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EIGENVALUE INTERVALS FOR ITERATIVE SYSTEMS
OF THE SECOND-ORDER IMPULSIVE BOUNDARY

VALUE PROBLEM

Dondu Oz and Ilkay Yaslan Karaca

Abstract. The goal of this study is to find the eigenvalue intervals of the
parameters λ1, λ2, ..., λn for which positive solutions exist in the second-order

impulsive boundary value problem’s iterative systems. To arrive at our con-
clusions, we utilize the fixed point theorem. An example is also provided to

show the application of the main results.

1. Introduction

Because it is substantially richer than the comparable theory of differential
equations without impulsive effects, it is commonly accepted that the theory and
applications of differential equations with impulsive effects are an important area of
research. Impulsive differential equations can be used to express a variety of models,
including population, ecology, biological systems, pharmacokinetics, biotechnology,
and optimal control. Control theory, electronics, chemistry, mechanics, economics,
medicine, electrical circuits, and population dynamics all benefit from impulsive
differential equations. For an introduction to the general theory of impulsive dif-
ferential equations, see references [1, 2, 3, 12, 21, 22], and for applications of
impulsive differential equations, see references [6, 15].

In the literature, several researchers have examined at second-order impulsive
boundary value problems; for a list, see [5, 8, 10, 13, 14, 25, 26, 27] in references.
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In [8], Hu et al. studied the following nonlinear second-order impulsive differ-
ential equations:

−u′′(t) = h(t)f(t, u), t ∈ J ′ = [0, 1]\{t1, t2, ..., tm},
−4u′|t=tk = Ik(u(tk)),

4u|t=tk = Īk(u(tk)), k = 1, 2, ...,m,

αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0,

where α, β, γ, δ > 0, ρ = βγ + αγ + αδ > 0, J = (0, 1), 0 < t1 < t2 < ... <
tm < 1, J ′ = J\{t1, t2, ..., tm}, J̄ = [0, 1], J0 = (0, t1], J1 = (t1, t2], ..., Jm =
(tm, 1), f ∈ C(J̄ × R+,R+), Ik, Īk ∈ C(R+,R+), R+ = [0,+∞). The authors
showed that the existence of one or two positive solutions are established by using
the fixed point index theorem in cone.

In addition, some researchers have been interested in systems of the second-
order impulsive boundary value problems; we recommend the reader to [5, 13, 14]
for further information on these. Obtaining optimal eigenvalue intervals for the
existence of positive solutions to iterative systems with nonlinear boundary value
problems, on the other hand, has attracted interest due to the importance of both
theory and applications. This line includes papers like [4, 7, 9, 11, 16, 17, 18,
19, 20, 23].

We consider the following iterative system of nonlinear second-order impulsive
boundary value problem (IBVP) in this work, which is motivated by the above-
mentioned result:

y′′i (t) + λipi(t)gi(yi+1(t)) = 0, t ∈ J = [0, 1], 1 6 i 6 n,

yn+1(t) = y1(t),

4yi|t=tk = λiIik(yi+1(tk)), t 6= tk, k = 1, 2, ..., p,

4y′i|t=tk = −λiJik(yi+1(tk)),

ayi(0)− by′i(0) = 0,

cyi(1) + dy′i(1) = 0

(1.1)

where J = [0, 1], t 6= tk, k = 1, 2, ..., p with 0 < t1 < t2 < ... < tp < 1. For
1 6 i 6 n, 4yi|t=tk and 4y′i|t=tk represent the jump of yi(t) and y′i(t) at t = tk,
i.e.,

4yi|t=tk = yi(t
+
k )− yi(t−k ), 4y′i|t=tk = y′i(t

+
k )− y′i(t−k ),

where yi(t
+
k ), y′i(t

+
k ) and yi(t

−
k ), y′i(t

−
k ) symbolize the right-hand limit and left-hand

limit of yi(t) and y′i(t) at t = tk, k = 1, 2, ..., p, respectively.

Throughout this paper, we suppose that the following conditions are provided.

