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DOUBLE DOMINATION IN SHADOW GRAPHS

Aysun Aytaç and Ayşen Mutlu

Abstract. Let G = (V,E) be a graph having vertex set V (G). For S ⊆ V (G),
if every vertex is of V (G) is dominated at least twice by the vertices of S, then

the set S is a double dominating set of G. The double domination number,

denoted by γdd(G), is the minimum cardinality among all double dominating
sets of G. In this work, we discuss the double domination of shadow graphs of

some graphs such as cycle, path, star, complete bipartite and wheel graphs.

1. Introduction

Graph theory is one of the most evolving branches of modern mathematics and
computer applications. The development of graph theory has been witnessed in the
last 30 years, as graph theory can be applied to many problems such as discrete
optimization problems, combinatorial problems, and classical algebraic problems.
Graph domination has been an extensively researched branch of graph theory. Dom-
ination theory which has a very wide range of applications in many fields such as
engineering, physical, social and biological sciences, linguistics, etc., has recently
been the core of research activities in graph theory.

The domination set problem requires determining the domination number of
a given graph. In addition, many facilities have natural applications in location
problems. In such problems, the vertices of a graph correspond to locations and
adjacency represents some concept of accessibility. The aim is to determine the
places where the fire stations, bus stops, post offices or similar facilities will be
established and which can be reached from other places with optimum ease. There
are also domination set applications in coding theory and social networks.
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One of the reason why domination parameters is so popular is that it is suitable
for the formation of new parameters that can be developed from simple definitions.
Also, its close relationship with NP-complete other fundamental domination prob-
lems and other NP-complete problems has contributed to the growth of research
activity in domination theory [1, 2, 6, 11].

A set D ⊆ V (G) of vertices in a graph G is a dominating set of G if every vertex
in V (G)\D is adjacent to some vertex in D and the domination number γ(G) is
the minimum order of a dominating set of G. Equivalently, D is a dominating set
of G if for every vertex v ∈ V , |N [v]∩D| > 1. The domination number γ(G) is the
minimum cardinality of a dominating set [10].

Let Sbe a subset of vertices in G. If every vertex in V (G)− S has at least two
neighbors in the set S and every vertex in S has a neighbor in the set S, then the set
S is called a double dominating set, abbreviated DDS. This requires |N [v]∩S| > 2
for each v ∈ V (G).The minimal cardinality of a double dominating set of G is the
double domination number γdd(G). A γdd(G)-set is a G double dominating set
with minimum cardinality. Harary and Haynes [9] presented double domination,
which was later investigated in [3, 4, 8, 13]. The double domination number
can be defined for any graph that does not contain isolated vertex. Let illustrates
application of the double domination parameter by a prisoners-guard example. In
this example the meaning of domination is that each prisoner can be seen by some
guards. Here, double domination increases security by requiring each prisoner to
be protected by two or more guards.

Let G be a graph having vertex set V (G) and edge set E(G). For two vertices
u and v if there is an edge joining them, then they are adjacent (or neighbors). The
distance dG(u, v) between u and v is the length of the shortest path joining them
in G. The greatest distance between any pair of vertices of G is the diameter of G
and denoted by diam(G) [14].

The shadow graph of G, denoted by D2(G) is the graph constructed from G
by taking two copies of G namely G itself and G′ and by joining each vertex u in
G to the neighbors of the corresponding vertex u′ in G′ [7].

The purpose of this research is to demonstrate what the double domination
number in shadow network topologies is. The theoretical background and literature
overview on the double domination number is presented in Section 2. Main results
for the double domination number shadow networks are provided and discussed in
Section 3.

2. Known results

Theorem 2.1. [5] If G is a graph without isolated peaks, then 2 6 γdd(G) 6 n.

Theorem 2.2. [5] For any graph G without isolated vertices, γ(G) 6 γdd(G)−
1.

