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COVID-19 TRANSMISSION DYNAMICS
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Abstract. In this paper, we study the propagation of covid 19 in a popu-

lation. We present this phenomen as a predator-prey problem. We consider

two interacting populations and we propose a modified Lotka-Volterra system
modeling the COVID-19 transmission dynamics and provide a study of the

stability in the neighborhood of equilibrium points.

1. Introduction

Mathematical modeling is considered to be a very powerful theoretical tool
for understanding several phenomens in different fields such as physics, chemistry,
biology, ecology and in particular in medicine where in several situations they allow
prevention, diagnosis, and treatment. The mathematician Vito Volterra and the
chemist and statistician Alfred James Lotka [7, 10] were the first researchers who
have studied population dynamics of prey-pedator problem and modeled it by a
system of ordinary equations

(1.1)



x = ax− bxy,
y = −cy + dxy,

a, b, c, d are positive numbers.

x : number of prey

y : number of predators

x, y : rates of the prey and predators at an instant t.
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although the problem was discussed by Lotka in 1920 and by Volterra in 1926 but
their conclusions were similar, that is the interraction of the two species would
give rise to periodic oscillation in their poulation [1]. Prey-Predators modeling
has proven to be effective in understanding and solving many complex problems
in different fields: chemical reaction, astronomy, economic and evolutionary game
theory [3, 9, 4]. Later on, the system (1.1 ) was modified to model more complexe
problems such as modeling the structure of marine phage populations, to capture
the essential physics of the dusty plasma problem [6, 8]. In this work, we aim to
model the Covid 19 transmission by casting it into a problem of population dy-
namics. Let us consider some population which due to its lifestyle, we assume that
all people are carriers of corona verrus, but there are respectively, healthy carriers
who have no complications and carriers with complications. People from this pop-
ulation are classified in two compartments: a compartment A which includes the
first category of individuals and compartment B of the second category. Let x(t)
denotes the number of people in compartment A at the time t and y(t) the number
of people in compartiment B at the same time t. We assume that the contact of
a person having no complications with a person carrying the verus and who has
complications causes contamination. In other words, complications of covid 19 are
transmitted by the meeting of persons from compartment A with those of B, so
people in compartment B are seen as predators for the preys which are in A. In
absence of predators, the growth of the prey population x(t) is proportional to its
size that is

dx

dt
= ax, a > 0.

In absence of prey, the predators population will decrease proportionally to its seize,
that is

dy

dt
= −by, b > 0.

When people of compartiment A meet those of compartment B, a decline in the
prey population and a growth in the predators population will occur, each at a
rate proportional to the frequency of encounters between individuals of the two
compartments (−αxy for the prey; + αxy for predators α > 0). If β denote
the rate of natural mortality rates, then due to the natural death, the number of
individual in A and B will respectively by βx and βy. On the other hand, people
in compartment B are either recoverble from complication by treatment or they
die. The recovery rate from complication, the death rate due to complications
are respectively denoted by η and λ, consequently the number of individuals in B
decrease by (η + λ)y and population in A increase by ηy. We seek to propose a
mathematical model which take in account the interaction between population in
compartments A,B and allowed us to study the stabilty in the in the neighbourhood
of equilibrium points.
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2. The main result

The model is expressed as a system of coupled equations resembling the original
Lotka-Volterra equations by writing

(2.1)


x = ax− αxy − βx+ ηy,

y = −by + αxy − βy − (η + λ)y,

a, b, β, η, λ, α are positive numbers,

a > β.

That is

(2.2)


x = (a− β)x− αxy + ηy,

y = −(b+ β + η + λ)y + αxy,

a, b, β, η, λ, α are positive numbers,

a > β.

The modified Lotka-Volterra system comprises two nonlinear ordinary differ-
ential equations. The classical methods for the calculation of equilibrium points for
x and y separately, by setting

x = 0 and y = 0

give

(2.3)

1) x∗ = 0 and y∗ = 0,

2) x∗ =
b+ β + η + λ

α
and y∗ =

(a− β)(b+ β + η + λ)

α(b+ β + λ)
,

where x∗, y∗ denote respectively equilibrium points for system (2.2).

To get information on the local stability of the equilibrium point, we proceed
to the linearization of the system (2.2) at neighborhood of the equilibrium point.
Let us consider the Jacobian matrix:

M =

[
(a− β)− αy −αx+ η

αy αx− (b+ β + η + λ)

]
replacing x, y by x * and y * we have

M (x∗, y∗) =

[
(a− β)− αy∗ −αx∗ + η

αy∗ αx∗ − (b+ β + η + λ)

]
Set M∗ = M (x∗, y∗) . If µ is an eigenvalue of M∗ it satisfies

µ2 − tr(M∗)µ+ det(M∗) = 0

and

∆ = (tr(M∗))2 − 4det(M∗)
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The first case where (x∗ = 0, y∗ = 0) is to be eliminated because it means that
both populations are extinc and this can’t be seen in real life. Indeed, in this case
the matrix

M∗ = M (0, 0) =

[
(a− β) η

0 − (b+ β + η + λ)

]
∆ = (a− b− 2β − η − λ)

2
+ 4 (a− β) (b+ β + η + λ) > 0

with

det(M∗) = − (a− β) (b+ β + η + λ) < 0

which means that (0, 0) is an unstable saddle point, and explaine the inability for
a population to reach a population of zero. For the second case,

M (x∗, y∗) =


− (a− β) η

b+ β + λ
− (b+ β + λ)

(a− β) (b+ β + η + λ)

b+ β + λ
0



µ =
1

2

[
− (a− β) η

b+ β + λ
±

√( (a− β)
2
η2

(b+ β + λ)
2

)
− 4 (a− β) (b+ β + λ+ η)

]

∆ =
(a− β)

2
η2(

b+ β + λ
)2 − 4

(
a− β

)(
b+ β + λ+ η

)
.