(H1) a, b, c, d ∈ [0,∞) with ac+ ad+ bc > 0,
(H2) gi : R+ → R+ is continuous, for 1 6 i 6 n,
(H3) pi ∈ C([0, 1],R+). On any closed subinterval of [0, 1], for 1 6 i 6 n, pi

does not vanish identically.
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(H4) Iik ∈ C(R,R+) and Jik ∈ C(R,R+) are bounded functions such that
[d+ c(1− tk)]Jik(τ) > cIik(τ), t < tk, k = 1, 2, ..., p, for 1 6 i 6 n, where
τ be any nonnegative number.

(H5) Each of

g0i = lim
y→0+

gi(y)

y
, I0ik = lim

y→0+

Iik(y)

y
, J0

ik = lim
y→0+

Jik(y)

y
,

exists as positive real number.

The purpose of this research is to find the eigenvalue intervals of λi, 1 6 i 6 n,
for which the iterative system of nonlinear second-order IBVP (1.1) has positive
solutions. The fixed point theorem is the primary tool used for this. According to
the authors’ knowledge, the iterative system of nonlinear second-order IBVP (1.1)
has not been studied before. Therefore, this paper will contribute to the literature.

The following is the outline of this paper’s main structure. In Section 2, we
present a number of definitions and fundamental lemmas that are useful in un-
derstanding our main result. The eigenvalue intervals for which the IBVP (1.1)
iterative system has positive solutions are found in Section 3. In Section 4, we
demonstrate how our main results may be used through an example.

2. Preliminaries

We begin with some background definitions on Banach spaces in this part, and
then introduce auxiliary lemmas that will actually be useful later.
Let J ′ = J\{t1, t2, ..., tn}. C(J,R+) indicate the Banach space of all continuous
mapping y : J → R+ with the norm ‖y‖ = sup

t∈J
|y(t)|, PC(J,R+) = {y : J → R+ :

y ∈ C(J ′), y(t+k ) and y(t−k ) exist and y(t−k ) = y(tk), k = 1, 2, ..., n} is also a Ba-

nach space with norm ‖y‖PC = supt∈J |y(t)|, and PC1(J,R+) = {y ∈ PC(J,R+) :

y′ ∈ PC(J ′), y′(t+k ) and y′(t−k ) exist and y′(t−k ) = y′(tk), k = 1, 2, ..., n} is a
real Banach space with norm ‖y‖PC1 = max{‖y‖PC , ‖y′‖PC} where ‖y‖PC =
supt∈J |y(t)|, ‖y′‖PC = supt∈J |y′(t)|. Let B = PC1(J) ∩ C2(J ′). If a function
(y1, ..., yn) ∈ Bn provides the iterative system of the IBVP (1.1), it is referred to as
a solution of the iterative system of the IBVP (1.1).

We’ll start with the situation of i = 1 in the iterative system of the IBVP (1.1).
So, we will provide the solution y1 of the IBVP (2.1). Then, since y1 is known,
we can find yn. If we continue in this direction, we will have yn−1, then yn−2,
and eventually y2. As a consequence, the solution (y1, ..., yn) for the IBVP (1.1)
iterative system is found.

Let h ∈ C[0, 1], then we consider the following IBVP:

−y′′1 (t) = h(t), t ∈ J = [0, 1], t 6= tk, k = 1, 2, ..., p,

4y1|t=tk = λ1I1k(y2(tk)),

4y′1|t=tk = −λ1J1k(y2(tk)),

ay1(0)− by′1(0) = 0,

cy1(1) + dy′1(1) = 0.

(2.1)
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The solutions of the corresponding homogeneous equation are denoted by θ and φ.

