MATHEMATICAL PROPERTIES OF KG SOMBOR INDEX

Veerabhadrappa R. Kulli, Neelakantappa Harish, Basavaraju Chaluvaraju, and Ivan Gutman

Abstract

Let $G=(\mathbf{V}, \mathbf{E})$ be a connected graph. A topological invariant named Sombor index was introduced by one of the present authors (I.G.) in 2021, defined as $S O(G)=\sum_{u v \in \mathbf{E}} \sqrt{d_{u}^{2}+d_{v}^{2}}$, where d_{u} denotes the degree of the vertex $u \in \mathbf{V}$. The K Banhatti indices, introduced by another present author (V.R.K.) in 2016, are defined as $B_{1}(G)=\sum_{u e}\left(d_{u}+d_{e}\right)$ and $B_{2}(G)=$ $\sum_{u e} d_{u} d_{e}$, where $\sum_{u e}$ indicates summation over vertices $u \in \mathbf{V}$ and the edges $e \in \mathbf{E}$ that are incident to u, and d_{e} is the degree of the edge e. In this paper, we introduce a novel topological graph invariant, named KG Sombor index, defined as $K G(G)=\sum_{u e} \sqrt{d_{u}^{2}+d_{e}^{2}}$. Some basic properties of $K G$ are established, as well as its relationships with other topological indices.

1. Introduction

All graphs considered in this paper are finite, connected, undirected, without loops and multiple edges. Let $G=(\mathbf{V}(G), \mathbf{E}(G))$ be a connected graph with $n=|\mathbf{V}(G)|$ vertices and $m=|\mathbf{E}(G)|$ edges. The degree d_{u} of a vertex $u \in \mathbf{V}(G)$ is the number of vertices adjacent to u. The degree of an edge $e=u v \in \mathbf{E}(G)$ is the number of edges incident to e. As well known, $d_{e}=d_{u}+d_{v}-2$. We refer to [9] for undefined terms and notation.

A molecular graph is a graph whose vertices correspond to the atoms and the edges to the bonds of an underlying molecule. A single number that can be used to characterize some property of the molecule represented by a graph is called a topological index or (graph-based) molecular structure descriptor. Numerous such

[^0]structure descriptors have been put forward in the recent literature, and found applications in theoretical chemistry, especially in QSPR/QSAR/QSTR research; for details see $[8,11]$ and the references cited therein.

The first and second Zagreb indices, defined as

$$
M_{1}(G)=\sum_{u v \in \mathbf{E}(G)}\left(d_{u}+d_{v}\right)
$$

and

$$
M_{2}(G)=\sum_{u v \in \mathbf{E}(G)} d_{u} d_{v}
$$

are two oldest and most detailed studied vertex-degree-based topological indices $[\mathbf{6}, \mathbf{7}, \mathbf{1 1}]$. In the later consideration we shall need also the "forgotten" topological index [4]

$$
F(G)=\sum_{u v \in \mathbf{E}(G)}\left(d_{u}^{2}+d_{v}^{2}\right) .
$$

Bearing in mind the algebraic form of the Zagreb indices, one of the present authors (V.R.K.) introduced the first and second K Banhatti indices as [10]

$$
\begin{equation*}
B_{1}(G)=\sum_{u e}\left(d_{u}+d_{e}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}(G)=\sum_{u e} d_{u} d_{e} \tag{1.2}
\end{equation*}
$$

where $\sum_{u e}$ indicates summation over vertices $u \in \mathbf{V}(G)$ and the edges $e \in \mathbf{E}(G)$ that are incident to u. Since the edge $e=u v$ is incident to both the vertices u and v, the Banhatti indices can be written as

$$
\begin{align*}
B_{1}(G) & =\sum_{u v \in \mathbf{E}(G)}\left[\left[d_{u}+\left(d_{u}+d_{v}-2\right)\right]+\left[d_{v}+\left(d_{u}+d_{v}-2\right)\right]\right] \tag{1.3}\\
B_{2}(G) & =\sum_{u v \in \mathbf{E}(G)}\left[\left[d_{u}\left(d_{u}+d_{v}-2\right)\right]+\left[d_{v}\left(d_{u}+d_{v}-2\right)\right]\right] . \tag{1.4}
\end{align*}
$$

Recently, one of the present authors (I.G.) [5], invented a novel degree-based topological index, called Sombor index, inspired by a geometric interpretation of degree-radii of the edges. The Sombor index is defined as

$$
\begin{equation*}
S O(G)=\sum_{u v \in E(G)} \sqrt{d_{u}^{2}+d_{v}^{2}} \tag{1.5}
\end{equation*}
$$

It attracted much attention of scholars, and its mathematical properties and chemical applicability was, and currently is, much investigated, see for instance $[\mathbf{1}, \mathbf{2}$, $3,12,15,16,17,18,19,20,21]$.

