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ON SEQUENTIAL HENSTOCK STIELTJES INTEGRAL
FOR Lp[0, 1]-INTERVAL VALUED FUNCTIONS

Victor Odalochi Iluebe and Adesanmi Alao Mogbademu

Abstract. In this paper, we introduce the concept of Sequential Henstock

Stieltjes integral for Lp[0, 1]-interval valued functions and prove some of its
properties.

1. Introduction and preliminaries

Ralph Henstock and Jaroslav Kursweil, sometimes in the late 1950s, inde-
pendently introduced a generalised Riemann-type integral popularly known as the
Henstock integral. It is well known that the Henstock integral is a kind of integral
which comprises the Improper Riemann, Newton, Riemann and is a lot stronger
and easier than the Werner, Lebesgue and the Feynmann integrals in handling
difficult integration problems (see[1-12]). The Henstock integral has been proved
to be equivalent to the Perron and Denjoy integral which recovers a continuous
function from its derivative. In 2000, Wu and Gong [11] introduced the notion of
the Henstock (H) integrals of interval valued functions and Fuzzy number-valued
functions and obtain a number of properties. Two years earlier, Lim et al.[8] gave
the idea of the Henstock-Stieltjes integrals of real-valued functions which is more
general than the Henstock(H) integral and obtained its properties.
Yoon[12] established the interval valued Henstock-Stieltjes integral on time scales
and investigated some properties of the integrals. In 2016, Paxton[10] introduced
the notion of the Sequential Henstock(SH) integrals of real-valued functions as gen-
eralizations of the Henstock(H) integral and obtainedsome of its properties. Hamid
and Elmuiz presented the idea of the Henstock-Stieltjes integrals of interval-valued
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functions and Fuzzy number-valued functions and obtain a number of properties.
Cao [3] gave a generalization of the definition of the Henstock integral for Banach
space-valued function, and then established some of its properties. Macalalag and
Paluga [9] studied the Henstock-type integral for lp-valued functions with 0 < p < 1
and obtained its basic properties. It is well known that the class of Lp[0, 1]-valued
functions with 0 < p < 1 is a Banach Space with the norm denoted by ‖.‖Lp .
In this paper, we introduce the Sequential Henstock Stieltjes(SHS)integral
of Lp[0, 1]-interval valued functions and discuss some of its properties.

Let R denote the set of real numbers, F (X), an interval valued function, F−,
the left endpoint, F+, right endpoint, {δn(x)}∞n=1, set of gauge functions, Pn, set
of partitions of subintervals of a compact interval [a, b], X, non empty interval in
R and � as much more smaller.

A gauge on [a, b] is a positive real-valued function δ : [a, b] → R+. This gauge
is δ-fine if [ui−1, ui] ⊂ [ti − δ(ti), ti + δ(ti)] while a sequence of tagged partition
Pn of [a,b] is a finite collection of ordered pairs Pn = {(u(i−1)n uin), tin}

mn
i=1 where

[ui−1, ui] ∈ [a, b], u(i−1)n 6 tin 6 uin and a = u0 < ui1 < ... < umn = b.

Definition 1.1. ([12]) A function f : [a, b]→ R is Henstock integrable (H[a, b])
to α on [a, b] if for any ε > 0 there exists a function δ(x) > 0 such that for any
δ(x)-fine tagged partitions P = {(ui−1, ui), ti}ni=1 we have

|
n∑

i=1

f(ti)[ui − u(i−1)]− α| < ε,

where α = (H)
∫
[a,b]

f(x)dx and f ∈ H[a, b].

Definition 1.2. ([12]) Let g : [a, b]→ R be a non decreasing function. A real-
valued function f : [a, b] → R is Henstock-Stieltjes (HS[a, b]) integrable to α ∈ R
with respect to g on [a, b] if for any ε > 0 there exists a function δ(x) > 0 such that
for each δ(x)-fine tagged partitions P = {(ui−1 ui), ti}ni=1 we have

|
n∑

i=1

f(ti)[g(ui)− g(u(i−1))]− α| < ε,

where α = (H)
∫
[a,b]

fdg and f ∈ HS[a, b].

