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A NEW COMPUTATIONAL TECHNIQUE FOR
FOURIER TRANSFORMS BY USING THE

DIFFERENTIAL TRANSFORMATION METHOD

Murat Düz, Ahmad Issa, and Sunnet Avezov

Abstract. The aim of this study is to calculate the well-known Fourier Trans-
forms of functions in a different way. Through our procedure, the Fourier

Transform of functions is obtained by considering the Differential Transform
Method (DTM) easily without resorting to complex integration.

1. Introduction

The Differential Transformation Method is one of the powerful methods that
can be easily applied to a lot of linear and nonlinear problems and is able to reduce
the amount of computational work. It is the method based on the Taylor series.
DTM is a well-known and strong semi numerical-analytical technique that does
not necessitate a lengthy integration phase. Therefore, very precise and efficient
results are easily obtained. The idea of a Differential Transformation Method was
suggested in the topic of electrical circuit analysis to the solution of linear and
nonlinear (IVP) by Zhou [17]. They used the DTM to improve the fins [15][16],
the Differential Transformation technique is employed in [11] for applying a free
vibration of continuous systems. This technique is used in [8] [10] for solving initial
value and higher order- initial-value problems. Ebaid also used this method to solve
harmonic oscillator [5]. A method depending on the DTM was applied by Abbasov
et al. [2] to get approximate solutions of equations connected to engineering issues,
and the numerical results were found to be in good agreement with the analytical
answers. This method doesn’t require much time when it is applied to the computer.

2010 Mathematics Subject Classification. 42A38.

Key words and phrases. DTM, Fourier Transform, Dirac delta function.
Communicated by Dusko Bogdanic.

287
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Integral Transforms are another important concept in mathematics, which can
be applied in the solutions of linear problems. With these transformations, we can
solve linear ordinary and partial differential equations, calculate some improper
integrals. It is important to know reciprocal of functions under the integral trans-
formation. In some cases, it may be necessary to calculate very complex integrals.
For this reason, different methods have been used to calculate the Integral Trans-
formations of functions. Some of these are Homotopy Perturbation, Adomian De-
composition Method, Variational Iteration method and DTM [1], [4], [6]. Inspired
by these studies, we calculated the Fourier Transform of functions using DTM.

2. The basic definitions and theorems

2.1. DTM.

Definition 2.1. The Differential Transform of function h(t) is represented
(seen [3], [7])as:

(2.1) H(k) =
1

k!
[
dkh(t)

dtk
]t=0

and inverse transformation is

(2.2) h(t) =

∞∑
k=0

H(k)tk

Theorem 2.1. [3][13] If h(t) = g(t)∓ w(t) then H(k) = G(k)∓W (k).

Theorem 2.2. [3][13] If h(t) = µg(t) then H(k) = µG(k), where µ is a con-
stant.

Theorem 2.3. [3][13] If h(t) = dmg(t)
dtm then H(k) = (k+m)!

k! G(k +m).

Theorem 2.4. [3][13] If h(t) = tm then H(k) = δ(k −m), where

δ(k −m) =

{
1, if k = m

0, if k 6= m
.

Theorem 2.5. [3][13] If h(t) = g(t)w(t) then H(k) =
∑k
r=0G(r)W (k − r).

Theorem 2.6. [3] If h(t) = g1(t)g2(t) · · · gm−1(t)gm(t) then

H(k) =

k∑
rm−1=0

rm−1∑
rm−2=0

· · ·
r3∑
r2=0

r2∑
r1=0

G1(r1)G2(r2 − r1)Gm(k − rm−1)

.

2.2. Fourier Transform. In order to begin our discussion on the new com-
putational method for Fourier transform of functions, we define Fourier transform
of f(t) in non-unitary angular frequency form[12]

(2.3) F(f(t)) = f̂(w) =

∫ ∞
−∞

f(t)e−iwtdt
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and it’s inverse transform:

(2.4) f(t) = F−1(f̂(w)) =
1

2π

∫ ∞
−∞

f̂(w)eiwtdw

Improper integral (2.3) is convergent to the function of complex variable w when

(2.5)

∫ ∞
−∞
|f(t)|dt <∞

condition is satisfied. However, in real-life problems like signal processing and many
others, we face up with trigonometric, polynomial and exponential functions which
is non-integrable on the interval (−∞,∞).

