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ON µ−FILTERS OF ALMOST DISTRIBUTIVE LATTICES

Y. Monikarchana

Abstract. In this paper, we prove some important properties on the set

SpecµF (L) of all prime µ−filters of an Almost Distributive Lattice(ADL) topo-

logically. We established a set of equivalent conditions for SpecµF (L) to become
a Hausdorff space.

1. Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both ring theoretically and lattice theoreti-
cally have come into being. The concept of an Almost Distributive Lattice (ADL)
was introduced by Swamy and Rao [7] as a common abstraction of many existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In that paper, the concept of an ideal in an
ADL was introduced analogous to that in a distributive lattice and it was observed
that the set PI(L) of all principal ideals of L forms a distributive lattice. This
enables us to extend many existing concepts from the class of distributive lattices
to the class of ADLs. In lattices, ideals plays a crucial role. Many algebraists have
studied ideals extensively. Because of the lattice theoretic duality principle, the
filters(dual ideals) have not assumed much importance in lattice theory. In [6],
Rao and Badawy derived important results on prime µ−filters topologically. After
that in [5], Rafi and Ravi kumar Bandaru introduced the concept of µ−filters in
an ADL and studied their properties. In this paper, we derived some important
properties of the spaceSpecµF (L) of all prime µ−filters of an ADL topologically.
Given a set of equivalent conditions for the space SpecµF (L) to become a T1−space.
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We given a necessary and sufficient condition for SpecµF (L) to become a Hausdorff
space.

2. Preliminaries

In this section, we recall certain definitions and important results, those will
be required in the text of the paper.

Definition 2.1. [7] An Almost Distributive Lattice with zero or simply ADL
is an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:
1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
3. (x ∨ y) ∧ y = y
4. (x ∨ y) ∧ x = x
5. x ∨ (x ∧ y) = x
6. 0 ∧ x = 0
7. x ∨ 0 = x, for all x, y, z ∈ L.

Example 2.1. Every non-empty set X can be regarded as an ADL as follows.
Let x0 ∈ X. Define the binary operations ∨,∧ on X by

x ∨ y =

{
x if x 6= x0

y if x = x0

x ∧ y =

{
y if x 6= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a 6 b if and only if a = a ∧ b
(or equivalently, a ∨ b = b), then 6 is a partial ordering on L.

Theorem 2.1. [7] If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the
following:

(1). a ∨ b = a⇔ a ∧ b = b
(2). a ∨ b = b⇔ a ∧ b = a
(3). ∧ is associative in L
(4). a ∧ b ∧ c = b ∧ a ∧ c
(5). (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6). a ∧ b = 0⇔ b ∧ a = 0
(7). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(8). a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
(9). a 6 a ∨ b and a ∧ b 6 b
(10). a ∧ a = a and a ∨ a = a
(11). 0 ∨ a = a and a ∧ 0 = 0
(12). If a 6 c, b 6 c then a ∧ b = b ∧ a and a ∨ b = b ∨ a
(13). a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a dis-
tributive lattice except the right distributivity of ∨ over ∧, commutativity of ∨,
commutativity of ∧. Any one of these properties make an ADL L a distributive
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lattice. That is

Theorem 2.2. [7] Let (L,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

1). (L,∨,∧, 0) is a distributive lattice
2). a ∨ b = b ∨ a, for all a, b ∈ L
3). a ∧ b = b ∧ a, for all a, b ∈ L
4). (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in the
partially ordered set (L,6). That is, for any a ∈ L, m 6 a⇒ m = a.

Theorem 2.3. [7] Let L be an ADL and m ∈ L. Then the following are
equivalent:

1). m is maximal with respect to 6
2). m ∨ a = m, for all a ∈ L
3). m ∧ a = a, for all a ∈ L
4). a ∨m is maximal, for all a ∈ L.

