SOME CURVATURE RESULTS ON KENMOTSU METRIC SPACES

Pakize Uygun, Süleyman Dirik, and Mehmet Atçeken

Abstract

In this paper we present the curvature tensors of Kenmotsu manifold satisfying the conditions $R(X, Y) \cdot W_{0}=0, R(X, Y) \cdot W_{1}^{\star}=0, R(X, Y)$. $W_{1}=0, R(X, Y) \cdot W_{3}=0$ and $R(X, Y) \cdot W_{4}=0$. According these cases, Kenmotsu manifolds have been characterized. I think that some interesting results on a Kenmotsu metric manifold are obtained.

1. Introduction

K.Kobayashi and K. Nomizu shown that any two simply connected complete Riemannian manifolds of constant curvature k are isometric to each other in 1963 [9]. After that Kenmotsu manifolds have been studied by many authors in several ways to a different extent such as $[\mathbf{1 7}]$.
K. Kenmotsu studied a class of contact Riemannian manifolds an call them Kenmotsu manifold [8]. He denote that if a Kenmotsu manifold satisfies the condition $R(X, Y) \cdot R=0$, where R is the Riemanniann curvature tensor and $R(X, Y)$ denotes the derivation of the tensor algebra at each point of the tangent space.

Subsequent to, K. De and U.C. De obtained conharmonically flat and ϕ-conhar monically flat Kenmotsu manifold and they proved that the manifold is an Einstein manifold and a η-Einstein manifold. They researched a 3 - dimensional Kenmotsu manifold admitting a non-null concircular vector field [4].

[^0]The object of this paper is to study properties of the some certain curvature tensor in a Kenmotsu metric manifold. In the present paper we survey $R(X, Y)$. $W_{0}=0, R(X, Y) \cdot W_{1}^{\star}=0, R(X, Y) \cdot W_{1}=0, R(X, Y) \cdot W_{3}=0$ and $R(X, Y) \cdot W_{4}=$ 0 , where $W_{0}, W_{1}, W_{1}^{\star}, W_{3}$, and W_{4} denote the curvature tensors of a manifold, respectively.

2. Preliminaries

Let M be a $(2 n+1)$-dimensional connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and the Riemannian metric g satisfying

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \quad \eta(\phi X)=0, \tag{2.1}\\
\eta(\xi)=1, \quad \phi \xi=0, \quad \eta \phi=0 \tag{2.2}
\end{gather*}
$$

for all $X, Y \in \chi(M)[8]$. Let g be Riemannian metric compatible with (ϕ, ξ, η), that is

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.3}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
g(X, \phi Y)=-g(\phi X, Y) \quad \text { and } \quad g(X, \xi)=\eta(X) \tag{2.4}
\end{equation*}
$$

for all $X, Y \in \chi(M)[\mathbf{2}]$. If moreover,

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=-\eta(Y) \phi X-g(X, \phi Y) \xi, \tag{2.5}\\
\nabla_{X} \xi=X-\eta(X) \xi \tag{2.6}
\end{gather*}
$$

where ∇ denotes the Riemannian connection of g hold, then (M, ϕ, ξ, η, g) is called an almost Kenmotsu manifold. An almost Kenmotsu manifold becomes a Kenmotsu manifold if

$$
\begin{equation*}
g(X, \phi Y)=d \eta(X, Y) \tag{2.7}
\end{equation*}
$$

In a Kenmotsu manifold M, the following relation holds $[8,5]$:

$$
\begin{gather*}
\left(\nabla_{X} \eta\right) Y=g(X, Y)-\eta(X) \eta(Y) \tag{2.8}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \\
R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi \\
S(X, \xi)=-(n-1) \eta(X)
\end{gather*}
$$

$$
\begin{equation*}
Q \xi=-(n-1) \xi \tag{2.12}
\end{equation*}
$$

where R is the Riemannian curvature tensor and S is Ricci tensor defined by $S(X, Y)=g(Q X, Y)$, where Q is Ricci operator. It yields to

$$
\begin{equation*}
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) . \tag{2.13}
\end{equation*}
$$

A Kenmotsu manifold M is said to be an η-Einstein manifold if its Ricci tensor S of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.14}
\end{equation*}
$$

for arbitrary vector fields X, Y; where a and b are functions on $\left(M^{2 n+1}, g\right)$. If $b=0$, then η - Einstein manifold becomes Einstein manifold [13, 8].

