetherian V-module. Viola-Prioli [7, Theorem 1, p. 545] has proved that for a commutative ring R, every hereditary pretorsion class is a hereditary torsion class if and only if R is semisimple. This result is generalized in Theorem 1.5 in which it is proven that if M is a module over a commutative ring R, then ptors-M = tors-M if and only if M is semisimple.

1.1. *V*-modules and SSI-modules. The following result generalizes the *V*-rings of Villamayor [3] to *V*-modules.

THEOREM 1.1. The following statements are equivalent for $M \in Mod$ -R:

- (a) M is a V-module;
- (b) Rad(N) = 0 for all $N \in \sigma[M]$ where Rad(N) is the Jacobson Radical;
- (c) Every proper submodule of M is an intersection of maximal submodules.

PROOF. (a) \Rightarrow (b) Suppose M is a V-module and $0 \neq N \in \sigma[M]$. Take $0 \neq x \in N$ and let B be maximal among the submodules of N which exclude x. Since every nonzero submodule of N/B contains (xR + B)/B, we infer that N/B is uniform and (xR + B)/B is simple. By hypothesis, (xR + B)/B is M-injective and thus a direct summand of N/B. Since N/B is uniform, this means N/B = (xR + B)/B, so B is a maximal submodule of N. Since Rad $(N) \subseteq B$ and $x \notin B, x \notin \text{Rad}(N)$. Therefore, Rad (N) = 0, as required.

(b) \Rightarrow (c) Suppose (b) holds. Let L be a proper submodule of M. Since $M/L \in \sigma[M]$, Rad (M/L) = 0 from which we infer that L is an intersection of maximal submodules of M.

(c) \Rightarrow (a) Assume (c) holds. Let S be any simple module in $\sigma[M],\,L$ a submodule of M and

 $\rho: L \to S$ be an *R*-homomorphism. We need to extend ρ to a mapping of *M* to *S*. We may assume ρ is epimorphism and replace ρ by the canonical epimorphism $\alpha: L \to L/K, \ \alpha(x) = x + K$ where $K = ker\rho, \ L/K \cong S$. It is enough to extend α to *M*. By (b) we have $\operatorname{Rad}(M/K) = 0$ and since L/K is simple, there exists a maximal submodule N/K of M/K such that $L/K \bigoplus N/K = M/K$. Consider the canonical epimorphism $\pi: M \to M/K$ and the projection $\beta: M/K \to L/K$. Then $\beta \circ \pi: M \to L/K \cong S$ extends α . This implies *S* is *M*-injective. This shows

that every simple module in $\sigma[M]$ is *M*-injective and hence *M* is a *V*-module as desired.

THEOREM 1.2. If Soc splits in $\sigma[M]$, then M is an SSI-module.

PROOF. Assume L is semisimple in $\sigma[M]$. Obviously $L \leq_e E_M(L)$ (where $E_M(L)$ is the M-injective hull of L) so that $L \leq_e Soc(E_M(L))$. Since a semisimple module possesses no proper essential submodule, this entails $L = Soc(E_M(L))$. By hypothesis, $L = Soc(E_M(L))$ is a direct summand of $E_M(L)$, whence $L = Soc(E_M(L)) = E_M(L)$. We conclude that L is M-injective. This shows that M is an SSI-module.

Let $\{L_{\delta} : \delta \in \Delta\}$ be a family of right *R*-modules. If $x = \{x_{\delta}\}_{\delta \in \Delta} \in \prod_{\delta \in \Delta} L_{\delta}$, then the support of x abbreviated by supp x is defined by

supp
$$x = \{\delta \in \Delta : x_{\delta} \neq 0\}.$$

If $X \subseteq \prod_{\delta \in \Delta} L_{\delta}$, we define

$$\operatorname{supp} X = \bigcup_{x \in X} \operatorname{supp} x.$$

THEOREM 1.3. A right R-module M is an SSI- module if and only if M is a locally noetherian V-module.

PROOF. (\Rightarrow) Assume that $M \in \text{Mod-}R$ is an SSI-module. Since M is clearly a V-module, it remains to show that M is locally noetherian. Suppose, on the contrary, that M is not locally noetherian. This entails the existence of a cyclic submodule xR of M and a strictly ascending chain of submodules

$$N_0 \subset N_1 \subset N_2 \subset \cdots$$

of xR. Take $k \in \mathbb{N}$. Because M is a V-module and $N_k/N_{k-1} \in \sigma[M]$, it follows from Theorem 1.1(b) that $\operatorname{Rad}(N_k/N_{k-1}) = 0$, so that N_k/N_{k-1} has a maximal proper submodule M_k/N_{k-1} say, where $N_{k-1} \subseteq M_k \subseteq N_k$. Put $N = \bigcup_{k \in \mathbb{N}} N_k = \bigcup_{k \in \mathbb{N}} M_k$.