Fourier Transforms of trigonometric ,polynomial and exponential functions are
defined with Dirac’s δ-function, which is not a classical function. In the coming
section 2.3 we will introduce to you one of the most useful and at the same time
most rigorous function Dirac-delta function.

2.3. Dirac delta distribution. This function plays important role in Fourier
analysis, probability theory and many other real applications of mathematics.
Dirac δ-function has the following properties[12]

• δ(w) = 0 for w 6= 0
• δ(0) =∞
•
∫∞
−∞ δ(w)dw = 1

As you can see it is not a type of classical function, it’s a generalized function that
can assign meaningful value inside the integral. Some proper functions can approx-
imate δ-function in the limiting process. One of them is the family of Gaussian
curves which is :

(2.6) g(w, a) =
1√
2πa

e
−w2

2a , a > 0

As a → 0+ family of g(w, a) functions satisfies exact the same properties of δ
function. That means

(2.7) δ(w) = lim
a→0+

g(w, a)

The Fourier transform of δ-function and it’s inverse is given by[12]

(2.8) F(δ(w)) =

∫ ∞
−∞

δ(w)e−iwtdw = 1

and

(2.9) F−1(1) =
1

2π

∫ ∞
−∞

1.eiwtdt = δ(w)

δ-function is an even function that δ(−w) = δ(w), and instead expression of delta
function (2.9), it is more common to express in the form :

(2.10)
1

2π

∫ ∞
−∞

e−iwtdt = δ(w)
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From Fourier integral theorem :

f(t) =
1

2π

∫ ∞
−∞

f̂(w)eiwtdw =
1

2π

∫ ∞
−∞

(

∫ ∞
−∞

f(y)e−iwydy)eiwtdw

(2.11) =
1

2π

∫ ∞
−∞

f(y)(

∫ ∞
−∞

e−i(y−t)wdw)dy.

From (2.10) and (2.11) f(t) can be written equivalently as follows

(2.12) f(t) =

∫ ∞
−∞

f(y)δ(y − t)dy

This is also known as convolution with a delta function. We can see here convolution
with δ-function gives function itself.
Some other important properties of δ-function are as following [14]:

• δ(−w) = δ(w)
• wδ(w) = 0
• δ(aw) = 1

|a|δ(w), a 6= 0

• δ(w2 − a2) = 1
2|a| (δ(w − a) + δ(w + a)), a 6= 0

• f(0) =
∫∞
−∞ f(t)δ(w)dt

As we mentioned δ-function is meaningful with the function combined inside the
integral and so does its derivatives. For example,∫ ∞

−∞
f(y)δ′(y − t)dy

= [ lim
a→−∞,b→∞

f(y)δ(y − t)]y=by=a −
∫ ∞
−∞

f ′(y)δ(y − t)dy = −f ′(t)

And more generally,

(2.13)

∫ ∞
−∞

f(y)δ(n)(y − t)dy = (−1)nf (n)(t)

From the expression

δ(w) =
1

2π

∫ ∞
−∞

e−iwtdt,

We get Fourier transform of f(x) = 1:

F(1) = 2πδ(w)

The Fourier transform of f (n)(t) can be constructed by partial integration:

(2.14) F(f (n)(t)) = (iw)nF(f(t)).

And by the duality property we get :

(2.15) F(tnf(t)) = in
dn

dwn
F(f(t))
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We note here that this derivative formula holds on absolute integrable functions.
But in the generalized Fourier transform of distributions, this idea was extended
and putting f(t) = 1 in (2.15) gives us:

F(tn) = 2πinδ(n)(w)

.

Functions The fourier transforms

1 F(1) = 2πδ(w)
tn F(tn) = 2πinδ(n)(w)
eat F(eat) = 2πδ(w + ia)

Table1:The Fourier Transformations of some functions.