Definition 1.3. ([12]) A function f : [a, b] → R is Sequential Henstock in-
tegrable (SH[a, b]) to α ∈ R on [a, b] if for any ε > 0 there exists a sequence
of gauge functions {δn(x)}∞n=1 such that for any δn(x) − fine tagged partitions
Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

|
mn∈N∑
i=1

f(tin)(uin − u(i−1)n)− α| < ε,

where α = (SH)
∫
[a,b]

f(x)dx and f ∈ SH[a, b].
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Lemma 1.1. [5]Let f, k be Sequential Henstock (SH)integrable functions on
[a, b], if f 6 k is almost everywhere on [a, b], then∫ b

a

f 6
∫ b

a

k.

Definition 1.4. ([11,15]) Let IR = {I = [I−, I+]: I is a closed bounded interval
on the real line R}. For X,Y ∈ IR, we define
i. X 6 Y if and only if Y − 6 X− and X+ 6 Y +,
ii. X + Y = Z if and only if Z− = X− + Y − and Z+ = X+ + Y +,
iii. X.Y = {x.y : x ∈ X, y ∈ Y }, where

(X.Y )− = min{X−.Y −, X−.Y +, X+.Y −, X+.Y +}
Then d(X,Y ) = max(|X− − Y −|, |X+ − Y +|) is the metric distance between
intervals X and Y .

Definition 1.5. ([5]) An interval valued function F : [a, b] → IR is Henstock
integrable (IH[a, b]) to I0 ∈ IR on [a, b] if for every ε > 0 on [a, b] there
exists a gauge function δ(x) > 0 such that

|
n∈N∑
i=1

F (ti)(ui − ui−1)− Io| < ε,

whenever P = {(ui−1, ui), ti}ni=1 of [a, b] is a δ(x)−fine Henstock partition of [a, b].
Where α = (IH)

∫
[a,b]

F = α and F ∈ IH[a, b].

Definition 1.6. ([5]) Let g : [a, b] → R be a non decreasing function. An
interval-valued function F : [a, b] → IR is Henstock-Stieltjes(IHS) integrable with
respect to g on [a, b] to α ∈ R if for every ε > 0 there exists a function δ(x) > 0 on
[a, b] such that

|
n∑

i=1

F (ti)[g(ui)− g(u(i−1))]− α| < ε,

whenever P = {(ui−1, ui), ti}ni=1 of [a, b] is a δ(x)−fine Henstock partition of [a, b].
Then (IHS)

∫
[a,b]

F = α and F ∈ IHS[a, b].

Definition 1.7. ([5]) An interval valued function F : [a, b] → Lp is Henstock
integrable(lp-IH[a, b]) to I0 ∈ Lp[0, 1] on [a, b] if for every ε > 0 there exists a
positive gauge function δ(x) > 0 on [a, b] such that for every δ(x) − fine tagged
partitions P = {(ui−1, ui), ti}ni=1, we have

‖
n∈N∑
i=1

F (ti)(ui − ui−1)− Io‖Lp < ε

We say that I0 is the Henstock integral of F on [a, b] with (Lp[0, 1]-IH)
∫
[a,b]

F = I0
and F ∈ Lp[0, 1]-IH[a, b].

Now, we will define the Sequential Henstock Stieltjes integral of Lp[0, 1]-interval
valued function and then discuss some of the properties of the integral.
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Definition 1.8. Let g : [a, b] → R be a non decreasing function. An interval
valued function F : [a, b]→ Lp is Sequential Henstock integrable(Lp[0, 1]-ISH[a, b])
to I0 ∈ Lp[0, 1] with respect to g on [a, b] if for any ε > 0 there exists a sequence
of positive gauge functions {δn(x)}∞n=1 such that for every δn(x) − fine tagged
partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− lo‖Lp < ε.

We say that Lp[0, 1] is the Sequential Henstock integral of F on [a, b] with
(Lp[0, 1]-ISH)

∫
[a,b]

F = α and F ∈ Lp[0, 1]-ISH[a, b].