Consider the canonical map $\lambda: N \to \prod_{k \in \mathbb{N}} N/M_k$ defined by:

$$\lambda(t) = \{t + M_k\}_{k \in \mathbb{N}}.$$

Since $N = \bigcup_{k \in \mathbb{N}} N_k$, $\lambda(t)$ has finite support for each $t \in \mathbb{N}$, so we may interpret λ as a mapping with codomain $\bigoplus_{k \in \mathbb{N}} N_k/M_k$. Take $j \in \mathbb{N}$. Since M is a V-module, the simple module $N_j/M_j \in \sigma[M]$ is M-injective so that N_j/M_j is a direct summand of N/M_j . If $\kappa_j : N_j/M_j \to N/M_j$ denotes the inclusion map, there exists a projection map $\rho_j : N/M_j \to N_j/M_j$ such that $\rho_j \kappa_j$ coincides with the identity map on N_j/M_j .

Consider the diagram

448

where φ_j and ψ_j are the canonical projection maps, ρ is the epimorphism induced by the family of epimorphisms $\{\rho_k : k \in \mathbb{N}\}$ and ι is the inclusion map.

Inasmuch as $\bigoplus_{k \in \mathbb{N}} N_k/M_k$ is semisimple, it is, by hypothesis, *M*-injective so that $\rho\lambda$ can be extended to an *R*-homomorphism Θ from xR to $\bigoplus_{k \in \mathbb{N}} N_k/M_k$. Observe that since xR is finitely generated, $\operatorname{Im}(\Theta)$, and hence $\operatorname{Im}\rho\lambda$, has finite support. We now argue that this conclusion yields a contradiction. For each $j \in \mathbb{N}$, pick $t_j \in N_j \setminus M_j$. Then $(\psi_j \rho \lambda)(t_j) = (\rho_j \varphi_j \lambda)(t_j)$

$$= \rho_j \varphi_j (\{t_j + M_k\}_{k \in \mathbb{N}})$$

$$= \rho_j (t_j + M_j)$$

$$= \rho_j \kappa_j (t_j + M_j) \quad \text{[because } t_j \in N_j \text{ and } \kappa_j \text{ is an inclusion map]}$$

$$= t_j + M_j$$

 $\neq 0$ [because $t_j \notin M_j$].

It follows from the above that $j \in \text{supp}((\rho\lambda)(t_j))$, whence $\text{supp}(\text{Im}(\rho\lambda)) = \mathbb{N}$. This contradicts the fact that $\text{Im}(\rho\lambda)$ has a finite support.

 (\Leftarrow) This is an immediate consequence of the fact that if M is locally noetherian then every direct sum of M-injective modules is M-injective [9].

The following result generalizes the results in [3] on V-rings and SSI-rings.

COROLLARY 1.1. (a) If M is a V-module, then any locally artinian module is locally noetherian.

(b) If M is an SSI-module, then a module N in $\sigma[M]$ is locally artinian if and only if it is semisimple.

PROOF. (a) If M is a V-module and $0 \neq N \in \sigma[M]$, we can find a maximal proper submodule N_1 . Since N_1 is nonzero, similarly we can find a maximal proper

submodule N_2 of N_1 . Repeating this process we get a chain $N \supset N_1 \supseteq N_2 \supset \cdots$ which terminates, if N is locally artinian, in a composition series for N. Thus it follows that N is locally noetherian.

(b) (\Rightarrow) Assume M is an SSI module and $N \in \sigma[M]$ is locally artinain. Take a cyclic submodule xR of $N(x \in N)$. Since xR is artinian Soc (xR) is essential in xR. Since xR is essential in its injective hull $E_M(xR)$ in $\sigma[M]$, we have $E_M(\text{Soc}(xR)) \cong E_M(xR)$. But Soc (xR) is M-injective. Then $E_M(\text{Soc}(xR)) \cong \text{Soc}(xR)$. Hence $E_M(xR)$ is semisimple. Thus xR is semisimple. It follows that N is semisimple. The converse easily follows from that fact that any semisimple module is locally artinian.

It is easy to infer from [7, Lemma 5] that $\mathcal{P} = \{N \in \sigma[M]: \text{ every proper submodule of N is an intersection of maximal submodules of N} is a preradical class. It is also proved in [7, Proposition 6] that a right noetherian ring R for which all preradical classes in Mod-R are hereditary torsion classes is a right V-ring.$

The following theorem generalizes this result to the full subcategory $\sigma[M]$.

THEOREM 1.4. Let M be a locally noetherian module such that all preradical classes in the subcategory $\sigma[M]$ of Mod-R are hereditary torsion classes. Then M is a V-module.

PROOF. Consider

$$\mathcal{P} = \{ N \in \sigma[M] \colon \text{Rad}(N/N') = 0 \text{ for all } N' \leq N \}.$$

An argument similar to [7, Lemma 5] shows that \mathcal{P} is a preradical class. By hypothesis \mathcal{P} is a hereditary torsion class.

Let L be an arbitrary finitely generated module belonging to $\sigma[M]$. We claim that $L \in \mathcal{P}$. Suppose, on the contrary, that $L \notin \mathcal{P}$.