3. Results through the use of DTM

Theorem 3.1. If f(t) is an analytic function and w ∈ C , and we consider
the linear initial value problem as follow

(3.1) y′ − iwy = if(t), y(0) = 0

then the Fourier transform of f(t) is

(3.2) F(f(t)) = [
e−iwt

i

∞∑
k=0

Y (k)tk]t=∞t=−∞

where Y (k) is differential transform of y(t).

Proof. y′ − iwy = if(t), we can write this ODE as follow

(3.3) (ye−iwt)′ = if(t)e−iwt.

By integrating both sides with respect to t from −∞ to ∞ we obtain the relation
between previous equation and Fourier transform as follow

(3.4) [ye−iwt]t=∞t=−∞ = i

∫ ∞
−∞

f(t)e−iwtdt

that means :

(3.5) F(f(t)) = [
e−iwt

i
y]t=∞t=−∞

In order to find the Fourier transform of f(t), we construct the DTM form of
equation (3.1) as

(3.6) Y (k + 1) =
iF (k) + iwY (k)

k + 1
, Y (0) = 0

where F (k), Y (k) are differential transform of functions f(t) and y(t) respectively.
By using the inverse differential transform (2.2), we get

(3.7) y =

∞∑
k=0

Y (k)tk
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By substituting y into equation (3.5) we obtain

(3.8) F(f(t)) = [
e−iwt

i

∞∑
k=0

Y (k)tk]t=∞t=−∞

�

Now we will apply the differential transform method to find the Fourier trans-
form of some functions:

Example 3.1. Let f(t) = 1 in Theorem 3.1, then we obtain Y (k + 1) =

iδ(k)+iwY (k)
k+1 ,Where δ(k) is the Kronecker delta and given as: δ(k) =

{
1, if k = 0

0, if k 6= 0

, Y (0) = 0, Now we will find some of Y (k)

(3.9) Y (1) = i, Y (2) =
i2w

2!
, Y (3) =

i3w2

3!
, Y (4) =

i4w3

4!
, Y (5) =

i5w4

5!
, · · ·

Thus from (3.9) and (3.7), we obtain that

(3.10) y(t) =
∞∑
k=0

Y (k)tk = it+
i2w

2!
t2 +

i3w2

3!
t3 +

i4w3

4!
t4 +

i5w4

5!
t5 + · · ·

Equation (3.10) can be written equivalently as follows

(3.11) y(t) =

∞∑
k=0

Y (k)tk =
1

w
(eiwt − 1)

Finally, by setting equation (3.11) in (3.8) we obtain the Fourier transform of 1

(3.12) F(1) = [
e−iwt

i
(

1

w
(eiwt − 1))]t=∞t=−∞ = [

1

iw
(1− e−iwt)]t=∞t=−∞ =

∫ ∞
−∞

e−iwtdt.

By equation (2.10), we obtain F(1) = 2πδ(w)

Example 3.2. Let f(t) = eat in Theorem 3.1, then we obtain Y (k + 1) =
i a

k

k! +iwY (k)

k+1 , Y (0) = 0

Now we will find some of Y (k)

(3.13) Y (1) = i, Y (2) =
ia+ i2w

2!
, Y (3) =

ia2 + i2wa+ i3w2

3!
,

Y (4) =
ia3 + i2wa2 + i3w2a+ i4w3

4!
,

Y (5) =
ia4 + i2wa3 + i3w2a2 + i4w3a+ i5w4

5!
,

Y (6) =
ia5 + i2wa4 + i3w2a3 + i4w3a2 + i5w4a+ i6w5

6!
, · · ·
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Thus from (3.13) and (3.7), we obtain that

(3.14) y(t) =

∞∑
k=0

Y (k)tk = it+
ia+ i2w

2!
t2 +

ia2 + i2wa+ i3w2

3!
t3

+
ia3 + i2wa2 + i3w2a+ i4w3

4!
t4

+
ia4 + i2wa3 + i3w2a2 + i4w3a+ i5w4

5!
t5

+
ia5 + i2wa4 + i3w2a3 + i4w3a2 + i5w4a+ i6w5

6!
t6 + · · ·

=
i

a− iw
((eat − 1)− iwt− i2w2 t

2

2!
− i3w3 t

3

3!
− i4w4 t

4

4!
− · · · )