Here, we initiate the study of new topological index named as $K G$ Sombor index, defined as

$$
\begin{equation*}
K G=K G(G)=\sum_{u e} \sqrt{d_{u}^{2}+d_{e}^{2}} \tag{1.6}
\end{equation*}
$$

Evidently, $K G$ is a kind of combination between the original Sombor index, Eq. (1.5), and the K Banhatti indices, Eqs. (1.1) and (1.2). In the same way as relations (1.3) and (1.4) are obtained, we can express the KG index as

$$
\begin{aligned}
K G(G) & =\sum_{u v \in \mathbf{E}(G)}\left[\sqrt{d_{u}^{2}+\left(d_{u}+d_{v}-2\right)^{2}}+\sqrt{d_{v}^{2}+\left(d_{u}+d_{v}-2\right)^{2}}\right] \\
& =\sum_{u v \in \mathbf{E}(G)}\left[\sqrt{2 d_{u}^{2}+d_{v}^{2}+2 d_{u} d_{v}-4\left(d_{u}+d_{v}\right)+4}\right. \\
& \left.+\sqrt{d_{u}^{2}+2 d_{v}^{2}+2 d_{u} d_{v}-4\left(d_{u}+d_{v}\right)+4}\right]
\end{aligned}
$$

2. Specific families of graphs

Theorem 2.1. Let G be an r-regular graph of order n. Then

$$
\begin{equation*}
K G(G)=n r \sqrt{5 r^{2}-8 r+4} \tag{2.1}
\end{equation*}
$$

Proof. An r-regular graph has $m=n r / 2$ edges and for each edge $d_{e}=2 r-2$. By Eq. (1.6),

$$
\begin{aligned}
K G(G) & =\sum_{u v \in \mathbf{E}(G)}\left[\sqrt{d_{u}^{2}+d_{e}^{2}}+\sqrt{d_{v}^{2}+d_{e}^{2}}\right] \\
& =\frac{n r}{2}\left[\sqrt{r^{2}+(2 r-2)^{2}}+\sqrt{r^{2}+(2 r-2)^{2}}\right]=n r \sqrt{5 r^{2}-8 r+4}
\end{aligned}
$$

Corollary 2.1.
(a) For the cycle C_{n} of size $n, K G\left(C_{n}\right)=4 \sqrt{2 n}$.
(b) For the complete graph K_{n} of order $n, K G\left(K_{n}\right)=n(n-1) \sqrt{5 n^{2}-18 n+17}$.
(c) For the k-hypercube Q_{k} of order $2^{k}, K G\left(Q_{k}\right)=2^{k} k \sqrt{5 k^{2}-8 k+4}$.
(d) The generalized Petersen graph $G P(t, s)$ for $t \geqslant 3$ and $1 \leqslant s \leqslant\lfloor(t-1) / 2\rfloor$ is a connected cubic graph consisting of an inner star polygon $\{t, s\}$ with corresponding vertices in the inner and outer polygons connected by edges. Then $\operatorname{KG}(G P(t, s))=$ $30 t$.

In an analogous manner, using Eq. (1.7), we arrive at:
THEOREM 2.2. Let $K_{p, q}$ be the complete bipartite graph with $1 \leqslant p \leqslant q$. Then

$$
K G\left(K_{p, q}\right)=p q\left[\sqrt{p^{2}+(p+q-2)^{2}}+\sqrt{q^{2}+(p+q-2)^{2}}\right] .
$$

Corollary 2.2.
(a) For the regular bipartite graph $K_{p, p}$ of order $2 p, K G\left(K_{p, p}\right)=2 p^{2} \sqrt{5 p^{2}-8 p+4}$.
(b) For the star $K_{1, q}$ or order $1+q, K G\left(K_{1, q}\right)=q\left(\sqrt{q^{2}-2 q+2}+\sqrt{2 q^{2}-2 q+1}\right)$.

