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Abstract. We introduced a new concept called E-super arithmetic graceful

labelling of graphs. A (p, q)-graph G is said to be E-super arithmetic grace-
ful if there exists a bijection f from V (G)∪E(G) to {1, 2, ..., p + q} such that

f(E(G)) = {1, 2, ..., q}, f(V (G)) = {q + 1, q + 2, ..., q + p} and the induced
mapping f∗ given by f∗(uv) = f(u) + f(v) − f(uv) for uv ∈ E(G) has the

range {p + q + 1, p + q + 2, ..., p + 2q} .
In this paper we prove that the complete graph,flower snarks and its re-

lated graphs, the cubic graphs F (3)(Cn), generalised Petersen graphs P (n, 2),

the Petersen graph which has chromatic number 3, Desargues graph and Hea-

wood graph are E-super arithmetic graceful.

1. Introduction

Rosa [9] in 1967, called a function f a β - valuation of a graph G with q edges
if f is an injection from the vertices of G to the set {0, 1, ..., q} such that when each
edge xy is assigned the label |f(x) − f(y)|, the resulting edge labels are distinct.
Golomb[3] subsequently called such labelling graceful. Acharya and Hedge [1] have
defined (k, d)− arithmetic graphs. Let G be a graph with q edges and let k and d
be positive integers.A labelling f of G is said to be (k, d)− arithmetic if the vertex
labels are distinct nonnegative integers and the edge labels induced by f(x) + f(y)
for each edge xy are k, k + d, k + 2d, ..., k + (q − 1)d. The case where k = 1 and
d = 1 was called additively graceful by Hedge [4].

Joseph A. Gallian [2] surveyed numerous graph labelling methods.
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V. Ramachandran and C.Sekar [8] introduced (1, N)-arithmetic labelling.
In 1970 Kotzig and Rosa [5] defined a magic valuation of a graph G(V,E) as a

bijection f from V ∪E to {1, 2, ..., |V ∪ E|} such that for all edges xy, f(x)+f(y)+
f(xy) is constant. Ringel and Llado in 1996 called this labelling edge - magic. If
the vertex labels are 1 to |V |, it is called Super edge - magic total labelling.

MacDougall, Slamin, Miller and Wallis [6] introduced the notion of a vertex-
magic total labelling in 1999. For a graph G(V,E) an injective mapping f from
V ∪E to the set {1, 2, .., |V |+ |E|} is a vertex - magic total labeling if there is a con-
stant k, called the magic constant such that for every vertex v, f(u) + Σf(vu) = k
where the sum is taken over all vertices u adjacent to v.

A vertex magic total labelling of G(V,E) is said to be E-super if f(E(G)) =
{1, 2, 3, ....|E(G)|}.

A labelling of G(V,E) is said to be E-super if f(E(G)) = {1, 2, 3, ....|E(G)|}.
Marimuthu and Balakrishnan [7] defined a graph G(V,E) to be edge magic

graceful if there exists a bijection f from V (G)∪E(G) to {1, 2, ..., p+ q} such that
|f(u) + f(v)− f(uv)| is a constant for all edges uv of G.
We introduced a new concept called E-super arithmetic graceful labelling of graphs
[10]. We define a graph G(p, q) to be E-super arithmetic graceful if there exists
a bijection f from V (G)∪E(G) to {1, 2, ..., p+ q} such that f(E(G)) = {1, 2, ..., q},
f(V (G)) = {q + 1, q + 2, ..., q + p} and the induced mapping f∗ given by f∗(uv) =
f(u) + f(v)− f(uv) for uv ∈ E(G) has the range {p+ q + 1, p+ q + 2, ..., p+ 2q} .
In the field of graph theory, the flower snarks form an infinite family of snarks intro-
duced by Rufao Issac in 1975. As snarks, the flower snarks are connected bridgeless
cubic graphs with chromatic index equal to 4. The flower snarks are nonplanar and
non-hamiltonian

In this paper we prove that the complete graphs, flower snarks and its related
graphs, the cubic graphs F (3)(Cn), generalised Petersen graphs P (n, 2), the Pe-
tersen graph which has chromatic number 3, Desargues graph and the Heawood
graphs are E-super arithmetic graceful.