Let M be an $(2 n+1)$-dimensional Kenmotsu manifold. The curvature tensor \widetilde{R} of M with respect to the connection $\widetilde{\nabla}$ is defined by

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} Z-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} Z-\widetilde{\nabla}_{[X, Y]} Z \tag{2.15}
\end{equation*}
$$

Then, in a Kenmotsu manifold, we have

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=R(X, Y) Z+g(Y, Z) X-g(X, Z) Y \tag{2.16}
\end{equation*}
$$

where $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$, is the curvature tensor of M with respect to the connection ∇.

The Ricci tensor \widetilde{S} and the scalar curvature \widetilde{r} of the Kenmotsu manifold M with respect to the connection $\widetilde{\nabla}$ is given by

$$
\begin{equation*}
\widetilde{S}(X, Y)=\sum_{i=1}^{n} g\left(\widetilde{R}\left(e_{i}, X\right) Y, e i\right)=S(X, Y)+(n-1) g(X, Y) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{r}=\sum_{i=1}^{n} \widetilde{S}\left(e_{i}, e_{i}\right)=r+n(n-1), \tag{2.18}
\end{equation*}
$$

where \widetilde{r} and r are the scalar curvatures of the connection $\widetilde{\nabla}$ and ∇, respectively [18, 19, 21].

The concept of W_{0}-curvature tensor was defined by [12]. W_{0}-curvature tensor, W_{1}-curvature tensor, W_{1}^{\star}-curvature tensor, W_{3}-curvature tensor and $W_{4}{ }^{-}$ curvature tensor of a $(2 n+1)$-dimensional Riemannian manifold are, respectively, defined as

$$
\begin{align*}
W_{0}(X, Y) Z & =R(X, Y) Z-\frac{1}{2 n}[S(Y, Z) X-g(X, Z) Q Y] \tag{2.19}\\
W_{1}(X, Y) Z & =R(X, Y) Z+\frac{1}{2 n}[S(Y, Z) X-S(X, Z) Y] \tag{2.20}\\
W_{1}^{\star}(X, Y) Z & =R(X, Y) Z-\frac{1}{2 n}[S(Y, Z) X-S(X, Z) Y] \tag{2.21}\\
W_{3}(X, Y) Z & =R(X, Y) Z-\frac{1}{2 n}[S(X, Z) Y-g(Y, Z) Q X] \tag{2.22}\\
W_{4}(X, Y) Z & =R(X, Y) Z+\frac{1}{2 n}[g(X, Z) Q Y-g(X, Y) Q Z] \tag{2.23}
\end{align*}
$$

for all $X, Y, Z \in \chi(M)[\mathbf{1 1}, \mathbf{1 2}]$.

3. Some Curvature Results On Kenmotsu Metric Spaces

In this section, we will give the main results for this paper.
Let M be $(2 n+1)$-dimensional Kenmotsu metric manifold and we denote W_{0} curvature tensor from (2.19), we have for later

$$
\begin{equation*}
W_{0}(X, Y) \xi=\eta(X) Y-\frac{n+1}{2 n} \eta(Y) X+\frac{1}{2 n} \eta(X) Q Y . \tag{3.1}
\end{equation*}
$$

Putting $X=\xi$, in (3.1)

$$
\begin{equation*}
W_{0}(\xi, Y) \xi=Y-\frac{n+1}{2 n} \eta(Y) \xi+\frac{1}{2 n} Q Y \tag{3.2}
\end{equation*}
$$

In (2.20) choosing $Z=\xi$ and using (2.9), we obtain

$$
\begin{equation*}
W_{1}(X, Y) \xi=\frac{3 n-1}{2 n}(\eta(X) Y-\eta(Y) X) . \tag{3.3}
\end{equation*}
$$