Theorem 2.3. Let P_{n} be the path of order n. Then $K G\left(P_{1}\right)=0, K G\left(P_{2}\right)=2$, whereas for $n \geqslant 3$,

$$
K G\left(P_{n}\right)=4 \sqrt{2}(n-3)+2(\sqrt{5}+\sqrt{2})
$$

3. Simple bounds

Let the minimum and maximum degree of a vertex in the graph G be denoted by δ and Δ, respectively.

Theorem 3.1. For any non-trivial connected graph G with m edges,

$$
2 m \sqrt{5 \delta^{2}-8 \delta+4} \leqslant K G(G) \leqslant 2 m \sqrt{5 \Delta^{2}-8 \Delta+4}
$$

The lower and upper bounds are attained if and only if G is regular.
Proof. If $\delta \leqslant d_{u}, d_{v} \leqslant \Delta$, then $2(\delta-1) \leqslant d_{e} \leqslant 2(\Delta-1)$. Then from equation (1.6) we have

$$
\begin{aligned}
K G(G) & \leqslant \sum_{u v \in E(G)} \sqrt{\Delta^{2}+4(\Delta-1)^{2}}+\sum_{u v \in E(G)} \sqrt{\Delta^{2}+4(\Delta-1)^{2}} \\
& =2 m \sqrt{5 \Delta^{2}-8 \Delta+4} \\
K G(G) & \geqslant \sum_{u v \in E(G)} \sqrt{\delta^{2}+4(\delta-1)^{2}}+\sum_{u v \in E(G)} \sqrt{\delta^{2}+4(\delta-1)^{2}} \\
& =2 m \sqrt{5 \delta^{2}-8 \delta+4} .
\end{aligned}
$$

The equality case is evident from Eq. (2.1).
Theorem 3.2. For any non-trivial connected graph G of order n,

$$
K G\left(P_{n}\right) \leqslant K G(G) \leqslant K G\left(K_{n}\right)
$$

The lower bound is attained if and only if $G \cong P_{n}$ and the upper bound is attained if and only if $G \cong K_{n}$. Expressions for $K G\left(P_{n}\right)$ and $K G\left(K_{n}\right)$ are found in Theorem 2.3 and Corollary 2.1(b).

The proof of Theorem 3.2 is fully analogous to the proof of Theorem 2 in Ref. [5]), and will not be repeated here.

4. Bounds in terms of other topological indices

We first recall an elementary auxiliary result.
Lemma 4.1. For any positive numbers a and b,

$$
\frac{1}{\sqrt{2}}(a+b) \leqslant \sqrt{a^{2}+b^{2}}<a+b .
$$

Equality on the left-hand side holds if and only if $a=b$.

Applying Lemma 4.1 to Eq. (1.6), we get

$$
\frac{1}{\sqrt{2}} \sum_{u e}\left(d_{u}+d_{e}\right) \leqslant K G(G)<\sum_{u e}\left(d_{u}+d_{e}\right)
$$

which in view of the definition of the first K Banhatti index, Eq. (1.1) implies
Theorem 4.1. For any non-trivial connected graph G

$$
\frac{1}{\sqrt{2}} B_{1}(G) \leqslant K G(G)<B_{1}(G)
$$

with equality on the left-hand side if G is regular of degree 2, i.e. if $G \cong C_{n}$.
Applying the same argument to Eq. (1.7), we get

$$
\begin{aligned}
K G(G) & <\sum_{u v \in \mathbf{E}(G)}\left[\left[2 d_{u}^{2}+d_{v}^{2}+2 d_{u} d_{v}-4\left(d_{u}+d_{v}\right)+4\right]\right. \\
& \left.+\left[d_{u}^{2}+2 d_{v}^{2}+2 d_{u} d_{v}-4\left(d_{u}+d_{v}\right)+4\right]\right] \\
& =\sum_{u v \in \mathbf{E}(G)}\left[3\left(d_{u}^{2}+d_{v}^{2}\right)-8\left(d_{u}+d_{v}\right)+4 d_{u} d_{v}+8\right]
\end{aligned}
$$

and

$$
K G(G) \geqslant \frac{1}{\sqrt{2}} \sum_{u v \in \mathbf{E}(G)}\left[3\left(d_{u}^{2}+d_{v}^{2}\right)-8\left(d_{u}+d_{v}\right)+4 d_{u} d_{v}+8\right]
$$

which combined with the definitions of the first and second Zagreb index, and the forgotten index, yields

Theorem 4.2. For any non-trivial connected graph G with m edges,
$\frac{1}{\sqrt{2}}\left[3 F(G)-8 M_{1}(G)+4 M_{2}(G)+8 m\right] \leqslant K G(G)<3 F(G)-8 M_{1}(G)+4 M_{2}(G)+8 m$.
It would be interesting to determine the conditions for equality in the left-hand side bound.