Theorem 2.3. [3, 5, 9]

a) For n > 2, γdd (Pn) =
[

2n+2
3

]
b) For n > 3, γdd (Cn) =

⌈
2n
3

⌉
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c) For m > 1, γdd (K1,m) = m+ 1.

Theorem 2.4. [5] For a graph G, γdd(G) 6
⌊
n
2

⌋
+ γ(G)− 1 with δ(G) > 2and

n 6= 3, 5.

Observation 2.1. [4] Each DD − setof any graph contains all leaves and
support vertices.

3. Shadow graph D2(G)

The double domination number of shadow graphs of several specific graphs,
such as cycle, path, star, complete bipartite, and wheel graphs, is determined in this
section. Throughout the paper, we will label vertices of D2(G) for G 6= W1,n,Kr,s

as the vertices in the first copy of G by 1, 2, . . . , n and the vertices in the second
copy of G by n+ 1, n+ 2, . . . , 2n starting from the left.

Theorem 3.1. If D2 (Pn) is a shadow graph of a path with n > 3, then

γdd (D2 (Pn)) =

{⌈
6n
7

⌉
+ 1, if n ≡ 1, 2(mod7)⌈

6n
7

⌉
, otherwise.

Proof. We first establish the upper bound for γdd (D2 (Pn)). Let

S1 = {(7i+ 2), (7i+ 3) | 0 6 i 6

⌈
n− 1

7

⌉
− 1}∪{7i+ 6 | 0 6 i 6

⌈
n− 5

7

⌉
− 1}

and Let S = S1 ∪ S2. Furthermore, |S| = 3
⌈
n−1

7

⌉
+
⌈
n−5

7

⌉
+ 2

⌈
n−4

7

⌉
. If n ≡

i(mod7) for each i ∈ {0, 3, 6}, then D = S. If n ≡ 1(mod7), then D = S ∪ {(n −
1), (2n− 1)}. If n ≡ 2(mod7), then the {(n+ 1)} vertex is in the set S. However,
since there is (n+ 1) /∈ V (D2 (Pn)), this vertex should be removed from the set S.
Thus, we get D = (S−(n+1))∪{(n−1)}. If n ≡ 4( mod 7), then D = S∪{(2n−1)}.
If n ≡ 5(mod7), then the {(2n+ 1)} vertex is in the set S. However, since there is
(2n+1) /∈ V (D2 (Pn)), this vertex should be removed from the set S. Thus, we get
D = {S − ((2n+ 1), (2n))} ∪ {(n− 1), (2n− 1)}. In all cases of n based on mod 7 ,
the set D is a DD-set of D2 (Pn). Thus, if n ≡ 1, 2( mod 7), then |D| =

⌈
6n
7

⌉
+1 and

for other cases |D| =
⌈

6n
7

⌉
. Hence, γdd (D2 (Pn)) 6

⌈
6n
7

⌉
+ 1] if n ≡ 1, 2 (mod 7),

and the otherwise, γdd (D2 (Pn)) 6
⌈

6n
7

⌉
.

Let us prove the reverse inequality. Assume that T = {v1, v2, . . . , vi, . . . , vj , . . . , vt}
is a γdd-set of D2 (Pn) with v1 < v2 < . . . < vi < . . . < vm < vm+1 < . . . <
vj < . . . < vt, where vi and vj are any positive integers such that 1 6 vi 6 n for
i ∈ {1, 2, . . . ,m} and n+1 6 vj 6 2n for j ∈ {m+1,m+2, . . . , t}. Let fx = vx+3−vx
for x ∈ {1, 2, . . . , t − 3} with x 6= m, (m − 1), (m − 2). We must prove fx 6 7 for
each x ∈ {1, 2, . . . , t − 3} provided that x 6= m, (m − 1), (m − 2). Let us suppose
that fx > 8 for every x. We claim that fx = 8 for some x ∈ {1, 2, . . . , t − 3} with
x 6= m, (m− 1), (m− 2). In accordance with this claim, we construct the set
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S′1 = {2} ∪


dn−5

7 e−1⋃
i=0

(7i+ 6)

 ∪

dn−8

7 e−1⋃
i=0

(7i+ 9), (7i+ 10)

 .