As in distributive lattices [1, 2], a non-empty subset I of an ADL L is called an
ideal of L if a∨b ∈ I and a∧x ∈ I for any a, b ∈ I and x ∈ L. Also, a non-empty sub-
set F of L is said to be a filter of L if a∧b ∈ F and x∨a ∈ F for a, b ∈ F and x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element
{0} and greatest element L under set inclusion in which, for any I, J ∈ I(L), I∩J is
the infimum of I and J while the supremum is given by I∨J := {a∨b | a ∈ I, b ∈ J}.
A proper ideal P of L is called a prime ideal if, for any x, y ∈ L, x ∧ y ∈ P ⇒
x ∈ P or y ∈ P . A proper ideal M of L is said to be maximal if it is not properly
contained in any proper ideal of L. It can be observed that every maximal ideal
of L is a prime ideal. Every proper ideal of L is contained in a maximal ideal. A
proper filter G of L is called a prime filter of L if, for any x, y ∈ L, x ∨ y ∈ G ⇒
x ∈ G or y ∈ G. For any subset S of L the smallest ideal containing S is given by

(S] := {(
n∨
i=1

si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead of

(S]. Similarly, for any S ⊆ L, [S) := {x∨ (
n∧
i=1

si) | si ∈ S, x ∈ L and n ∈ N} is the

smallest filter containing S. If S = {s}, we write [s) instead of [S). The set F (L)
of all filters of L forms a bounded distributive lattice, where F ∩G is the infimum
and F ∨G = {a ∧ b | a ∈ F, b ∈ G} is the supremum in F (L).

Theorem 2.4. [7] For any x, y in L the following are equivalent:
1). (x] ⊆ (y]
2). y ∧ x = x
3). y ∨ x = y
4). [y) ⊆ [x).
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For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.

Theorem 2.5. [3] Let I be an ideal and F a filter of L such that I ∩ F = ∅.
Then there exists a prime ideal P such that I ⊆ P and P ∩ F = ∅.

For any subset S of an ADL L with maximal elements, define S+ = {x ∈
L | s ∨ x is a maximal element, for all s ∈ S}. Here we say that S+ is a dual
annihilator of S. For S = {x}, then we denote simply (x)+ for ({x})+. It is clear
that L+ =Mmax.elt, whereMmax.elt is the set of all maximal elements of an ADL
L, for any maximal element m of an ADL L, we have m+ = L and it is easy to
verify that S+ is a filter of an ADL L.

Definition 2.2. [5] A filter F of an ADL L is said to be a µ−filter if for any
x, y ∈ L, x+ = y+ and x ∈ F, then y ∈ F. A µ−filter P of an ADL L is said to be
prime if for any x, y ∈, x ∨ y ∈ P implies either x ∈ P or y ∈ P.

Theorem 2.6. [5] Let F be a µ filter and I an ideal of a ADL L with 0 such
that F ∩I = ∅. Then there exists a prime µ−filter P such that F ⊆ P and P ∩I = ∅.

Corollary 2.1. [5] Let F be a µ−filter of an ADL L and x /∈ F . Then there
exists a prime µ−filter P of L such that F ⊆ P and x /∈ P .

Corollary 2.2. [5] For any µ−filter F of an ADL L, we have

F =
⋂
{P |P is a prime µ− filter of L and F ⊆ P}

Corollary 2.3. [5] The intersection of all prime µ−filters of an ADL is equal
to the set of all maximal elements of L.

3. On µ−filters of ADLs

In this section we discuss some topological concepts on the collection of prime
µ−filters of a ADL. A necessary and sufficient condition is derived for the space of
all prime µ−filters of a ADL to become a Hausdorff space.

Let SpecµF (L) be the set of all prime µ−filters of a ADL L. For any X ⊆ L,
let h(X) = {N ∈ SpecµF (L)|X * N} and for any x ∈ L, h(x) = h({x}). For any
two subsets X and Y of L, it is obvious that X ⊆ Y implies h(X) ⊆ h(Y ). The
following observations can be verified directly.

Lemma 3.1. Let L be an ADL with maximal elements. Then for any a, b ∈ L,
the following conditions holds.
(1)

⋃
a∈L

h(a) = SpecµF (L)

(2) h(a) ∩ h(b) = h(a ∨ b)
(3) h(a) ∪ h(b) = h(a ∧ b)
(4) h(a) = ∅ ⇔ a is a maximal element of L
(5) h(a) = SpecµF (L) if and only if (a)+ is the set of all maximal elements of L.
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From above lemma it can be easily observed that the collection {h(a)/a ∈ L}
forms a base for a topology on SpecµF (L) which is called a hull kernel topology.

