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TEMO-TYPE REGULARITY FOR TWO GENERAL
DEGREE-BASED TOPOLOGICAL INDICES

Jiajia Wang, Zhen Lin, and Shumin Zhang

Abstract. TEMO-type regularity problem is an interesting topic in chemical

graph theory. In this paper, we study TEMO-type regularity problem of the

general Randić index and the (a, b)-KA index, which improves the known result
of Gutman [10].

1. Introduction

In chemical graph theory, the topological indices or molecular structure de-
scriptors are becoming more and more the focus of attention due to the fact that
chemical, physical and biological properties of molecules have good correlations
with these topological indices, especially the great number of successful applica-
tions of these descriptors in structure-property or activity relationships and their
increasing role in molecular discovery [2, 14, 21]. In particular, a large number
of the degree-based topological indices have been conceived, such as the Zagreb
indices [13], the Randić index [19], the harmonic index [5], the sum-connectivity
index [22], the reciprocal sum-connectivity index [4], the Hyper-Zagreb index [20],
the forgotten topological index [6], the Hyper F-index [7], the Y-index [1], the
zeroth-order Randić index [14], the Sombor index [9], etc.

Let G be a simple graph with the vertex set V (G) and edge set E(G). Let di
be the degree of the vertex i in G. In 1998, the general Randić index, introduced
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by Bollobás and Erdős [3], is defined as

Rα(G) =
∑

uv∈E(G)

(dudv)
α,

where α is an arbitrary real number. Clearly, R−1/2(G) is the Randić index. For
any real number a and b, the (a, b)-KA index of a graph G is defined as

KAa,b(G) =
∑

uv∈E(G)

(dau + dav)b,

which is a novel general vertex-degree-based topological index proposed by Kulli
[15]. Obviously, this index is general form of the above vertex-degree-based topo-
logical indices, such as KA1,1 is the first Zagreb index and KA2,1/2 is the Sombor
index. For other situations, see [16].

For any two vertex-disjoint graphs G1 and G2, we assume that u and v are two
distinct vertices of G1, and p and q are two distinct vertices of G2. Then S is the
graph obtained from G1 and G2 by connecting u with p and v with q. The graph
T is obtained analogously, by connecting u with q and v with p, see Figure 1.

G1

G2

u v

p q

u v

p q

u v

p q

S T
Figure 1. The structure of the graphs S and T and the labeling of their vertices.

In 1982, Polansky and Zander [18] studied the property of the graphs S and T ,
and compared the characteristic polynomials of S and T in the special case G1

∼=
G2, that is φ(T, λ) > φ(S, λ). Meanwhile, they called this a “topological effect on
molecular orbitals” and used the acronym TEMO. Further, Gutman, Graovac and
Polansky [8, 11, 12, 17] made the research express that the inequality φ(T, λ) >
φ(S, λ) implies certain regularities for the distribution of the eigenvalues of S and T
and have appropriate (experimentally verifiable) consequences on the distribution
of the molecular orbital energy levels. Eventually, TEMO was extensively studied,
see the references in [10].

In 2022, Gutman [10] showed that a TEMO-type regularity holds for the Som-
bor index (SO), that is SO(S) < SO(T ). On this basis, we study TEMO-type
regularity for the general Randić index and the (a, b)-KA index and obtain the fol-
lowing theorems, which extend the results of Gutman. Denote by du, dv, dp, dq the
degrees of the vertices u, v, p, q of the graphs S and T . It is obvious that if either
du = dv or dp = dq or both, then Rα(S) = Rα(T ) and KAa,b(S) = KAa,b(T ).



TEMO-TYPE REGULARITY FOR TOPOLOGICAL INDICES 403

Therefore, we consider the case du 6= dv and dp 6= dq. Without loss of generality,
we may assume that du > dv and dp > dq.

Theorem 1.1. Let G1 and G2 be arbitrary vertex-disjoint graphs and u, v, p, q
their vertices as indicated in Figure 1. If α 6= 0, du > dv and dp > dq, then

Rα(S) > Rα(T ).

Theorem 1.2. Let G1 and G2 be arbitrary vertex-disjoint graphs and u, v, p, q
their vertices as indicated in Figure 1. If du > dv and dp > dq, then

(i) If a 6= 0 and b ∈ (−∞, 0) ∪ (1,+∞), then KAa,b(S) > KAa,b(T ).
(ii) If a 6= 0 and b ∈ (0, 1), then KAa,b(S) < KAa,b(T ).
Note that the degree of the vertex u in the graph G1 is du − 1, etc.

2. Proofs of Theorems

Lemma 2.1. Let F (x, y, z, w) = (x + z)b + (y + w)b − (y + z)b − (x + w)b

be a quaternion function with regard to x, y, z, w and (x − y)(z − w) > 0, and
x, y, z, w ∈ (1, (n− 1)a), n ∈ N+ for a > 0, or x, y, z, w ∈ ((n− 1)a, 1), n ∈ N+ for
a < 0. Then we have

(i) If b ∈ (−∞, 0) ∪ (1,+∞), then F (x, y, z, w)min > 0.
(ii) If b ∈ (0, 1), then F (x, y, z, w)max < 0.