Equation (3.14) can be written equivalently as follows

(3.15) y(t) =

∞∑
k=0

Y (k)tk =
i

a− iw
(eat − eiwt)

Finally, by setting equation (3.15) in (3.8) we obtain the Fourier transform of eat

F(eat) = [
e−iwt

i
(

i

a− iw
(eat − eiwt))]t=∞t=−∞ = [

1

−i(ia+ w)
(e−i(ia+w)t − 1)]t=∞t=−∞

(3.16) =

∫ ∞
−∞

e−i(ia+w)tdt.

By equation (2.10), we obtain F(eat) = 2πδ(ia+ w)

Example 3.3. Let f(t) = tn in Theorem 3.1, then we obtain Y (k + 1) =
iδ(k−n)+iwY (k)

k+1 , Y (0) = 0

Now we will find some of Y (k)

(3.17)

Y (1) = Y (2) = Y (3) = · · · = Y (n) = 0, Y (n+1) =
in!

(n+ 1)!
, Y (n+2) =

i2wn!

(n+ 2)!
,

Y (n+ 3) =
i3w2n!

(n+ 3)!
, · · · , Y (n+m) =

imwm−1n!

(n+m)!
, · · ·

Thus from (3.17) and (3.7), we obtain that

(3.18) y(t) =

∞∑
k=0

Y (k)tk =
in!

(n+ 1)!
tn+1 +

i2wn!

(n+ 2)!
tn+2 +

i3w2n!

(n+ 3)!
tn+3 + · · ·
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Equation (3.18) can be written equivalently as follows

(3.19) y(t) =

∞∑
k=0

Y (k)tk =
in!

(iw)n+1
(eiwt − 1− iwt

1
− (iwt)2

2!
− · · · − (iwt)n

n!
)

Finally, by setting equation (3.19) in (3.8) we obtain the Fourier transform of tn

(3.20) F(tn) = [
e−iwt

i
(

in!

(iw)n+1
(eiwt − 1− iwt

1
− (iwt)2

2!
− · · · − (iwt)n

n!
))]t=∞t=−∞

= [ 2π
(−i)n ( (−i)n

2π (−1)e−iwt( t
n

iw + ntn−1

(iw)2 +· · ·+ n!t
(iw)n + n!

(iw)n+1 ))]t=∞t=−∞ = 2πinδ(n)(w).

Example 3.4. Let f(t) = rect(t) =

{
1, if − 1

2 6 t 6
1
2

0, otherwise
in Theorem 3.1

where rect(t) is Rectangular function, then we obtain Y (k+1) = iδ(k)+iwY (k)
k+1 ,− 1

2 6
t 6 1

2 , Y (0) = 0
Now we will find some of Y (k)

(3.21) Y (1) = i, Y (2) =
i2w

2!
, Y (3) =

i3w2

3!
, Y (4) =

i4w3

4!
, Y (5) =

i5w4

5!
, · · ·

Thus from (3.21) and (3.7), we obtain that

(3.22) y(t) =

∞∑
k=0

Y (k)tk = it+
i2w

2!
t2 +

i3w2

3!
t3 +

i4w3

4!
t4 +

i5w4

5!
t5 + · · ·

Equation (3.22) can be written equivalently as follows

(3.23) y(t) =

∞∑
k=0

Y (k)tk =
1

w
(eiwt − 1)

Finally, by setting equation (3.23) in (3.8) we obtain the Fourier transform of rect(t)

(3.24) F(rect(t)) = [
e−iwt

i
(

1

w
(eiwt−1))]t=∞t=−∞ = [

1

iw
(1−e−iwt)]t=

1
2

t=− 1
2

=
sin(w2 )

w
2

,

therefore, we finally have,

F(rect(t)) = sinc(
w

2π
).

The definition of sinc function in[9]

4. Conclusion

We applied the Differential Transform Method (DTM) for calculating of the
well-known Fourier transforms of functions in a different way. Furthermore, con-
trary to literature our presented method provides a well-known and strong analytic
technique that does not necessitate a lengthy integration phase.
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