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REVERSE SOMBOR INDEX

Narahari Narasimha Swamy, Tirunagaram Manohar,
Badekara Sooryanarayana, and Ivan Gutman

ABSTRACT. The recently conceived Sombor index is defined as the sum over
all edges uv of the terms y/deg(u)? + deg(v)2, where deg denotes the degree
of the respective vertex. Following Kulli’s concept of §-Sombor index, and
Ediz’s reverse Zagreb indices, we introduce a new vertex-degree-based graph
invariant, the reverse Sombor index (RSO). Its is equal to the sum of the

terms \/[A — deg(u) + 1]2 + [A — deg(v) +1] % where A is the greatest vertex
degree. The basic mathematical properties of RSO are established.

1. Introduction

In this paper we are concerned with simple graph, that is, finite graphs without
directed, weighted, or multiple edges, and without self loops. Let G be such a graph,
with vertex set V(G) and edge set E(G). An edge of G, connecting the vertices u
and v will be denoted by uv.

The degree (= number of first neighbors) of the vertex v € V(G) will be
denoted by deg(u).

The Sombor index is a recently invented vertex-degree-based topological index
[9]. It is defined as

SO=S80(G)= > /deg(u)? + deg(v)?.
weE(G)

This graph invariant immediately attracted much attention, and a remarkably large
number studies on this topic were published (e.g., see [1-5,10,17,19,20,22,23]).
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In the same time, various modifications of the Sombor index were proposed, such
as the modified Sombor index [11,15]

1
weE(G) \/deg(u)Q + deg(v)?

the Banhatti-Sombor and second Banhatti-Sombor indices [12,13]

2 271/2 2 2
2 [(degl(u)%(degl@)) P [(degﬂ@)*(degﬂ@”

—1/2

weE(G) weE(G)

the d-Sombor index [14]

(1.1) Z \/[deg(u)—5—1]2+ [deg(v)—6—1]2
weE(G)

where ¢ is the smallest vertex degree of the graph G, and many other [9,16,18,21].
To each of these graph invariants, a “reduced” invariant can be associated, in which
for every vertex x, deg(z) is replaced by degz — 1.

Of the other vertex-degree-based graph invariants, needed in the subsequent
part of this paper, we mention the first and second Zagreb indices [24, 25]

M(G)= Y [deg(u)+deg(v)] = > deg(u)’
weE(G) u€EV(QG)

and

Z deg(u) deg(v),

weE(G)
the forgotten index [24,25]
F(G) = Z [deg(u)? + deg(v Z deg(u
uveE(G) ueV(G)

and the‘“reverse Zagreb” indices, put forward by Ediz [6-8|

(1.2) RM{(G) = > c(w)?
ueV(G)

(1.3) RM{(G) = > [e(u)+c(v)]
weE(G)

(1.4) RM>(G) = Z c(u) ¢(v)
uwweE(G)

where c¢(z) = A —deg(x) + 1 for any vertex x € V(G), and where A is the greatest
vertex degree of the graph G. Recall that in contrast to the first Zagreb index, the
reverse first Zagreb indices RM{* and RMQﬂ do not coincide.
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Motivated by Kulli’s §-Sombor index, Eq. (1.1), and Ediz’s reverse Zagreb
indices, Egs. (1.2)—(1.4), we now introduce a “reverse Sombor index”, defined as

RSO =RSO(G) = > e(w)?+c(v)?
uveE(G)

Z \/[A—deg(u)—i-l]2 + [A — deg(v) + 1]2.

weE(G)

(1.5)

In the subsequent section we establish a few basic mathematical properties of
RSO. Its chemical applications will be reported elsewhere.

2. Mathematical properties of reverse Sombor index

In order to avoid trivialities, from now on we assume that the graph G is
connected and that [V(G)| > 2. Then A > 2.

We begin with finding the reverse Sombor index for some standard graphs. Af-
ter that, we obtain bounds on this index in terms of other known graph parameters
and topological indices.

REMARK 2.1. For the path graph P,,n > 3, RSO(P,) = 25 + (n — 3)V2.

REMARK 2.2. Let G be a graph of size |E(G)| = m. If G is regular, then
RSO(G) = V2m. Otherwise, 2v/2m < RSO(G) < V2 Am.

PROOF. Suppose that G is k-regular. Then, for each v € V(G), A = deg(v) =
k so that c¢(v) =k —k+1=1. Thus, RSO(G) = }_  cp) V1> +1° = my/2.

Suppose that G is not regular. Then, A > 2, so that for any v € V(G),
c(v) =A—deg(v)+1>3—deg(v) >23—-1=2.
Also, deg(v) > 1, so that ¢(v) = A —deg(v) + 1 < A. Thus,

RSO(G)= > Ve +c(v)? >my/22+22=2V2m.

weE(G)

For the upper bound, we have

RSO(G) = Z Ve)? +ce(v)2 <my/A2+A2=+2Am.

weE(G)

The bound is strict since G is assumed to be non-regular. O

THEOREM 2.1. For any graph G of size m > 1,

RSO(G) < \/m[2(A +1)2m + F(G) - 2(A + )M, (G)].
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PRrROOF. Using the Cauchy—Schwarz inequality, we have

2
Yo VelwPrc?| < Y M) Y [ew)? )]

uweE(G) weE(G) weE(G)
= m Z [e(u)? + ¢(v)?]
weE(G)
Here,

S el +e@?] = Y [(A=deglu) + 1) + (A - deg(v) +1)°]

weE(G) uwveE(G)
= Z [Q(A +1)? + deg(u)?® + deg(v)® — 2(A + 1) [ deg(u) + deg(v)]}

weE(Q)

= 2(A+1)*m+ F(G) —2(A+1)M(G).

Thus,
2
RSO*= | > e(?+c@)? | <m[2A+1)*m+F(G)—2(A+1)M(G)].
uveE(G)
O
THEOREM 2.2. For any graph G, RSO(G) > % RMP(G), with equality if G
is regular.

PRroOF. For a concave function g(x), by the Jensen inequality,

1 1
g <n Z:&) > = > o)
with equality for a strict concave function if 1 = 2 = --- = x,. Choosing
g(x) = /z, we get

which implies

Z Ve(u)? +c(v)? = 1 Z [e(u) + c(v)]

weE(G) \/5 wweE(G)
ie.,
1
RSO(G) > —= RM{(G).
(@) Wokias (@)
In particular, if G is regular, then the result follows from the fact that c(u) = ¢(v)
for all u,v € V(G). O

THEOREM 2.3. For any graph G, RSO(G) < \/i[RMiB(G) - RMQ(G):|.
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PROOF. As discussed in [18], for 1 < = < y, the function

foy) = (b= i) — | el

is decreasing for each y, so that f(x,y) > f(y,y) = 0. Therefore,

2 2
x—i—y—dmy}\/%.

Replacing  and y with ¢(u) and ¢(v), we have

< Y [ew) +ew)] -

weE(G)

Theorem 2.3 follows now form Eqs. (1.3), (1.4), and (1.5). O

8.

9.
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