−y′′1 (t) = 0, t ∈ [0, 1],(2.2)

under the initial conditions{
θ(0) = b, θ′(0) = a,

φ(1) = d, φ′(1) = −c.
(2.3)

Using the initial conditions (2.3), we can deduce from equation (2.2) for θ and φ
the following equations:

θ(t) = b+ at, φ(t) = d+ c(1− t).(2.4)

Set

ρ := ad+ ac+ bc.(2.5)

and

Lemma 2.1. Let (H1)-(H5) hold. If y1 ∈ B is a solution of the equation

y1(t) =

∫ 1

0

G(t, s)h(s)ds+

p∑
k=1

W1k(t, tk),(2.6)

where

G(t, s) =
1

ρ

{
(b+ as)[d+ c(1− t)], s 6 t,

(b+ at)[d+ c(1− s)], t 6 s,
(2.7)

(2.8)

W1k(t, tk) =

1

ρ

{
(b+ at)[−cλ1I1k(y2(tk)) + (d+ c(1− tk))λ1J1k(y2(tk))], t < tk,

(d+ c(1− t))[aλ1I1k(y2(tk)) + (b+ atk)J1k(y2(tk))], tk 6 t,

then y1 is a solution of the IBVP (2.1).

Proof. Let y1 satisfies the integral equation (2.6), then we get

y1(t) =

∫ 1

0

G(t, s)h(s)ds+

p∑
k=1

W1k(t, tk),

i.e.,

y1(t) =
1

ρ

∫ t

0

(b+ as)[d+ c(1− t)]h(s)ds+
1

ρ

∫ 1

t

(b+ at)[d+ c(1− s)]h(s)ds

+
1

ρ

∑
0<tk<t

(d+ c(1− t))[aλ1I1k(y2(tk)) + (b+ atk)J1k(y2(tk))]

+
1

ρ

∑
t<tk<1

(b+ at)[−cλ1I1k(y2(tk)) + (d+ c(1− tk))λ1J1k(y2(tk))],
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y′1(t) =
1

ρ

∫ t

0

(−c)(b+ as)h(s)ds+
1

ρ

∫ 1

t

(a)[d+ c(1− s)]h(s)ds

+
1

ρ

∑
0<tk<t

(−c)[aλ1I1k(y2(tk)) + (b+ atk)J1k(y2(tk))]

+
1

ρ

∑
t<tk<1

(a)[−cλ1I1k(y2(tk)) + (d+ c(1− tk))λ1J1k(y2(tk))].

Thus

y′′1 (t) =
1

ρ
(−ct− (d+ c(1− t)))h(t)

= −h(t),

i.e.,

y′′1 (t) + h(t) = 0.

Since

y1(0) =
1

ρ

∫ 1

0

b[d+ c(1− s)]h(s)ds

+
1

ρ

p∑
k=1

b[−cλ1I1k(y2(tk)) + (d+ c(1− tk))λ1J1k(y2(tk))]

and

y′1(0) =
1

ρ

∫ 1

0

(a)[d+ c(1− s)]h(s)ds

+
1

ρ

p∑
k=1

(a)[−cλ1I1k(y2(tk)) + (d+ c(1− tk))λ1J1k(y2(tk))],

we get

ay1(0)− by′1(0) = 0.(2.9)

Since

y1(1) =
1

ρ

∫ 1

0

(b+ as)(c+ d)h(s)ds

+
1

ρ

p∑
k=1

(c+ d)[aλ1I1k(y2(tk)) + (b+ atk)J1k(y2(tk))]
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and

y′1(1) =
1

ρ

∫ 1

0

(−c)(b+ as)h(s)ds

+
1

ρ

p∑
k=1

(−c)[aλ1I1k(y2(tk)) + (b+ atk)J1k(y2(tk))],

we get

cy1(1) + dy
′

1(1) = 0.(2.10)

From equations (2.9) and (2.10), we have that the conditions of the IBVP (2.1) are
satisfied. �

Lemma 2.2. Assume that (H1)-(H5) hold, then for any t, s ∈ J, we have

0 6 G(t, s) 6 G(s, s).(2.11)

Proof. It is easily obtained from equation (2.7). �

We note that an n-tuple (y1(t), y2(t), ..., yn(t)) is a solution of the iterative
system of the IBVP (1.1) if and only if

y1(t) =λ1

∫ 1

0

G(t, s1)p1(s1)g1

(
λ2

∫ 1

0

G(s1, s2)p2(s2)g2

(
λ3

∫ 1

0

G(s2, s3)p3(s3)g3...

gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(y1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

)
dsn−1

+

p∑
k=1

Wn−1,k(sn−2, tk)

)
dsn−2 + ...+

p∑
k=1

W3k(s2, tk)

)
ds2

+

p∑
k=1

W2k(s1, tk)

)
ds1 +

p∑
k=1

W1k(t, tk).

yi(t) =λi

∫ 1

0

G(t, s)pi(s)gi(yi+1(s))ds+

p∑
k=1

Wik(t, tk), t ∈ J,

yn+1(t) = y1(t).

and

Wik(t, tk) =
1

ρ

{
(b+ at)[−cλiIik(yi+1(tk)) + (d+ c(1− tk))λiJik(yi+1(tk))], t < tk,

(d+ c(1− t))[aλiIik(yi+1(tk)) + (b+ atk)Jik(yi+1(tk))], tk 6 t.

To identify the eigenvalue intervals for which the iterative system of the IBVP (1.1)
has at least one positive solution, we will apply the following fixed point theorem
[24].
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Theorem 2.1. [24] Let E be a Banach space. Assume that Ω is an open
bounded subset of E with θ ∈ Ω and let T : Ω̄ → E be a completely continuous
operator such that

‖Tu‖ 6 ‖u‖ , ∀u ∈ ∂Ω.

Then T has a fixed point in Ω̄.

3. Main results

In this section, we establish criteria to determine the eigenvalues for which the
iterative system of the IBVP (1.1) has at least one positive solution.

Now, we define an integral operator B→ B, for y1 ∈ B, by

Ty1(t) = λ1

∫ 1

0

G(t, s1)p1(s1)g1

(
λ2

∫ 1

0

G(s1, s2)p2(s2)g2

(
λ3

∫ 1

0

G(s2, s3)p3(s3)g3...

gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(y1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

)
dsn−1

+

p∑
k=1

Wn−1,k(sn−2, tk)

)
dsn−2 + ...+

p∑
k=1

W3k(s2, tk)

)
ds2

+

p∑
k=1

W2k(s1, tk)

)
ds1 +

p∑
k=1

W1k(t, tk).

(3.1)

The operator T is completely continuous by an application of the Arzela-Ascoli
Theorem.

Let

N := min
16i6n

{[(∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d)

)
·
(

max{g0i , I0ik, J0
ik}
)]−1}

.

Theorem 3.1. Assume that conditions (H1)-(H5) are satisfied. Then, for each
λ1, λ2, ..., λn satisfying

λi < N, 1 6 i 6 n,(3.2)

there exists an n-tuple (y1, y2, ..., yn) satisfying (1.1) such that yi(t) > 0, 1 6 i 6 n,
on J.

Proof. Let λr, 1 6 r 6 n, be as in (3.2). Now, let ε > 0 be chosen such that

max
16r6n

λr 6 min
16i6n

{[(∫ 1

0

G(s, s)pi(s)ds+
p

ρ
(2a+ b)(c+ d)

)
·
(

max{g0i + ε, I0ik + ε, J0
ik + ε}

)]−1}
.

The fixed points of the completely continuous operator T : B→ B defined by (3.1)
are investigated. Based on the definitions of g0i , I

0
ik, J

0
ik, 1 6 i 6 n, there is a

K1 > 0 such that, for each 1 6 i 6 n,

gi(y) 6 (g0i + ε)y, Iik(y) 6 (I0ik + ε)y, Jik(y) 6 (J0
ik + ε)y, 0 < y < K1.
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Let y1 ∈ B with ‖y1‖ = K1. We obtain from Lemma 2.2 and the choice of ε,
for 0 6 sn−1 6 1,

λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(y1(sn))dsn +

p∑
k=1

Wnk(sn−1, tk)

6 λn

[(∫ 1

0

G(sn, sn)pn(sn)dsn +
p

ρ
(2a+ b)(c+ d)