2. Preliminaries

Definition 2.1. For n = 3, and even n > 4, the graph related to flower snark,
denoted by denoted by Fn is a cubical graph with vertex set

V (Fn) = {ai, i = 0, 1, 2, . . . , n− 1} ∪ {bi, i = 0, 1, . . . , n− 1}
∪ {ci, i = 0, 1, 2, . . . , 2n− 1}

and edge set

E(Fn) =
{
aiai+1( mod n), 0 6 i 6 n− 1

}
∪ {aibi, 0 6 i 6 n− 1}

∪ {bici, 0 6 i 6 n− 1} ∪ {bicn+i, 0 6 i 6 n− 1}
∪
{
cici+1( mod 2n), 0 6 i 6 2n− 1

}
Fn has 4n vertices and 6n edges. For odd n > 5 similar graphs are called flower
snarks.
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Definition 2.2. F (3)(Cn) for n > 3 denotes a cubic graph with vertex set
V = {ai, 0 6 i 6 n− 1}∪{bi, 0 6 i 6 n− 1}∪{ci, 0 6 i 6 2n− 1}, and edge set

E =
{
aiai+1( mod n), 0 6 i 6 n− 1

}
∪ {aibi, 0 6 i 6 n− 1}

∪ {bici, 0 6 i 6 n− 1} ∪ {bicn+i, 0 6 i 6 n− 1}
∪
{
cici+1( mod n), 0 6 i 6 n− 1

}
∪ {cn+icn+i+1, 0 6 i 6 n− 2} ∪ {c2n−1cn}

F (3)(Cn) has 4n vertices and 6n edges.
F (3)(C4) :
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Definition 2.3. The generalized Peterson graph P (n, k), n > 5, k > 2 is the
graph with vertex set {u1, u2, . . . un} ∪ {v1, v2, . . . vn} and edge set

{uiui+1 | i = 1, 2, . . . , n where un+1 = u1} ∪ {uivi | i = 1, 2, . . . , n}
∪ {vivi+k | i = 1, 2, . . . , n where vn+j = vj}

The usual Petersen graph is P (5, 2).
P (n, 2) for all n > 5 is a cubic graph related to cycle Cn.
Generalised Petersen graph P (7, 2):
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Definition 2.4. Let G be the graph having vertices u0, u1, u2, . . . u9 and edge
set {u0u1, u0u4, u0u7}∪{uiui+1 | i = 1, 2, . . . 9 where u10 = u1}∪{u2u6, u3u8, u5u9}.
This graph G is a cubic graph called Petersen graph which has chromatic number
3 which is given in the adjoined figure.
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Definition 2.5. The Desargues graph is a distance transitive cubic graph with
20 vertices and 30 edges. The graph is as shown in the figure.
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Definition 2.6. Heawood graph is a cubic graph with 14 vertices and 21 edges
as given in the adjoined figure.
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3. Main results

Theorem 3.1. The graphs Fn for n = 3 and even n > 4 related to flower
snarks and the flower snarks Fn for odd n > 5 are E-super arithmetic graceful.

Proof. We give a common labelling for the graphs related to flower snarks
and flower snarks.
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Consider Fn, n > 3.
Let {ai, i = 0, 1, 2, . . . , n−1}∪{bi, i = 0, 1, . . . , n−1}∪{ci, i = 0, 1, 2, . . . , 2n−1}
be the vertices of Fn.
Fn has 4n vertices and 6n edges.
Define f : V (Fn) ∪ E(Fn) −→ {1, 2, .., 10n} as follows:
f(ai) = 6n+ 1 + i, for i = 0, 1, ...., n− 1
f(bi) = 8n− i, for i = 0, 1, ...., n− 1
f(ci) = 9n+ 1 + i, for i = 0, 1, ...., n− 1
f(cn+i) = 8n+ 2 + i, for i = 0, 1, ...., n− 2
f(c2n−1) = 8n+ 1.
f(aiai+1( mod n)) = n+ 1 + i, for i = 0, 1, ...., n− 1
f(aibi) = 3n+ 1 + i, for i = 0, 1, ...., n− 1
f(bici) = 2n+ 1 + i, for i = 0, 1, ...., n− 1
f(bicn+i) = 2 + i, for i = 0, 1, ...., n− 2
f(bn−1c2n−1) = 1.
f(c0c2n−1) = 5n+ 1.
f(cici+1) = 5n+ 2 + i, for i = 0, 1, 2, ...n− 2
f(cn−1cn) = 4n+ 2
f(cn+icn+i+1) = 4n+ 3 + i, for i = 0, 1, 2, ...n− 3
f(c2n−2c2n−1) = 4n+ 1.
Clearly f is a bijection.
f(E(Fn)) = {1, 2, . . . , 6n}.{