Let T = S′1 ∪ S′2. It is easy to see that the value of n in all its cases is the same as
the set discussed above. So T = D is obtained. So lets assume that there is fx > 9
for at least one x. Let f1 = 9 be in order not to disturb the generality.

A = {2} ∪

d
n−5
7 e−1⋃
i=0

(7i+ 6)

 ∪
d

n−9
7 e−1⋃
i=0

{(7i+ 10), (7i+ 11)}


B =

d
n−1
7 e−1⋃
i=0

{(n+ 7i+ 2), (n+ 7i+ 3)}


∪

d
n−5
7 e−1⋃
i=0

{(n+ 7i+ 5), (n+ 7i+ 6), (n+ 7i+ 7)}

 .

This contradicts the upper bounds we have established on γdd (D2 (Pn)) earlier.
So, it should be fx 6 8. However, this condition is only possible when there is
exactly one value of x, and we have proven that this value is the same as if there
is fx 6 7 for every value of x. Therefore, fx 6 7 for all x ∈ {1, 2, . . . , t − 3} with

x 6= m, (m − 1), (m − 2). Thus, it is clear that
m−3∑
x1=1

fx1 +
t−3∑

x2=m+1
fx2 6 7(t − 6).

Since v1 = 2, v2 = 3, v3 = 6, vm+1 = n + 2, vm+2 = n + 5 and vm+3 = n + 6, we
m−3∑
x1=1

fx1
+

t−3∑
x2=m+1

fx2
= vm + vm−1 + vm−2 + vt + vt−1 + vt−2 − (3n+ 24).

• n ≡ 0(mod7)
vm = n− 1, vm−1 = n− 4, vm−2 = n− 5, vt = 2n− 1, vt−1 = 2n− 2 and

vt = 2n − 5 . Thus, we get 6n − 42 =
m−3∑
x1=1

fx1 +
t−3∑

x2=m+1
fx2 6 7(t − 6).

This yields |T | = t >
⌈

6n
7

⌉
.

• n ≡ 1 ( mod 7)
vm = n− 1, vm−1 = n− 2, vm−2 = n− 5, vt = 2n− 1, vt−1 = 2n− 2 and

vt = 2n − 3 . Thus, we get 6n − 38 =
m−3∑
x1=1

fx1
+

t−3∑
x2=m+1

fx2
6 7(t − 6).

This yields |T | = t >
⌈

6n+4
7

⌉
=
⌈

6n
7

⌉
+ 1.

• n ≡ 2 ( mod 7)
vm = n, vm−1 = n−1, vm−2 = n−3, vt = 2n, vt−1 = 2n−3 and vt = 2n−4.

Thus, we get 6n − 35 =
m−3∑
x1=1

fx1
+

t−3∑
x2=m+1

fx2
6 7(t − 6). This yields
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|T | = t >
⌈

6n+7
7

⌉
=
⌈

6n
7

⌉
+ 1.

• n ≡ 3 ( mod 7)
vm = n, vm−1 = n − 1, vm−2 = n − 4, vt = 2n − 1, vt−1 = 2n − 4 and

vt = 2n − 5. Thus, we get 6n − 39 =
m−3∑
x1=1

fx1 +
t−3∑

x2=m+1
fx2 6 7(t − 6).

This yields |T | = t >
⌈

6n+3
7

⌉
=
⌈

6n
7

⌉
.

• n ≡ 4 ( mod 7)
vm = n− 1, vm−1 = n− 2, vm−2 = n− 5, vt = 2n− 1, vt−1 = 2n− 2 and

vt = 2n − 5. Thus, we get 6n − 40 =
m−3∑
x1=1

fx1 +
t−3∑

x2=m+1
fx2 6 7(t − 6).

This yields |T | = t >
⌈

6n+2
7

⌉
=
⌈

6n
7

⌉
.