)
·
(

max{g0n + ε, I0nk + ε, J0
nk + ε}

)]
‖y1‖

6 K1.

It proceeds in the same way from Lemma 2.2, for 0 6 sn−2 6 1, that

λn−1

∫ 1

0

G(sn−2, sn−1)pn−1(sn−1)gn−1

(
λn

∫ 1

0

G(sn−1, sn)pn(sn)gn(y1(sn))dsn

+

p∑
k=1

Wnk(sn−1, tk)

)
dsn−1 +

p∑
k=1

Wn−1,k(sn−2, tk)

6 λn−1

[(∫ 1

0

G(sn−1, sn−1)pn−1(sn−1)dsn−1 +
p

ρ
(2a+ b)(c+ d)

)
·
(

max{g0n−1 + ε, I0n−1,k + ε, J0
n−1k + ε}

)]
‖y1‖

6 ‖y1‖ = K1.

If we continue this bootstrapping argument, we get, for 0 6 t 6 1,

λ1

∫ 1

0

G(t, s1)p1(s1)g1(λ2...)ds1 +

p∑
k=1

W1k(t, tk)

6 λ1

[(∫ 1

0

G(s1, s1)p1(s1)ds1 +
p

ρ
(2a+ b)(c+ d)

)
·
(

max{g01 + ε, I01k + ε, J0
1k + ε}

)]
K1

6 K1 = ‖y1‖.

Thus, ‖Ty1‖ 6 K1 = ‖y1‖. If we established Ω1 = {y ∈ B : ‖y‖ < K1}, then

‖Ty1‖ 6 ‖y1‖ for y1 ∈ ∂Ω.(3.3)

We can see that T has a fixed point y1 ∈ Ω̄ by applying Theorem 2.1 to (3.3) .
As a result, by setting yn+1 = y1, we get a positive solution (y1, y2, ..., yn) of the
iterative system of the IBVP (1.1) given iteratively by

yr(t) = λr

∫ 1

0

G(t, s)pr(s)gr(yr+1(s))ds+

p∑
k=1

Wrk(t, tk), r = n, n− 1, ..., 1.

�
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4. An Example

Example 4.1 In the iterative system of the IBVP (1.1), suppose that n = p =
3, pi(t) = 1 for 1 6 i 6 3, a = c = 6, b = d = 3 i.e.,

y′′i (t) + λigi(yi+1(t)) = 0, t ∈ J = [0, 1], t 6= tk, 1 6 i, k 6 3,

4yi|t=tk = λiIik(yi+1(tk)),

4y′i|t=tk = −λiJik(yi+1(tk)),

6yi(0)− 3y′i(0) = 0,

6yi(1) + 3y′i(1) = 0.

(4.1)

where
g1(y2) = y2(2− e−y2), g2(y3) = y3(4− 3e−2y3), g3(y1) = y1(3− 5

2e
−3y1),

I1k(y2) =
3y22 + 4y2

4 + y2
, I2k(y3) =

2y33 + 4y3
5 + y3

, I3k(y1) =
5y21 + 2y1
5 + 2y1

,

J1k(y2) =
6y22 + 8y2

2 + y2
, J2k(y3) =

4y33 + 8y3
3 + y3

, J3k(y1) =
10y21 + 4y1

3 + y1
.

It is clear that (H1)-(H5) has been satisfied. By simple calculation, we get
ρ = 72, θ(t) = 3 + 6t, φ(t) = 9− 6t and

G(t, s) =
1

72

{
(3 + 6s)(9− 6t), s 6 t,

(3 + 6t)(9− 6s), t 6 s.

We obtain

g01 = 1, g02 = 1, g03 =
1

2
, I01k = 1, I02k =

4

5
, I03k =

2

5
, J0

1k = 4, J0
2k =

8

3
, J0

3k =
4

3
,

and
N = min{0.0410958904109589, 0.0616438356164384, 0.1232876712328767}.

Using Theorem 2.1, we obtain the optimal eigenvalue interval of

λi < 0.0410958904109589, i = 1, 2, 3,

which has a positive solution to the impulsive boundary value problem (4.1).
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