Remark 1.1. ([12]) If g is an identity function, we have a definition for Lp[0, 1]-
interval Sequential Henstock integral.

2. Main results

In this section, we present some of the basic properties of the Lp[0, 1]-interval
valued Sequential Henstock integrals.

Theorem 2.1. If F ∈ Lp[0, 1]-ISHS[a, b], then there exists a unique integral
value.

Proof. Suppose the integral values are not unique. Let
α1 = (Lp[0, 1]-ISHS)

∫
[a,b]

F and α2 = (Lp[0, 1]-ISHS)
∫
[a,b]

F with αi 6= α2. Let

ε > 0 then there exists a {δ1n(x)}∞n=1 and {δ2n(x)}∞n=1 such that for each δ1n(x)-fine
tagged partitions P 1

n of [a, b] and for each δ2n(x)-fine tagged partitions P 2
n of [a, b],

we have

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α1‖Lp <
ε

2
,

and

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α2‖Lp <
ε

2
.

respectively.
Define a positive gauge function δn(x) on [a, b] by δn(x) = min{δ1n(x), δ2n(x)}. Let

Pn be any δn(x)-fine tagged partition of [a, b] and let ε =
‖α1 − α2‖p

2
1
p

. Then we
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have

‖α1 − α2‖Lp = ‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α1

+

mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α2‖Lp

6 ‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α1‖Lp

+ ‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α2‖Lp

< 2
1
p (
ε

2
+
ε

2
) = 2

1
p ε = ‖α1 − α2‖Lp ,

This is a contradiction. Thus α1 = α2. �

Theorem 2.2. An interval valued function F ∈ Lp[0, 1]-ISHS[a, b] if and only
if F−, F+ ∈ Lp[0, 1]-SHS[a, b] and

(Lp[0, 1]-ISHS)

∫
[a,b]

F = [(lp-SHS)

∫
[a,b]

F−, (Lp[0, 1]-SHS)

∫
[a,b]

F+]

Proof. Let F ∈ Lp[0, 1]-ISHS[a, b], from Definition 1.9 there is a unique
interval number Io = [I−0 , I

+
0 ] in the property, then for any ε > 0, there exists a

{δn(x)}∞n=1, n > µ on [a, b] ∈ R such that for any δn(x)-fine tagged partition Pn,
we have

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− I0‖Lp < ε.

Observe that

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− I0‖Lp = max(I1, I2),

where I1 = ‖
∑mn∈N

i=1 F−(tin)(g(uin)− g(u(i−1)n))− I−0 ‖Lp , and

I2 = ‖
∑mn∈N

i=1 F+(tin)(g(uin)− g(u(i−1)n))− I+0 ‖Lp .
Since uin − u(i−1)n > 0 for 1 6 in 6 mn, then it follows that

‖
mn∈N∑
i=1

F−(tin)(g(uin)− g(u(i−1)n))− I−0 ‖Lp < ε,

and

‖
mn∈N∑
i=1

F+(tin)(g(uin)− g(u(i−1)n))− I+0 )‖Lp < ε,
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for every δn(x)-tagged partition Pn = {(u(i−1)n , uin), tin}
mn
i=1. Thus, by Definition

2.8, we obtain F+, F− ∈ Lp[0, 1]-SHS[a, b] and

I−o = (Lp[0, 1]-SHS)

∫
[a,b]

F−(x)dg

and

I+o = (Lp[0, 1]-SHS)

∫
[a,b]

F+(x)dg.

Conversely, Let F− ∈ Lp[0, 1]-SHS[a,b]. Then there exists a unique β1 ∈ R with

the property, let ε > 0 be given, then there exists a {δ1n(x)}∞n=1, such that for any
δ1n(x)-fine tagged partitions P 1

n we have

‖
mn∈N∑
i=1

F−(tin)(g(uin)− g(u(i−1)n))− β1‖Lp < ε.

Similarly,
Let F+ ∈ Lp[0, 1]-SHS[a, b]. Then there exists a unique β2 ∈ R with the property,
let ε > 0 be given, then there exists a {δ2n(x)}∞n=1, such that for any δ2n(x)-fine
tagged partitions P 2

n we have

‖
mn∈N∑
i=1

F+(tin)(g(uin)− g(u(i−1)n))− β2)‖Lp < ε.