• n ≡ 5 ( mod 7)
vm = n− 1, vm−1 = n− 2, vm−2 = n− 3, vt = 2n− 1, vt−1 = 2n− 3 and

vt = 2n − 6. Thus, we get 6n − 40 =
m−3∑
x1=1

fx1 +
t−3∑

x2=m+1
fx2 6 7(t − 6).

This yields |T | = t >
⌈

6n+2
7

⌉
=
⌈

6n
7

⌉
.

• n ≡ 6 ( bmod 7)
vm = n, vm−1 = n−3, vm−2 = n−4, vt = 2n, vt−1 = 2n−1 and vt = 2n−4.

Thus, we get 6n − 36 =
m−3∑
x1=1

fx1 +
t−3∑

x2=m+1
fx2 6 7(t − 6). This yields

|T | = t >
⌈

6n+6
7

⌉
=
⌈

6n
7

⌉
.

The proof is completed by combining the lower and upper bounds for γdd(D2(Pn)).
�

For the cycle graph Cn, the value of γdd (D2 (Cn)) is equal to the γdd (D2 (Pn))
value of the path graph Pn. So the proof is similar to the proof of Theorem 3.1.
Therefore, the proof has been removed from the article.

Corollary 3.1. If D2 (Cn) is a shadow graph of a cycle with n > 3, then
γdd (D2 (Cn)) = γdd (D2 (Pn)).

Theorem 3.2. If G ∼= S1, n be a star graph with (n+1)vertices, then the double
domination number of the star graph γdd(D2(G)) = 3.

Proof. Lets label the set of vertices of the D2(G) graph as the union of two

sets V (D2 (G)) = V ∪ V ′ , where V = V (G) = {v1, v2, ..., vn} and V
′

= V
′
(G) ={

v
′

1, v
′

2, ..., v
′

n

}
. Let v1 be the central vertex of the graph G. Furthermore, let

the set D be the γdd − set of the graph D2 (G). Since there are ND2(G) (v1) =

V ∪
(
V
′ −
{
v
′

1

})
= V (D2 (G)) −

{
v
′

1

}
and ND2(G)

(
v
′

1

)
= V

′ ∪ (V − {v1}) =
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V (D2 (G))− {v1}, degD2(G) (v1) = degD2(G)

(
v
′

1

)
= 2n− 2. This requires v1, v

′

1 ∈

D. So, every vertex in the V (D2 (G))−
{
v1, v

′

1

}
set are double dominated by D.

Since the vertex v1 is not adjacent to the vertex v
′

1, in order to give double
domination to the vertices in D we need to add any vertex that is adjacent to both
vertices to D. Without loss of generality, lets assume that this vertex is v2. Hence,

we have D =
{
v1, v

′

1, v2

}
.

In this case, with the set D, every vertex of the graph D2 (G)are double-
dominated. As a result, the double domination number of the graph D2(G) is
γdd (D2 (G)) = |D| = 3.

Hence, the proof of the theorem holds. �

Theorem 3.3. If G ∼= Wn be a wheel graph with n vertices, then the domination
number of the wheel graph γ(D2(G)) = 2.

Proof. Let the vertices of the graph G be V (G) = {v1, v2, ..., vn}and the
vertex v1 the central vertex. Since the vertex v1 is adjacent to all the vertices
except the vertex v

′

1, which is its copy in D2 (G), degD2(G) (v1) = 2 (n− 1). If the

set S is the γdd − set of the graph D2 (G), then the vertex v1 (or its copy vertex

v
′

1) must be added to the S set.
Assume that v1 ∈ S. In this case, every vertex of D2 (G) are dominated with

S except for the vertex v
′

1. In order to dominate the vertex v
′

1, we need to add

any vertex in the setND2(G)

[
v
′

1

]
to S. Thus, we get |S| = 2. As a result, the

domination number of the graph D2(G) is γ (D2 (G)) = |S| = 2.
Hence, the proof of the theorem holds. �

Theorem 3.4. If G ∼= Wn be a wheel graph with n vertices, then the double
domination number of the wheel graph γdd(D2(G)) = 3.