f∗(aiai+1( mod n)) | 0 6 i 6 n− 1
}

= {11n+ 1 + i | 0 6 i 6 n− 1}
= {11n+ 1, 11n+ 2, . . . , 12n}

{f∗(aibi) |0 6 i 6 n− 1} = {11n− i | 0 6 i 6 n− 1}={10n+ 1, 10n+ 2, . . . , 11n}

{f∗(bici) | 0 6 i 6 n− 1} = {15n+ i | 0 6 i 6 n− 1} = {14n+ 1, 14n+ 2, . . . , 15n}
{f∗(bicn+i) | 0 6 i 6 n−2} = {16n−i | 0 6 i 6 n−2} = {15n+2, 15n+3, . . . , 16n}
f∗(bn−1c2n−1) = 15n+ 1

{f∗(cici+1) | 0 6 i 6 n− 2} = {13n+ 1 + i | 0 6 i 6 n− 2}
= {13n+ 1, 13n+ 2, . . . , 14n− 1}

f∗(cn−1cn) = 14n

{f∗(cn+icn+i+1) | 0 6 i 6 n− 3} = {12n+ 2 + i | 0 6 i 6 n− 3}
= {12n+ 2, 12n+ 3, . . . , 13n− 1}

f∗(c2n−2c2n−1) = 13n
f∗(c0c2n−1) = 12n+ 1
Therefore f∗(E(Fn)) = {10n+ 1, 10n+ 2, . . . , 16n}.
Thus Fn is E-super arithmetic graceful for all n > 3. �
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Example 3.1. E-super arithmetic graceful labelling of flower snark F7.
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Example 3.2. E-super arithmetic graceful labelling of the related graph F4
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Theorem 3.2. F (3)(Cn) is E-super arithmetic graceful for all n > 3.

Proof. : Let {ai, 0 6 i 6 n− 1}∪{bi, 0 6 i 6 n− 1}∪{ci, 0 6 i 6 2n− 1} be
the vertices of F (3)(Cn).
F (3)(Cn) has 4n vertices and 6n edges.
Define f : V ∪ E −→ {1, 2, 3, ..., 10n} as follows:
f(ai) = 8n− i, i = 0, 1, ..., n− 1
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f(bi) = 6n+ 1 + i, i = 0, 1, ...., n− 1
f(ci) = 9n+ 1 + i, i = 0, 1, ..., n− 1
f(cn+i) = 8n+ 1 + i, i = 0, 1, ..., n− 1
f(aiai+1) = 5n− 1− i, i = 0, 1, 2, .., n− 2
f(an−1a0) = 5n.
f(aibi) = n+ 1 + i, i = 0, 1, ..., n− 1.
f(bici) = 2n+ 1 + i, i = 0, 1, ..., n− 1.
f(bicn+i) = 1 + i, i = 0, 1, ..., n− 1.
f(cici+1( mod n)) = 3n+ 1 + i i = 0, 1, ..., n− 1.
f(cn+icn+i+1) = 5n+ 2 + i i = 0, 1, ..., n− 2.
f(c2n−1cn) = 5n+ 1
Clearly f is a bijection.
f(E(F (3)(Cn))) = {1, 2, . . . , 6n}
{f∗(aiai+1) | 0 6 i 6 n−2} = {11n−i | 0 6 i 6 n−2} = {10n+2, 10n+3, . . . , 11n}
f∗(an−1a0 = 10n+ 1)
{f∗(aibi) | 0 6 i 6 n− 1} = {13n− i | 0 6 i 6 n− 1} = {12n+ 1, 12n+ 2, . . . , 13n}
{f∗(bici)|0 6 i 6 n−1} = {14n+1+i | 0 6 i 6 n−1} = {14n+1, 14n+2, . . . , 15n}
{f∗(cici+1( mod n)) | 0 6 i 6 n− 1} = {15n+ 1, 15n+ 2, . . . , 16n}

{f∗(cn+icn+i+1) | 0 6 i 6 n− 2} = {11n+ 1 + i | 0 6 i 6 n− 2}
= {11n+ 1, 11n+ 2, . . . , 12n− 1}

f∗(c2n−1cn) = 12n
Therefore f∗(E(F (3)(Cn))) = {10n+ 1, 10n+ 2, ...., 16n}.
Thus F (3)(Cn) is E-super arithmetic graceful. �

Example 3.3. E-super arithmetic graceful labelling of F (3)(C5).
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Theorem 3.3. P (n, 2) for n > 5 is E-super arithmetic graceful.