Let β = [β1, β2]. If F− 6 F+, then β1 6 β2. We define δn(x) = min(δ1n(x), δ2n(x)),
then for any δn(x)− fine tagged partitions Pn we have

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− β‖Lp < ε.

Hence, F : [a, b]→ Lp is Sequential Henstock Stieltjes integrable on [a, b]. �

Theorem 2.3. Let F,K ∈ Lp[0, 1]-ISHS[a, b] with F = [F−, F+] and K =
[K−,K+] and γ, ξ ∈ R. Then γF, ξK ∈ Lp[0, 1]-ISHS[a, b] and

Lp[0, 1]-ISHS)

∫
[a,b]

(γF + ξK)dg

= γ(Lp[0, 1]-ISHS)

∫
[a,b]

Fdg + ξ(Lp[0, 1]-ISHS)

∫
[a,b]

Kdg

Proof. (i) If F,K ∈ Lp[0, 1]-ISHS[a, b], then [F−, F+],K = [K−,K+] ∈
Lp[0, 1]-SHS[a, b] by Theorem 3.2. Hence, γF− + ξK−, γF− + ξK+, γF+ + ξK−,
γF+ + ξK+ ∈ Lp[0, 1]-SHS[a, b].
1) If γ > 0 and ξ > 0, then

(Lp[0, 1]-SHS)

∫
[a,b]

(γF + ξK)−dg
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= (Lp[0, 1]-SHS)

∫
[a,b]

(γF− + ξK−)dg

= γ(Lp[0, 1]-SHS)

∫
[a,b]

F−dg + ξ(Lp[0, 1]-SHS)

∫
[a,b]

K−dg

= γ((Lp[0, 1]-ISHS)

∫
[a,b]

Fdg)− + ξ((Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)−

= (γ(Lp[0, 1]-ISHS)

∫
[a,b]

Fdg + ξ(Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)−.

2) If γ < 0 and ξ > 0, then

(Lp[0, 1]-SHS)

∫
[a,b]

(γF + ξK)−dg

= (Lp[0, 1]-SHS)

∫
[a,b]

(γF+ + ξK+)dg

= γ(Lp[0, 1]-SHS)

∫
[a,b]

F+dg + ξ(Lp[0, 1]-SHS)

∫
[a,b]

K+dg

= γ((Lp[0, 1]-ISHS)

∫
[a,b]

Fdg)+ + ξ((Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)+

= (γ(Lp[0, 1]-ISHS)

∫
[a,b]

Fdg + ξ(Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)−.

3) If γ > 0 and ξ < 0 (or γ < 0 and ξ > 0), then

(Lp[0, 1]-ISHS)

∫
[a,b]

(γF + ξK)−dg

= (Lp[0, 1]-SHS)

∫
[a,b]

(γF− + ξK+)dg

= γ(Lp[0, 1]-SHS)

∫
[a,b]

F−dg + ξ(Lp[0, 1]-SHS)

∫
[a,b]

K+dg

= γ((Lp[0, 1]-ISHS)

∫
[a,b]

Fdg)− + ξ((Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)+

= (γ(Lp[0, 1]-ISHS)

∫
[a,b]

Fdg + ξ(Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)−.

Similarly, for four cases above, we have

(Lp[0, 1]-ISHS)

∫
[a,b]

(γF + ξK)+dg

= (γ(Lp[0, 1]-ISHS)

∫
[a,b]

Fdg + ξ(Lp[0, 1]-ISHS)

∫
[a,b]

Kdg)+
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Hence, by Theorem 2.2, γF, ξK ∈ Lp[0, 1]-ISHS[a, b] and

(Lp[0, 1]-ISHS)

∫
[a,b]

(γF + ξK)dg

= γ(Lp[0, 1]-ISHS)

∫
[a,b]

Fdg + ξ(Lp[0, 1]-ISHS)

∫
[a,b]

Kdg.

