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ON TRIANGULAR PELL AND PELL-LUCAS NUMBERS

Ahmet İpek

Abstract. In this paper, we define triangular Pell and triangular Pell-Lucas

numbers. We carry with little differences an elegant result given in the liter-
ature on the sum of any two consecutive triangular numbers from triangular

numbers to triangular Pell numbers and Pell-Lucas numbers. Also, we present
some interesting identities satisfied by the triangular Pell and triangular Pell-

Lucas numbers which are connected with Pell and Pell-Lucas numbers. Fur-

thermore, we give some important properties of triangular Pell and triangular
Pell-Lucas numbers.

1. Introduction

Binomial coefficients play an important role in many areas of mathematics.
The binomial coefficients are defined by(

n
k

)
=

{
n!

k!(n−k)! ; n > k

0; n < k

for n and k non-negative integers. The theories of binomial coefficients in the
classical algebra can be found in, e.g. [2], [4] and [10].

Triangular numbers are defined by Tn =

(
n + 1

2

)
. There is an interesting

relationship between triangular numbers and Pascal’s triangle. The study of tri-
angular numbers, their properties and their identities from the algebraic, analytic
and geometric point of view has a long history (see, e.g., the monographs [1], [5],
[8]).
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The Fibonomial coefficients known as interesting generalizations of binomial
coefficients are defined by the relation for n > m > 1[

n
m

]
F

=
F1F2 · · ·Fn

(F1F2 · · ·Fn−m) (F1F2 · · ·Fm)
.

There has been a lot of interest in the Fibonomial coefficients and some profound
results were established (for more details see [6], [7], [9] ,[11]).

The Pell numbers Pn are defined by P0 = 0, P1 = 1 and, for n > 2,

Pn = 2Pn−1 + Pn−2.

The Pell-Lucas numbers Qn are defined by the same recurrence, with the initial
conditions Q0 = Q1 = 1. The first six Pell numbers are 0, 1, 2, 5, 12, 29, and 70; and
the first six Pell-Lucas numbers are 1, 1, 3, 7, 17, 41, and 99. The solutions of Pell’s
equation x2 − 2y2 = (−1)n are (Qn, Pn) . These numbers have many interesting
number-theoretic and combinatorial properties. For a full introduction to Pell and
Pell-Lucas numbers, see [5].

The focus of this paper is the study of triangular Pell and triangular Pell-Lucas
numbers. We first define the Pellnomial and Pell-Lucanomial coefficients and then
we define triangular Pell and triangular Pell-Lucas numbers according to these
coefficients. We present some interesting identities satisfied by the triangular Pell
and triangular Pell-Lucas numbers which are connected with Pell and Pell-Lucas
numbers. Furthermore, we give some important properties of triangular Pell and
triangular Pell-Lucas numbers.

2. Main results

In this section, we will address triangular Pell and triangular Pell-Lucas num-
bers from a number theory science perspective, where a special emphasis is put on
integer sequences issues.

We define the Pellnomial and Pell-Lucanomial coefficients for 1 6 k 6 m by

(2.1)

(
m
k

)
P

=
PmPm−1 · · ·Pm−k+1

P1 · · ·Pk

and

(2.2)

(
m
k

)
Q

=
QmQm−1 · · ·Qm−k+1

Q1 · · ·Qk
,

respectively.
The Pell and Pell-Lucas analogs of n! are defined by Pm! =

∏n
k=1 Pk and

Qm! =
∏n

k=1 Qk, respectively. Now, we can give the Pell analog in (2.1) and
Pell-Lucas analog in (2.2) of the binomial coefficients by the following relations,
respectively, for n > m > 1 (

m
k

)
P

=
Pm!

Pm−k!Pk!
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and (
m
k

)
Q

=
Qm!

Qm−k!Qk!

with (
m
0

)
P

=

(
m
m

)
P

=

(
m
0

)
Q

=

(
m
m

)
Q

= 1

where Pn and Qn are the nth Pell and Pell-Lucas numbers, respectively.
For the sake of simplicity, we will denote the nth Pell and Pell-Lucas numbers

by [n] and 〈n〉, respectively. The Pell numbers are defined by [0] = 0, [1] = 1 and,
for n > 2,

(2.3) [n] = 2 [n− 1] + [n− 2] .

For example, we have

[2] = 2, [3] = 5, [4] = 12, [5] = 29.

The Pell-Lucas numbers are defined by

〈n〉 = 2〈n− 1〉+ 〈n− 2〉, n > 2

together with the initial conditions 〈0〉 = 〈1〉 = 1. Here is a list of the Pell-Lucas
numbers

〈2〉 = 3, 〈3〉 = 7, 〈4〉 = 17, 〈5〉 = 41.

We are now in a position to define corresponding triangular Pell and triangular
Pell-Lucas numbers. For the Pellnomial and Pell-Lucasnomial coefficients, it is
natural to define the triangular Pell and triangular Pell-Lucas numbers by

(2.4) T[n] =

(
n + 1

2

)
P

=
Pn+1!