Define

$$\mathcal{S} = \{ U \leq L : L/U \notin \mathcal{P} \}.$$

Observe that $S \neq \emptyset$ since $0 \in S$. Since L is noetherian, S has maximal member, N say. Since $L/N \notin \mathcal{P}$, there exists a submodule \hat{N} of L such that $\hat{N} \supseteq N$ and $Rad(L/N) = \hat{N}/N \neq 0$.

Observe that if K is any submodule of L satisfying $N \subseteq K \subseteq \hat{N}$, then $\operatorname{Rad}(L/K) = \hat{N}/K$.

Since \hat{N} is noetherian, it has a maximal proper submodule, say K. Clearly \hat{N}/K is simple and thus a member of \mathcal{P} .

It follows from the maximality of N that $L/\hat{N} \in \mathcal{P}$. Since \mathcal{P} is closed under module extensions, this entails $L/K \in \mathcal{P}$, so $\operatorname{Rad}(L/K) = 0$ which contradicts the fact that $\operatorname{Rad}(L/N) = \hat{N}/N \neq 0$.

We conclude that $L \in \mathcal{P}$. We have thus shown that \mathcal{P} contains every finitely generated module belonging to $\sigma[M]$. Since $\sigma[M]$ is generated by its cyclic (and thus finitely generated) members and \mathcal{P} is closed under direct sums and homomorphic images, we conclude that $\mathcal{P} = \sigma[M]$, whence $\operatorname{Rad}(N) = 0$ for all $N \in \sigma[M]$. The result follows from Theorem 1.1((b) \Rightarrow (a)).

THEOREM 1.5. Let R be a commutative ring. The following statements are equivalent for a right R-module M:

- (a) M is an SSI-module;
- (b) M is a locally noetherian V-module;
- (c) M is semisimple;
- (d) ptors-M = tors-M.

PROOF. (a) and (b) are equivalent by Theorem 1.3 without the commutativity assumption on R.

Clearly (c) implies (a) and (d), again, without the commutativity assumption on R.

(b) \Rightarrow (c) Pick $0 \neq x \in M$ and put $I = \{r \in R : xr = 0\}$. Observe that Mod-R/I= $\{N \in \text{Mod-}R : NI = 0\} \subseteq \sigma[M]$. Take arbitrary $N \in \text{Mod-}R/I$. It follows from Theorem 1.1, that Rad (N) = 0 (N considered as a right R-module). Since the R-submodules and R/I-submodules of N coincide, we may infer that Rad (N) = 0(N considered as a right R/I-module). It follows that R/I is a V-ring. We know from theory [8, Lemma 5] that a commutative V-ring is Von Neumann Regular. Since R/I is also noetherian (because M is locally noetherian), we conclude that R/I is a semisimple ring (and thus a finite product of fields).

We infer from the above that xR is a semisimple right *R*-module for every $x \in M$, so *M* is semisimple.

(d) \Rightarrow (c) Pick $0 \neq x \in M$ and put $I = \{r \in R : xr = 0\}$ and consider the commutative ring R/I. It is easily seen that each member of ptors-R/I belongs to ptors-M. Since, by hypothesis, ptors-M = tors-M, it follows that ptors-R/I = tors-R/I. It follows from [6, Theorem 1, p. 545], [the Viola-Prioli paper] that R/I is a semisimple ring. As argued in the proof of (b) \Rightarrow (c), this entails M is semisimple, as required.

References

- G. Azumayya, F. Mbuntum, and K. Varadarajan, On M-projective and M-injective Modules, Pacific. J.Math., 59(1957),9–16.
- Bo Stenström, Rings of quotients: An Introduction to Methods of Ring Theory, Springer-Verlag, Berlin Heidelberg, NewYork (1975).
- K.A. Byrd, Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., 33(1972),235-240.
- J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics: A Program of Monographs, Text Books and Lecture Notes, Chapman and Hall/CRC, Boca Raton, London, NewYork (2006).
- D.V. Huynh and R. Wisbauer, A characterization of locally artinian modules, Jornal of Algebra, 132(1976), 287-293.
- J.E. Viola-Prioli, When is every kernel functor Idempotent?, Can.J.Math.XXVII, (3)(1975), 545-554.

N.A. CHERE

- M.H. Fenrick, Conditions under which all preradicaal classes are perfect hereditary torsion classes, Communications in algebra, 2(4)(1974), 365-376.
- V.S. Ramamurthi and K.M. Rangaswamy, Generalized V-rings, Math. Scand., 31(1972), 69-77.
- 9. R. Wisbauer, *Foundation of Module and Ring Theory*, a handbook for study and research, Gordon and Breach Science Publishers, Reading (1991).

Received by editors 3.6.2022; Revised version 26.09.2022; Available online 20.10.2022.

NEGA AREGA CHERE, DEPARTMENT OF MATHEMATICS AND STATISTICS, NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY, WINDHOEK, NAMIBIA

Email address: nchere@nust.na

452