In (3.3), it follows

$$
\begin{equation*}
W_{1}(\xi, Y) \xi=\frac{3 n-1}{2 n}(Y-\eta(Y) \xi) . \tag{3.4}
\end{equation*}
$$

From (2.21) and (2.9), we arrive

$$
\begin{equation*}
W_{1}^{\star}(X, Y) \xi=\frac{n+1}{2 n}(\eta(X) Y-\eta(Y) X), \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{1}^{\star}(\xi, Y) \xi=\frac{n+1}{2 n}(Y-\eta(Y) \xi) . \tag{3.6}
\end{equation*}
$$

Choosing $Z=\xi$, in (2.22), we obtain

$$
\begin{equation*}
W_{3}(X, Y) \xi=\frac{3 n-1}{2 n} \eta(X) Y-\eta(Y) X+\frac{1}{2 n} \eta(Y) Q X \tag{3.7}
\end{equation*}
$$

In (3.7) it follows

$$
\begin{equation*}
W_{3}(\xi, Y) \xi=\frac{3 n-1}{2 n}(Y-\eta(Y) \xi) \tag{3.8}
\end{equation*}
$$

In (2.23), choosing $Z=\xi$ and using (2.9), we get

$$
\begin{equation*}
W_{4}(X, Y) \xi=\eta(X) Y-\eta(Y) X+\frac{1}{2 n}\{\eta(X) Q Y+(n-1) g(X, Y) \xi\} \tag{3.9}
\end{equation*}
$$

Setting $X=\xi$, in (3.9), we arrive

$$
\begin{equation*}
W_{4}(\xi, Y) \xi=Y-\frac{n+1}{2 n} \eta(Y) \xi+\frac{1}{2 n} Q Y . \tag{3.10}
\end{equation*}
$$

Theorem 1. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a Kenmotsu manifold. Then M is a W_{0} semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose M is a W_{0} semi-symmetric. This implies that

$$
\begin{align*}
\left(R(X, Y) W_{0}\right)(U, W) Z= & R(X, Y) W_{0}(U, W) Z-W_{0}(R(X, Y) U, W) Z \\
& -W_{0}(U, R(X, Y) W) Z \\
& -W_{0}(U, W) R(X, Y) Z=0 \tag{3.11}
\end{align*}
$$

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X=Z=\xi$ in (3.11), making use of (3.1), (2.9) and (2.10), for $A=-\frac{n+1}{2 n}, B=\frac{1}{2 n}$, we have

$$
\begin{align*}
\left(R(\xi, Y) W_{0}\right)(U, W) \xi= & R(\xi, Y)(\eta(U) W+A \eta(W) U+B \eta(U) Q W) \\
& \left.-W_{0}(\eta(U) Y)-g(Y, U) \xi, W\right) \xi \\
& -W_{0}(U, \eta(W) Y-g(Y, W) \xi) \xi \\
& -W_{0}(U, W)(Y-\eta(Y) \xi)=0 \tag{3.12}
\end{align*}
$$

Taking into account (3.1), (3.2), (2.9) in (3.12), we obtain

$$
\begin{aligned}
& W_{0}(U, W) Y+\eta(U) g(Y, W) \xi+B(n-1) \eta(U) \eta(W) Y \\
& +B \eta(U) S(Y, W) \xi-g(Y, U) W-B g(Y, U) Q W \\
& +B \eta(U) \eta(W) Q Y+g(Y, W) U+A \eta(U) g(Y, W) \xi \\
& +B g(Y, W) Q U=0
\end{aligned}
$$

Putting (2.19), (2.4), choosing $W=\xi$ in (3.13), we arrive

$$
\begin{align*}
& B S(U, Y) \xi-\eta(Y) U-B \eta(Y) Q U+\eta(U) \eta(Y) \xi+B(n-1) \eta(U) Y \\
& -B(n-1) \eta(U) \eta(Y) \xi+B(n-1) g(Y, U) \xi+B \eta(U) Q Y \\
& +\eta(Y) U+A \eta(U) \eta(Y) \xi+B \eta(Y) Q U=0 \tag{3.14}
\end{align*}
$$

Inner product both sides of (3.14) by $\xi \in \chi(M)$ and using (2.11), we conclude

$$
S(U, Y)=(1-n) g(U, Y)
$$

So, M is an Einstein manifold. Conversely, let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold i.e. $S(U, Y)=(1-n) g(U, Y)$, then from (3.14), (3.13), (3.12) and (3.11), we have $R(X, Y) \cdot W_{0}=0$.