THEOREM 4.3. For any non-trivial connected graph G,

$$
\left[\frac{m \sqrt{5 \Delta^{2}-8 \Delta+4}}{\Delta(\Delta-1)}\right] B_{2}(G) \leqslant K G(G) \leqslant\left[\frac{m \sqrt{5 \delta^{2}-8 \delta+4}}{\delta(\delta-1)}\right] B_{2}(G) .
$$

The lower and upper bounds are attained if and only if G is regular.

Proof. From Eq. (1.6), we have

$$
\begin{align*}
K G(G) & =\sum_{u e} d_{u} d_{e} \sqrt{\left(\frac{1}{d_{u}^{2}}+\frac{1}{d_{e}^{2}}\right)}=\left(\sum_{u e} d_{u} d_{e}\right)\left(\sum_{u e} \sqrt{\left(\frac{1}{d_{u}^{2}}+\frac{1}{d_{e}^{2}}\right)}\right) \\
4.1) & =B_{2}(G)\left[\sum_{u v \in E} \sqrt{\left(\frac{1}{d_{u}^{2}}+\frac{1}{d_{e}^{2}}\right)}+\sum_{u v \in E} \sqrt{\left(\frac{1}{d_{u}^{2}}+\frac{1}{d_{e}^{2}}\right)}\right] \tag{4.1}\\
& \leqslant B_{2}(G)\left[\sum_{u v \in E} \sqrt{\left(\frac{1}{\delta^{2}}+\frac{1}{4(\delta-1)^{2}}\right)}+\sum_{u v \in E} \sqrt{\left(\frac{1}{\delta^{2}}+\frac{1}{4(\delta-1)^{2}}\right)}\right] \\
& \leqslant\left[\frac{m \sqrt{5 \delta^{2}-8 \delta+4}}{\delta(\delta-1)}\right] B_{2}(G) .
\end{align*}
$$

In a similar manner, we get

$$
K G(G) \geqslant B_{2}(G)\left[\frac{m \sqrt{5 \Delta^{2}-8 \Delta+4}}{\Delta(\Delta-1)}\right] .
$$

If G is regular, then the equality is evident from Theorem 2.1.

The sum and product connectivity Banhatti indices are defined as

$$
S B(G)=\sum_{u e} \frac{1}{\sqrt{d_{u}+d_{e}}} \quad \text { and } \quad P B(G)=\sum_{u e} \frac{1}{\sqrt{d_{u} d_{e}}}
$$

These indices are initiated by Kulli et al. $[\mathbf{1 3}, \mathbf{1 4}]$. Analogously, the inverse version of the sum and product connectivity Banhatti indices of a graph G are defined as

$$
I S B(G)=\sum_{u e} \sqrt{d_{u}+d_{e}} \quad \text { and } \quad I P B(G)=\sum_{u e} \sqrt{d_{u} d_{e}}
$$

By $[\mathbf{1 3}, 14]$, we have $P B(G) \leqslant S B(G)$ and hence $I S B(G) \leqslant I P B(G)$.
Theorem 4.4. For any non-trivial connected graph G,
(4.2) $\sqrt{2} \operatorname{IPB}(G) \leqslant K G(G) \leqslant m \operatorname{IPB}(G)\left[\sqrt{\frac{\Delta^{2}+\theta}{\Delta(\Delta+\delta-2)}}+\sqrt{\frac{\delta^{2}+\theta}{\delta(\Delta+\delta-2)}}\right]$
where $\theta=(\Delta+\delta)^{2}-4(\Delta+\delta)+4$.