Proof. By taking partial derivative for x, y, z, w, respectively, we have

∂F

∂x
= b(x+ z)b−1 − b(x+ w)b−1,

∂F

∂z
= b(x+ z)b−1 − b(y + z)b−1,

∂F

∂y
= b(y + w)b−1 − b(y + z)b−1,

∂F

∂w
= b(y + w)b−1 − b(x+ w)b−1.

Now we use the method of linear programming to prove eight cases:

• x > y, z > w, b ∈ (−∞, 0) ∪ (1,+∞), a > 0 and x, y, z, w ∈ (1, (n −
1)a), n ∈ N+.

• x < y, z < w, b ∈ (−∞, 0) ∪ (1,+∞), a > 0 and x, y, z, w ∈ (1, (n −
1)a), n ∈ N+.

• x > y, z > w, b ∈ (−∞, 0) ∪ (1,+∞), a < 0 and x, y, z, w ∈ ((n −
1)a, 1), n ∈ N+.

• x < y, z < w, b ∈ (−∞, 0) ∪ (1,+∞), a < 0 and x, y, z, w ∈ ((n −
1)a, 1), n ∈ N+.

• x > y, z > w, b ∈ (0, 1), a > 0 and x, y, z, w ∈ (1, (n− 1)a), n ∈ N+.
• x < y, z < w, b ∈ (0, 1), a > 0 and x, y, z, w ∈ (1, (n− 1)a), n ∈ N+.
• x > y, z > w, b ∈ (0, 1), a < 0 and x, y, z, w ∈ ((n− 1)a, 1), n ∈ N+.
• x < y, z < w, b ∈ (0, 1), a < 0 and x, y, z, w ∈ ((n− 1)a, 1), n ∈ N+.
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However, we only discuss the following case, and the other seven cases prove almost
the same.

If x > y, z > w, b ∈ (−∞, 0)∪ (1,+∞), a > 0 and x, y, z, w ∈ (1, (n− 1)a), n ∈
N+, then

∂F

∂x
= b(x+ z)b−1 − b(x+ w)b−1 > 0,

∂F

∂z
= b(x+ z)b−1 − b(y + z)b−1 > 0,

∂F

∂y
= b(y + w)b−1 − b(y + z)b−1 < 0,

∂F

∂w
= b(y + w)b−1 − b(x+ w)b−1 < 0.

First, we take z and w as constant parameters and use linear programming to
minimize the function f(x, y) = (x+ z)b+ (y+w)b− (y+ z)b− (x+w)b, subject to 1 6 x 6 (n− 1)a

1 6 y 6 (n− 1)a

x > y

then, the feasible region is shown in Figure 2.

y

x
0

x ≥ 1 x ≤ (n− 1)a

y ≥ 1

y ≤ (n− 1)a

x > y

Figure 2. The feasible region of f(x, y).

Therefore, we get that when x→ y , f(x, y) tend to take the minimum value, i.e.

g(z, w) = f(x, y)min = lim
x→y

f(x, y).

Next, find the minimum of g(z, w), subject to 1 6 z 6 (n− 1)a

1 6 w 6 (n− 1)a

z > w
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then, the feasible region is shown in Figure 3. Hence, we get that when z → w,
g(z, w) tend to take the minimum value, i.e.,

F (x, y, z, w)min = g(z, w)min = lim
z→w

g(z, w) = lim
z→w

lim
x→y

f(x, y, z, w) = 0.

z

w

0
z ≥ 1 z ≤ (n− 1)a

w ≥ 1

w ≤ (n− 1)a

z > w

Figure 3. The feasible region of g(z, w).

Combining the above arguments, we have F (x, y, z, w)min > 0. This completes
the proof. �

The proof of Theorem 1.1 By hypothesis, we have

Rα(S)−Rα(T ) = (dudp)
α + (dvdq)

α − (dvdp)
α − (dudq)

α

= (dαu − dαv )(dαp − dαq )

> 0

Thus Rα(S) > Rα(T ). This completes the proof. 2

The proof of Theorem 1.2 Let

KAa,b(S) = (dau + dap)b + (dav + daq )b +KA
′

a,b,

KAa,b(T ) = (dau + daq )b + (dav + dap)b +KA
′

a,b,

where KA
′

a,b is sum of terms (dau + dav)b over other edges of S or T .
Thus,

KAa,b(S)−KAa,b(T ) = (dau + dap)b + (dav + daq )b − (dau + daq )b − (dav + dap)b.

If a = 0 or b = 0, 1, then KAa,b(S) − KAa,b(T ) = 0. We only consider that
b ∈ Rr {0, 1} and a ∈ Rr {0}. By Lemma 2.1, we have the proof. 2
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