�

Theorem 2.4. Let F,K ∈ Lp[0, 1]-ISHS[a, b] and F (x) 6 K(x) nearly every-
where on [a, b], then

(Lp[0, 1]-ISHS)

∫
[a,b]

F (x)dg 6 (Lp[0, 1]-ISHS)

∫
[a,b]

Kdg

Proof. If F (x) 6 K(x) nearly everywhere on [a, b] and
F,K ∈ Lp[0, 1]-ISHS[a, b], then F−, F+,K−,K+ ∈ Lp[0, 1]-SH[a, b] and F− 6
F+,K− 6 K+ nearly everywhere on [a, b]. By Lemma 2.5

(Lp[0, 1]-SHS)

∫
[a,b]

F−(x)dg 6 (Lp[0, 1]-SHS)

∫
[a,b]

K−dg

and

(Lp[0, 1]-ISHS)

∫
[a,b]

F+(x)dg 6 (Lp[0, 1]-ISHS)

∫
[a,b]

K+dg.

Hence by Theorem 2.2, we have

(Lp[0, 1]-ISHS)

∫
[a,b]

F (x)dg 6 (Lp[0, 1]-ISHS)

∫
[a,b]

Kdg.

�

Theorem 2.5. Let k ∈ R.
1. If F ∈ Lp[0, 1]-ISHS[a, b], then kF ∈ Lp[0, 1]-ISHS[a, b]. Moreover,∫ b

a

kF = k

∫ b

a

Fdg.

2. If F ∈ Lp[0, 1]-ISHS[a, b] and G ∈ Lp[0, 1]-ISHS[c, b], then (F + G) ∈
Lp[0, 1]-ISHS[a, b]. Moreover∫ b

a

(F +G) =

∫ b

a

Fdg +

∫ b

a

Gdg.

Proof. (1) Suppose F ∈ Lp[0, 1]-ISHS[a, b]. The case k = 0 is obvious.
Suppose k 6= 0 and F ∈ Lp[0, 1]-ISHS[a, b], there exists a sequence of positive
functions{δn(x)}∞n=1 on [a, b] such that

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))−
∫ b

a

F‖Lp <
ε

|k|Lp
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whenever Pn is δn(x)− fine tagged partitions of [a, b]. Then, exists a sequence of
positive functions {δ2n(x)}∞n=1 on [a, c] such that

‖
mn∈N∑
i=1

kF (tin)(g(uin)− g(u(i−1)n))− k
∫ b

a

Fdg‖Lp

= ‖k
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− k
∫ b

a

Fdg‖Lp

< |k|Lp

ε

|k|Lp

= ε.

(2) Let ε > 0 Suppose
∫ b

a
Fdg = α1 and

∫ b

a
Gdg = α2. Then there exists a sequence

of positive functions{δ1n(x)}∞n=1 on [a, b] such that

‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α1‖Lp <
ε

2(2
1
p )

whenever P 1
n is δ1n(x)−fine tagged partitions of [a, b]. Also, there exists a sequence

of positive functions {δ2n(x)}∞n=1 on [a, b] such that

‖
mn∈N∑
i=1

G(tin)(g(uin)− g(u(i−1)n))− α2‖Lp <
ε

2(2
1
p )

whenever P 2
n is δ2n(x)− fine tagged partitions of [a, b].

Define a positive gauge function δn(x) on [a, b] by δn(x) = min{δ1n(x), δ2n(x)}. Let
Pn be any δn(x)-fine tagged partition of [a, b]. Then

‖
mn∈N∑
i=1

(F +G)(tin)(g(uin)− g(u(i−1)n))− (α1 + α2)‖Lp =

= (‖
mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))

+

mn∈N∑
i=1

G(tin)(g(uin)− g(u(i−1)n))− (α1 + α2)‖Lp)

6 2
1
p (‖

mn∈N∑
i=1

F (tin)(g(uin)− g(u(i−1)n))− α1‖Lp)

+ 2
1
p (‖

mn∈N∑
i=1

G(tin)(g(uin)− g(u(i−1)n))− α2‖Lp)

< 2
1
p (

ε

2(2 1
p )

+
ε

2(2 1
p )

) = ε.

�
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