(2.4) tr(M∗) = − (a− β)η

β + λ+ b
< 0

and

(2.5) det(M∗) = (a− β) (β + λ+ b) > 0.

According to the values of ∆ we will discuss three cases: ∆ = 0; ∆ < 0; ∆ > 0

(1) If a = 4
(b+ β + λ+ η) (b+ β + λ)

2

η2
+ β, by (2.4) we have a double nega-

tive eigenvalues and therefore (x∗, y∗) is a degenerate stable node.

(2) If a < 4
(b+ β + λ+ η) (b+ β + λ)

2

η2
+ β, and using (2.4) we deduce that

we have a stable focus and trajectories spiral as they approach of the
equilibrium point which is stable.

(3) If a > 4
(b+ β + λ+ η) (b+ β + λ)

2

η2
+ β, and using (2.4) and (2.5) we

deduce that the two eigenvalues are negative, it is a stable node or sink.
When t→ +∞ all trajectories tend towards the equilibrium point which
is therefore stable.

Our model was tested for some values, we present here our results.
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Figure 1. Example solution to the modified Lotka-Volterra equa-
tions, showing simulated behaviour of a predator-prey relationship
applicable to dusty plasma populations. Parameters used were:
a = 250.3547; b = 2.;α = 0.1;β = 0.01;λ = 0.02; η = 0.4 and the
starting point for calculation was (x∗, y∗) = (24.30, 299.67).

Figure 2. Example solution to the modified Lotka-Volterra equa-
tions, showing simulated behaviour of a predator-prey relationship
applicable to dusty plasma populations. Parameters used were:
a = 0.4; b = 2.;α = 0.1;β = 0.01;λ = 0.02; η = 0.4 and the
starting point for calculation was (x∗, y∗) = (24.30, 0.4668).
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Figure 3. Example solution to the modified Lotka-Volterra equa-
tions, showing simulated behaviour of a predator-prey relationship
applicable to dusty plasma populations. Parameters used were:
a = 500.; b = 2.;α = 0.1;β = 0.01;λ = 0.02; η = 0.4 and the
starting point for calculation was (x∗, y∗) = (24.30, 598.5102).

3. Conclusion

In this work we have modeled the propagation of covid 19 in a population.
We have modified the model of Lotka-Voltera for population dynamic to study
the stabilty of our proposed model in the neighborhood of the equilibrium point.
We have seen that the cases of local stability are determined by the two condition
det(M∗) > 0 and tr(M∗) < 0. Under these conditions any trajectory resulting
from an initial condition taken in the neighborhood of equilibrium point will return
to the equilibrium point (node or stable focus). All our results are based on the
assumption that the rate of population growth in Compartiment A is upper than the
rate of natural death in the same compartiment. If for some reasans this condition
is droped so that a < β, in this case the two eigenvalues have opposite signs, we
will have a saddle point. When t → +∞ the population of predators tends to ∞
while the other population tends to x∗. The equilibrium point is unstable. Let us
recal that because det(M∗) 6= 0 we must have a 6= β.

Figure 4. The range of behaviours of solutions to function of a
par η where b = 0.88;β = 0.1; and λ = 0.02.
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cices corrigés, Dunod, Paris, (2015).
3. L. Esposito, Al, A predator-prey model for moon-triggered clumping in Saturn’s rings, Icarus,

217(1), 103-114 (2012).

4. J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge
University Press, (1998).

5. J. Hofbauer and K. Sigmund, The theory of evolution and dynamical systems, mathematical

aspects of selection. No. Sirsi i9780521358385 (1988).
6. K.H. Hoffmann, The structure of marine phage population, Proceedings of ECOS, eds Signe

Kjelstrup and Johan Einar Hustad, (2005).

7. A. Lotka, Elements of physical biology, Williams and Wilkins Company, (1925).
8. A.E. Ross and D. R. Mckenzie, Predator-prey dynamics stabilsed by nonlinearity explain oscil-

lations in dust-forming plasmas, Scientific reports, 6(1), 1-9 (2016); doi: 10.1038/srep24040.
9. P. Samuelson, Generalized Predator-Prey Oscillations in Ecological and Economic Equilibrium,

Proceedings of the National Academy of Sciences, 68(5), 980-983 (1971).

10. V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature,
118(2972), 558-560 (1926).

Received by editors 9.3.2022; Revised version 17.5.2022; Available online 6.6.2022.

Souad Ayadi, Laboratory of Acoustics and Civil Engineering, University of Khemis

Miliana, Khemis Miliana, Algeria
Email address: souad.ayadi@univ-dbkm.dz

Hocine Boukabcha, Laboratory of Energy and Smart Systems, University of Khemis
Miliana, Khemis Miliana, Algeria

Email address: h.boukabcha@univ-dbkm.dz