Proposition 3.1. Let L be an ADL. Then for any a ∈ L, we have the following
(1) h(a) = h((a)++)
(2) h((a)++) ⊆ SpecµF (L) r h((a)+)

Proof. (1). Let N ∈ h(a). Then a /∈ N. That implies (a)++ * N. Therefore
N ∈ h((a)++) and hence h(a) ⊆ h((a)++). Let N ∈ h((a)++). Then (a)++ * N .
Since N is a µ−filter, we get that a /∈ N . Therefore N ∈ h(a) and hence
h((a)++) ⊆ h(a). Thus h(a) = h((a)++).

(2). Let N ∈ h((a)++). Then (a)++ * N. Since N is a µ−filter, we get that
a /∈ N . That implies (a)+ ⊆ N . Therefore N ∈ SpecµF (L) r h((a)+) and hence
h((a)++) ⊆ SpecµF (L) r h((a)+) �

Theorem 3.1. Let F be any filter of an ADL L. Then h(F ) = h(←−µ µ(F )).

Proof. Since F ⊆ ←−µ µ(F ), we have that h(F ) ⊆ h(←−µ µ(F )). Let N ∈
SpecµF (L) ∩ h(←−µ µ(F )). Then ←−µ µ(F ) * N . That implies there exists an element
a ∈ ←−µ µ(F ) such that a /∈ N . Since a ∈ ←−µ µ(F ), we get that (a)++ ∈ µ(F ). Then
there exists an element x ∈ F such that (a)++ = (x)++. Suppose N /∈ h(F ). Then
x ∈ F ⊆ N . Since N is a µ−filter, we get that (x)++ ⊆ N . Hence a ∈ (a)++ ⊆ N ,
which is a contradiction. Thus N ∈ h(F ). Therefore h(←−µ µ(F )) ⊆ h(F ). �

In the following theorem, the compact open set of SpecµF (L) are characterized.

Theorem 3.2. Let L be an ADL. Then the set of all compact open sets of
SpecµF (L) is the base {h(a)/a ∈ L}.

Proof. Let {h(ai)}i∈∆ be any basic open cover forh(a). Let F be a filter gen-
erated by {ai|i ∈ ∆}.

Suppose a /∈ ←−µ µ(F ). Then there exists a prime µ-filter N such that ←−µ µ(F ) ⊆
N and a /∈ N. Thene P ∈ h(a) ⊆

⋃
i∈∆

h(ai). That implies there exists i ∈ ∆ such

that ai /∈ N, which is a contradiction to F ⊆ ←−µ µ(F ) ⊆ N. Therefore a ∈ ←−µ µ(F ).

Since a ∈ ←−µ µ(F ), there exists an element x ∈ F such that a ∈ (x)++. Since
F is a filter generated by {ai|i ∈ ∆}, there exist a1, a2, · · · , an ∈ {xi|i ∈ ∆} such
that x = a1 ∧ a2 ∧ · · · ∧ an. Therefore a ∈ (x)++ = (a1 ∧ a2 ∧ · · · ∧ an)++.

Let N ∈ h(a). Then a /∈ N. Suppose N /∈
n⋃
i=1

h(ai). Then ai ∈ N for all

i = 1, 2, · · · , n. Hence a1 ∧ a2 ∧ · · · ∧ an ∈ N. Since N is a µ−filter, we get
a ∈ (a1 ∧ a2 ∧ · · · ∧ an)++ ⊆ N, which is a contradiction to that a /∈ N. Therefore

N ∈
n⋃
i=1

h(ai) and hence h(a) ⊆
n⋃
i=1

h(ai), which is a finite subcover for h(a). Thus



414 Y. MONIKARCHANA

h(a) is compact in SpecµF (L).