Pn−1!P2!
=

Pn+1Pn

P2!
=

[n + 1] [n]

2
, n > 1

and

T〈n〉 =

(
n + 1

2

)
Q

=
Qn+1!

Qn−1!Q2!
=

Qn+1Qn

Q2!
=
〈n + 1〉 〈n〉

6
, n > 1,

respectively.

It is clear from the Definition 2.3 and 2.4 that T[n] =

(
n + 1

2

)
P

is an integer

for all n > 2.
In [5], it is given an elegant result on the sum of any two consecutive triangular

numbers:

Tn + Tn−1 = n2.

In the following first two propositions, we carry with little differences the above
result from triangular numbers to triangular Pell numbers and Pell-Lucas numbers.

Proposition 2.1. The difference of any two consecutive triangular Pell num-
bers is a square:

(2.5) T[n] − T[n−1] = [n]
2

n > 3.
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Proof. For n > 3, by formula (2.4) and definition (2.3), we get

T[n] − T[n−1] =

(
n + 1

2

)
P

−
(

n
2

)
P

=
[n + 1] [n]

2
− [n] [n− 1]

2

=
[n] ([n + 1]− [n− 1])

2

= [n]
2
.

This completes the proof of Proposition 2.1. �

Proposition 2.2. For the difference of any two consecutive triangular Pell-
Lucas numbers, we have

(2.6) T〈n〉 − T〈n−1〉 =
〈n〉2

3
n > 1.

Proof. The proof is similar to the proof of Proposition 2.1 since

〈n〉 = 2〈n− 1〉+ 〈n− 2〉.

�

Next, we present some fundamental identities satisfied by the triangular Pell
and triangular Pell-Lucas numbers.

Proposition 2.3. For the triangular Pell and Pell-Lucas numbers, we have

36T 2
〈n〉 + 16T 2

[n] = [2n + 1]
2
.

Proof. It is easily seen from the definition triangular Pell and Pell-Lucas
numbers that

36T 2
〈n〉 + 16T 2

[n] =
(
6T〈n〉

)2
+
(
4T[n]

)2
=

(
6
〈n + 1〉 〈n〉

6

)2

+

(
4

[n + 1] [n]

2

)2

= (〈n + 1〉 〈n〉)2 + (2 [n + 1] [n])
2
.(2.7)

Combining formula (〈n + 1〉 〈n〉)2 + (2 [n + 1] [n])
2

= [2n + 1]
2

and (2.7) we get the
desired result. �

Proposition 2.4. For the triangular Pell and Pell-Lucas numbers, we have

T〈n〉 + T[n−1] − T[n] − T〈n−1〉 =
1

3

(
(−1)n − [n]

2
)
.

Proof. We have from (2.5) and (2.6)

T〈n〉 − T〈n−1〉 − T[n] + T[n−1] =
〈n〉2

3
− [n]

2
.
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Therefore, this relation can be rewritten as

(2.8) T〈n〉 − T〈n−1〉 − T[n] + T[n−1] =
1

3

(
〈n〉2 − 2 [n]

2 − [n]
2
)
.

Since every solution of x2 − 2y2 = (−1)n is (〈n〉 , [n]) and (1, 1) is its fundamental
solution, it follows that

(2.9) 〈n〉2 − 2 [n]
2

= (−1)n.

It follows from (2.8) and (2.9) that

T〈n〉 − T〈n−1〉 − T[n] + T[n−1] =
1

3

(
(−1)n − [n]

2
)

thus we get the desired result. �

The following theorem establishes a criterion for two consecutive triangular
numbers to have the same parity (oddness or evenness).

Theorem 2.1 ([5, Theorem 5.1]). The triangular numbers tn and tn+1 have
the same parity if and only if n is odd.

We now establish a criterion for two consecutive triangular Pell numbers to
have the same parity by the following theorems.

Theorem 2.2. The triangular Pell numbers T[n] and T[n+1] have the same
parity if and only if n is odd.

Proof. Suppose T[n] ≡ T[n+1] (mod2). Therefore, by Proposition 2.1, we have

that T[n+1] − T[n] = [n + 1]
2

is even. So [n + 1] is even. Thus, n+ 1 is even. Hence
n is odd.
Conversely, let n be odd. Then, n + 1 is even. Moreover, we have that [n + 1]

and[n + 1]
2

are even. By Proposition 2.1, we get T[n+1]−T[n] is even. Consequently,
we get the desired result: T[n] ≡ T[n+1](mod2). Therefore, the proof is completed.

�

Theorem 2.3. For any positive integer n > 3, we have

T[n+1] ≡ T[n−1] + 1(mod2).

Proof. From (2.5), we get for n > 3

(2.10) T[n+1] − T[n] = [n + 1]
2

and

(2.11) T[n] − T[n−1] = [n]
2
.

The fact that
T[n+1] − T[n−1] = [n + 1]

2
+ [n]

2

directly follows from (2.10) and (2.11). Since [n + 1]
2

+[n]
2

= [2n + 1] and [2n + 1]
is odd, we thus get

T[n+1] ≡ T[n−1] + 1(mod2)

which concludes the proof. �
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