Proof. The generalized Petersen graph P (n, 2) for n > 5 has 2n vertices and
3n edges.
Define f : V ∪ E −→ {1, 2, . . . , 5n} as follows:
f(ui) = 3n+ i, i = 1, 2, . . . , n
f(vi) = 4n+ i, i = 1, 2, . . . , n
f(uiui+1) = n+ i, i = 1, 2, . . . , n where un+1 = u1
f(uivi) = i, i = 1, 2, . . . , n
f(vivi+2) = 2n+ i, i = 1, 2, . . . , n where vn+1 = v1 and vn+2 = v2
Clearly f is a bijection.
f(E(P (n, 2))) = {1, 2, . . . , 3n}
f∗(E(P (n, 2))) = {5n+ 1, 5n+ 2, . . . 8n}

{f∗(uiui+1) | i = 1, 2, . . . , n− 1} = {5n+ 1 + i | i = 1, 2, . . . , n− 1}
= {5n+ 2, 5n+ 3, . . . , 6n}

f∗(unu1) = 5n+ 1
{f∗(uivi) | i = 1, 2, . . . , n} = {7n+ i | i = 1, 2, . . . , n} = {7n+ 1, 7n+ 2, . . . , 8n}

{f∗(vivi+2) | ; i = 1, 2, . . . , n− 2} = {6n+ i+ 2 | i = 1, 2, . . . , n− 2}
= {6n+ 3, 6n+ 4, . . . , 7n}

f∗(vn−1v1) = 6n+ 1
f∗(vnv2) = 6n+ 2
Therefore P (n, 2) for n > 5 is E-super arithmetic graceful for all n > 5.

�

Example 3.4. E-super arithmetic graceful labelling of P (7, 2).
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A particular labelling:

E-super arithmetic graceful labelling of the Petersen graph which has chromatic
number 3 is given below:
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Theorem 3.4. The Desargues graph is E-super arithmetic graceful.

Proof. Let G be the Desargues graph with 20 vertices and 30 edges.
Let V (G) = {v1, v2, . . . , v20}. The edge set

E(G) = {vivi+1 | 1 6 i 6 9} ∪ {v1v10} ∪ {vivi+10 | 1 6 i 6 10}
∪ {vivi+3 | 11 6 i 6 17} ∪ {vivi+7 | 11 6 i 6 13}

Define f : V (G) ∪ E(G) −→ {1, 2, . . . , 50} as given below.
f(vi) = 30 + i, i = 1, 2, . . . , 20
f(vivi+1) = 10 + i, i = 1, 2, . . . , 9
f(v1v10) = 20
f(vivi+10) = i, i = 1, 2, . . . , 10
f(vivi+3) = 10 + i, 11 6 i 6 17
f(vivi+7) = 17 + i, 11 6 i 6 13
Clearly f(E(G)) = {1, 2, . . . , 30}
f(V (G)) = {31, 32, . . . , 50}
f∗(E(G)) = {51, 52, . . . , 80}.
Therefore G is E-super arithmetic graceful. �
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Example 3.5. E-super arithmetic graceful labelling of Desargues Graph.

32

33

34

35
36

41

42

43

44

4546

47

48

49

50

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

37

38

39

40

19

20

21

22

24
25

26

27

28
29

30

31

23

Fig 3.6

Theorem 3.5. Heawood graph is E-super arithmetic graceful.

Proof. Let G be the Heawood graph with 14 vertices and 21 edges.
Let V (G) = {v1, v2, . . . , v14}. The edge set

E(G) = {vivi+1 | i = 1, 2, . . . , 13} ∪ {v1v14} ∪ {vivi+5 | i = 1, 3, , 5, 7, 9}
∪ {v2v11, v4v13}

Define f : V (G) ∪ E(G)→ {1, 2, . . . , 35} as follows:

f(vi) = 22 + i, i = 1, 2, . . . , 13
f(v14) = 22
f(vivi+1) = 2 + i, i = 1, 2, . . . , 12
f(v13v14) = 1
f(v1v14) = 2
f(vivi+5) = 14 + i, i = 1, 3, 5, 7
f(v9v14) = 16
f(v2v11) = 18
f(v4v13) = 20
Clearly f(E(G)) = {1, 2, . . . , 21} and f(V (G)) = {22, 23, . . . , 35}.
f∗(E(G)) = {36, 37, . . . , 56}
Therefore G is E-super arithmetic graceful. �



364 ANUBALA SEKAR AND RAMACHANDRAN VARATHARAJAPERUMAL

Example 3.6. E-super arithmetic graceful labelling of Heawood graph.
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Remark 3.1. The complete graph K4, a cubic graph related to cycle is also
E-super arithmetic graceful. It is shown as a particular case in the following gen-
eralised result.