Now we prove that every compact open subset of SpecµF (L) is of the form
h(a) for some a ∈ L. Let C be a compact open subset of SpecµF (L). Since C is
open, there exists A ⊆ L such that C =

⋃
x∈A

h(x). Since C is compact, there exists

x1, x2, · · · , xn ∈ A such that

C =

n⋃
i=1

h(xi) = h(

n∧
i=1

xi)

Therefore C = h(a) for some a ∈ L. �

Theorem 3.3. Let L be an ADL with maximal elements. Then SpecµF (L) is
compact if and only if L has an element of the form (a)+ is the set of all maximal
elements of L.

Corollary 3.1. If L is an ADL with maximal elements, then SpecµF (L) is
compact.

It is already observed that every minimal prime filter of a ADL is a prime
µ-filter. In general, the converse is not true. However, in the following theorem,
some equivalent conditions are derived for every prime µ-filter of a ADL to become
a minimal prime filter.

Theorem 3.4. Let L be an ADL. Then the following conditions are equivalent
(1) SpecµF (L) is a T1-space.
(2) every prime µ−filter is maximal
(3) every prime µ−filter is minimal.

Proof. (1) ⇒ (2) : Assume that SpecµF (L) is a T1-space. Let N be a prime
µ−filter. Now we prove that N is maximal. Suppose M be any proper µ−filter
with N ⊂ M. Since SpecµF (L) is a T1−space, there exists open sets h(a) and h(b)
such that N ∈ h(a) r h(b) and M ∈ h(b) r h(a). Since N /∈ h(b), we get that
b ∈ N ⊂ M. That implies M /∈ h(b), which is a contradiction. Therefore N is a
maximal µ−filter.
(2)⇒ (3) : Clear
(3) ⇒ (1) : Assume that every prime µ−filter is minimal. Let N and M be two
distinct elements of SpecµF (L). Since N and M are minimal, it is clear that N *M
and M * N. Then there exists a, b ∈ L such that a ∈ N rM and b ∈M rN. That
implies N ∈ h(b)rh(a) and M ∈ h(a)rh(b). Therefore SpecµF (L) is a T1-space. �

Theorem 3.5. Let L be a ADL such that each (a)+ is a direct factor of L.
Then the following conditions are equivalent.
(1) SpecµF (L) is a Hausdorff space.
(2) For any two distinct prime µ-filters N,M in L, there exists x, y ∈ L such that
(x)+ ⊆ N and (y)+ ⊆ M and there does not exist any P ∈ SpecµF (L) such that
x ∨ y /∈ P.
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Proof. (1) ⇒ (2) : Assume that SpecµF (L) is a Hausdorff space. Let N,M
be two distinct prime µ−filters of L. SinceSpecµF (L) is Hausdorff, there exists two
open sets h(x) and h(y) such that N ∈ h(x) and M ∈ h(y) and h(x) ∩ h(y) = ∅.
Since N ∈ h(x) = h((x)++), we get that (x)++ * N. Choose an element a ∈ (x)++

and a /∈ N. Hence we get (x)+ ⊆ (a)+ and (a)+ ⊆ N. Hence (x)+ ⊆ N. Similarly,
we get that (y)+ ⊆M. Suppose there exists a prime µ−filter P such that x∨y /∈ P.
Then P ∈ h(x∨ y) = h(x)∩ h(y), which is a contradiction to that h(x)∩ h(y) = ∅.

(2) ⇒ (1) : Assume the condition (2). Let N,M be two distinct elements
of SpecµF (L). By our assumption, there exists x, y ∈ L such that (x)+ ⊆ N and
(y)+ ∈ M. Hence by the assumption, we get (x)+ and (y)+ are direct factors of
L. That implies (x)+ ∨ (x)++ = L. Suppose x ∈ N. Since N is a µ−filter, we get
that (x)++ ⊆ N. Hence L = (x)+ ∨ (x)++ ⊆ N, which is a contradiction. Hence
x /∈ N. Similarly, we get that y /∈ M. Therefore N ∈ h(x) and M ∈ h(y). Suppose
h(x)∩ h(y) 6= ∅. Then there exists a prime µ−filter P such that P ∈ h(x)∩ h(y) =
h(x ∨ y). Hence x ∨ y /∈ P, which is a contradiction. Therefore SpecµF (L) is a
Hausdorff space. �
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