Proof. From Theorem 2.2 , it is known that γdd (G) > γ (G) + 1. Let the set

of vertices of D2 (G) be divided into two sets of V (D2 (G)) = V (G)∪V ′ (G), where

V (G) = {v1, v2, ..., vn} and V
′
(G) =

{
v
′

1, v
′

2, ..., v
′

n

}
. The vertex v1is the central

vertex of the first copy of the graph D2 (G), while the vertex v
′

1 is the central vertex
of the second copy of the graph.

From Theorem 3.3 and Theorem 2.2, we get γdd (D2 (G)) > 3. To prove the

inverse of the inequality, lets assume S =
{
v1, v

′

1, v2

}
. Thus, every vertex of the

graph D2 (G) are double dominated by the set S. In this case, the set S is a
γdd − set of D2 (G). Thus, we get γdd (D2 (G)) 6 3. As a result, the double
domination number of the graph D2(G), γdd (D2 (G)) = 3, is obtained from the
lower and upper limits.

Hence, the proof of the theorem holds. �

Theorem 3.5. If G ∼= Km,n be a bipartite complete graph with (m+n)−vertices,
then the domination number of the bipartite complete graph γ(D2(G)) = 2.
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Proof. It is known that γ (G) = 2 [12]. Let the γ− set giving this value beS.
It is easy to see that the set Sis also a γdd − set of the graph D2 (G). Thus, we
have γ (D2 (G)) = 2.

Hence, the proof of the theorem holds. �

Theorem 3.6. If G ∼= Km,n be a bipartite complete graph with (m+n)−vertices,
then the double domination number of the bipartite complete graph γdd(D2(G)) = 4.

Proof. Let the set of vertices of G be divided into two sets of V (G) = V1∪V2,
where V1 = {v1, v2, ..., vm} and V2 = {u1, u2, ..., un}. In this case, the set of vertices

of the graph D2 (G) is V (D2 (G)) = V1∪V2∪V
′

1 ∪V
′

2 . Let the set D be the γdd−set
of the graph D2 (G).

From Theorem 3.5 and Theorem 2.2 we get γdd (D2 (G)) > 3. Assume that
γdd (D2 (G)) = 3. In order to be able to double dominated each vertex in the set

V1, there must be two vertices in D. Both of these vertices can be in V2 or V
′

2 ,

or one at V2 and one at V
′

2 . Thus, double dominate of every vertex in V1 and

V
′

1 is provided by the set D. One vertex is not enough to double dominated the

remaining vertices in V2 and V
′

2 . This requires γdd (D2 (G)) = |D| > 4 for the
graph D2 (G).

Now, lets prove the inverse of the inequality. Let the set S be the γdd−set of the
graph D2 (G). Assume that S = {vi, vj , uk, ut} , where vi, vj ∈ V1 and uk, ut ∈ V2.
Thus, double domination of every vertex in the graph D2 (G)is provided by S.
Thus, we get γdd (D2 (G)) = |S| 6 4. As a result, the double domination number
of the graph D2(G), γdd (D2 (G)) = 4, is obtained from the lower and upper limits.
Hence, the proof of the theorem holds. �
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[2] A. Aytaç and T. Turacı, On the Domination, Strong and Weak Domination in Transformation

Graph. Util. Math. 113 (2019) 181–190.
[3] M. Blidia, M. Chellali, T.W. Haynes and M.A. Henning, Independent and double domination

in trees, Util. Math. 70 (2006) 159–173.

[4] M. Chellali, A note on the double domination number in trees, AKCE Int. J. Graphs Comb.
3 (2) (2006) 147–150.

[5] X. Chen and L. Sun, Some new results on double domination in graphs, J. Math. Res. Expo.

25 3 (2005) 451–456
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