Theorem 3.6. Complete graphs Kn, n > 3 are E-super arithmetic graceful.

Proof. Kn has n vertices and n(n−1)
2 edges.

Case:(i) n = 3.
Let u1, u2, u3 be the vertices of K3.
E-super arithmetic graceful labelling of K3 is given below.
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23
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4
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Fig 3.8

Clearly f∗(E(K3)) = {7, 8, 9}
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Case:(ii) n = 4.
Let u1, u2, u3, u4 be the vertices of K4.
E-super arithmetic graceful labelling of K4 is given below.
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Clearly f∗(E(K4)) = {11, 12, 13, 14, 15, 16}

Case:(iii) n > 5, n is odd.
Let u1, u2, ...., un be the vertices of Kn.

Define f : V (Kn) ∪ E(Kn) −→
{

1, 2, . . . , n(n+1)
2

}
as follows:

f(ui) = n(n−1)
2 + i, for i = 1, 2, ..., n

f(uiui+1) = n(n−3)
2 + i, for i = 1, 2, ..., n

where un+1 = u1
For 2 6 k 6 n−1

2 ,
define f(uiui+k) = (k − 2)n+ i, for i = 1, 2, ..., n
where un+k = uk for all k.

Clearly f(E(Kn)) =
{

1, 2, . . . , n(n−1)
2

}
{f∗(uiui+1) | 1 6 i 6 n− 1} =

{
n(n+ 1)

2
+ i+ 1 | 1 6 i 6 n− 1

}
=

{
n(n+ 1)

2
+ 2, . . . ,

n(n+ 3)

2

}
f∗(unu1) = n(n+1)

2 + 1{
f∗(uiui+k) | 1 6 i 6 n, 2 6 k 6

n− 1

2

}
=

=

{
(n− k)(n− 1) + 2n+ i | 1 6 i 6 n, 2 6 k 6

n− 1

2

}
=

{
n(n+ 3)

2
+ 1, . . . , n2

}
.

Therefore f∗(E(Kn)) =
{

n(n+1)
2 + 1, n(n+1)

2 + 2, ..., n2
}

Thus Kn is E-super arithmetic graceful

Case:(iv) n > 6, n is even.
Let u1, u2, ...., un be the vertices of Kn.

Define f : V (Kn ∪ E(Kn)) −→
{

1, 2, . . . , n(n+1)
2

}
as follows:
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f(ui) = n(n−1)
2 + i, for i = 1, 2, ..., n

f(uiui+1) = n(n−3)
2 + i, for i = 1, 2, ..., n

where un+1 = u1
For 2 6 k 6 n

2 − 1,
define f(uiui+k) = (k − 2)n+ i, for i = 1, 2, ..., n
where un+k = uk for all k.

Define f(uiui+n
2

) = n(n−4)
2 + i, i = 1, 2, ..., n2

As in the above case, f∗(E(Kn)) =
{

n(n+1)
2 + 1, n(n+1)

2 + 2, ..., n2
}

Thus Kn is E-super arithmetic graceful. �

Example 3.7. E-super arithmetic graceful labelling of K7.

"
"

"
"
"

b
b
b
b
b

e
e
ee %

%
%%

HH
HHH

HHH
HH

��
���

���
�� !!!!!!!! aa

aa
aa

aa

u1 u2

u3

u4

u5

u6

u7
1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

1819

20

21

22 23

24

25

26

27

28

Fig 3.10

Example 3.8. E-super arithmetic gaceful labelling of K6.

"
"
"

"
"

b
b
b
b
bH

HHH
HHH

HHH

�
���

���
���

b
b
b
b
b"

"
"
"
"

3

4

5

6

9
1

2

8

7

10

11

12
13

14

15

16

17

18

19

20

21

u1

u2

u3

u4

u5

u6

Fig 3.11
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