Proof. From equation (1.6) one obtains

$$
\begin{aligned}
K G(G) & =\sum_{u e} \sqrt{d_{u} d_{e}\left(\frac{d_{u}}{d_{e}}+\frac{d_{e}}{d_{u}}\right)} \leqslant \sum_{u e} \sqrt{d_{u} d_{e}}\left(\sum_{u e} \sqrt{\frac{d_{u}}{d_{e}}+\frac{d_{e}}{d_{u}}}\right) \\
& \leqslant \operatorname{IPB(G)[\sum _{ue}\sqrt {\frac {d_{u}}{d_{u}+d_{v}-2}+\frac {d_{u}+d_{v}-2}{d_{u}}}]} \\
& \leqslant \operatorname{IPB(G)[\sum _{uv\in E}\sqrt {\frac {\Delta }{\Delta +\delta -2}+\frac {\Delta +\delta -2}{\Delta }}} \\
& \left.+\sum_{u v \in E} \sqrt{\frac{\delta}{\delta+\Delta-2}+\frac{\delta+\Delta-2}{\delta}}\right] \\
& \leqslant m \operatorname{IPB}(G)\left[\sqrt{\frac{\Delta^{2}+\theta}{\Delta(\Delta+\delta-2)}}+\sqrt{\frac{\delta^{2}+\theta}{\delta(\Delta+\delta-2)}}\right]
\end{aligned}
$$

By the definitions of $K G(G)$ and $I P B(G)$, we have the $K G(G) \geqslant \sqrt{2} I P B(G)$.
Thus the relations (4.2) follow.

References

[1] R. Cruz, I. Gutman, and J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021), \#126018
[2] K. C. Das, A. S. Cevik, I. N. Cangul, and Y. Shang, On Sombor index, Symmetry 13 (2021), \#140.
[3] S. Filipovski, Relations between Sombor index and some topological indices, Iran. J. Math. Chem. 12 (2021), 19-26.
[4] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 11841190.
[5] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16.
[6] I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399-3405.
[7] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[8] A. L. Horvath, Molecular Design. Chemical Structure Generation from the Properties of Pure Organic Compounds, Elsevier, Amsterdam, 1992.
[9] V. R. Kulli, College Graph Theory, Vishwa, Gulbarga, 2012.
[10] V. R. Kulli, On K Banhatti indices of graphs, J. Comput. Math. Sci. 7(4) (2016) 213-218.
[11] V. R. Kulli, Graph indices, in: M. Pal, S. Samanta, A. Pal (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 2020, pp. 66-91.
[12] V. R. Kulli, Sombor index of certain graph operators, Int. J. Eng. Sci. Res. Technol. 10 (2021), 127-134.
[13] V. R. Kulli, B. Chaluvaraju, and H. S. Boregowda, Some bounds on sum connectivity Banhatti index of graphs, Palestine J. Math. 8(2) (2019), 355-365.
[14] V. R. Kulli, B. Chaluvaraju, and H. S. Boregowda, The product connectivity Banhatti index of a graph, Discuss. Math. Graph Theory 39 (2019), 505-517.
[15] H. Liu, I. Gutman, L. You, and Y. Huang, Sombor index: Review of extremal results and bounds, J. Math. Chem. 66 (2022), 771-798.
[16] J. Rada, J. M. Rodríguez, and J. M. Sigarreta, General properties on Sombor indices, Discrete Appl. Math. 299 (2021), 87-97.
[17] Z. Raza, K. Naz, and S. Ahmad, Expected values of molecular descriptors in random polyphenyl chains, Emerg. Sci. J. 6(1) (2022), 151-165.
[18] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021), 445-457.
[19] T. Réti, T. Doslić, and A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021), 11-18.
[20] Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput. 419 (2022), \#126881.
[21] Z. Wang, Y. Mao, Y. Li, and B. Furtula, On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022), 1-17.

Received by editors 17.4.2022; Revised version 21.6.2022; Available online 1.8.2022.
Veerabhadrappa R. Kulli, Department of Mathematics, Gulbarga University, Gulbarga - 585 106, India

Email address: vrkulli@gmail.com
Neelakantappa Harish, Department of Mathematics, Bangalore University, Jnana
Bharathi Campus, Bangalore - 560 056, India
Email address: harish.jaga16@gmail.com
Basavaraju Chaluvaraju, Department of Mathematics, Bangalore University, Jnana
Bharathi Campus, Bangalore - 560 056, India
Email address: bchaluvaraju@gmail.com
Ivan Gutman, Faculty of Science, University of Kragujevac, Kragujevac, Serbia Email address: gutman@kg.ac.rs

[^0]: 2010 Mathematics Subject Classification. Primary 05C09; Secondary 05C07; 05C92.
 Key words and phrases. topological index; degree (of vertex); degree (of edge); Banhatti index; Sombor index.

 Communicated by Dusko Bogdanic.