Theorem 2. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a Kenmotsu manifold. Then M is a W_{1} semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a W_{1} semi-symmetric. This yields to

$$
\begin{align*}
\left(R(X, Y) W_{1}\right)(U, W) Z= & R(X, Y) W_{1}(U, W) Z-W_{1}(R(X, Y) U, W) Z \\
& -W_{1}(U, R(X, Y) W) Z \\
& -W_{1}(U, W) R(X, Y) Z=0 \tag{3.15}
\end{align*}
$$

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X=Z=\xi$ in (3.15) and using (3.3), (2.9), (2.10), for $A=\frac{3 n-1}{2 n}$, we obtain

$$
\begin{align*}
\left(R(\xi, Y) W_{1}\right)(U, W) \xi= & R(\xi, Y)(A \eta(U) W-A \eta(W) U) \\
& \left.-W_{1}(\eta(U) Y)-g(Y, U) \xi, W\right) \xi \\
& -W_{1}(U, \eta(W) Y-g(Y, W) \xi) \xi \\
& -W_{1}(U, W)(Y-\eta(Y) \xi)=0 . \tag{3.16}
\end{align*}
$$

And we arrive

$$
\begin{align*}
& A \eta(U) R(\xi, Y) W-A \eta(W) R(\xi, Y) U-\eta(U) W_{1}(Y, W) \xi \\
& +g(Y, U) W_{1}(\xi, W) \xi-\eta(W) W_{1}(U, Y) \xi+g(Y, W) W_{1}(U, \xi) \xi \\
& -W_{1}(U, W) Y+\eta(Y) W_{1}(U, W) \xi=0 \tag{3.17}
\end{align*}
$$

Taking into account that (2.9), (2.10) and (3.3) in (3.17), we get

$$
\begin{equation*}
W_{1}(U, W) Y-A g(Y, U) W+A g(Y, W) U=0 \tag{3.18}
\end{equation*}
$$

Putting $U=\xi$, using (2.20) in (3.18) and inner product both sides of (3.18) by $\xi \in \chi(M)$, we conclude

$$
S(Y, W)=(1-n) g(Y, W)
$$

Thus, M is an Einstein manifold. Conversely, let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold i.e. $S(Y, W)=(1-n) g(Y, W)$, then from (3.18), (3.17), (3.16) and (3.15), we have $R(X, Y) \cdot W_{1}=0$.

Theorem 3. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a Kenmotsu manifold. Then M is a W_{1}^{\star} semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a W_{1}^{\star} semi-symmetric. This yields to

$$
\begin{aligned}
\left(R(X, Y) W_{1}^{\star}\right)(U, W) Z= & R(X, Y) W_{1}^{\star}(U, W) Z-W_{1}^{\star}(R(X, Y) U, W) Z \\
& -W_{1}^{\star}(U, R(X, Y) W) Z \\
& -W_{1}^{\star}(U, W) R(X, Y) Z=0
\end{aligned}
$$

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X=Z=\xi$ in (3.19) and using (3.5), (2.9), (2.10), for $A=\frac{n+1}{2 n}$, we obtain

$$
\begin{align*}
\left(R(\xi, Y) W_{1}^{\star}\right)(U, W) \xi= & R(\xi, Y)(A \eta(U) W-A \eta(W) U) \\
& \left.-W_{1}^{\star}(\eta(U) Y)-g(Y, U) \xi, W\right) \xi \\
& -W_{1}^{\star}(U, \eta(W) Y-g(Y, W) \xi) \xi \\
& -W_{1}^{\star}(U, W)(Y-\eta(Y) \xi)=0 . \tag{3.20}
\end{align*}
$$

and from (3.20), we arrive

$$
\begin{aligned}
& A \eta(U) R(\xi, Y) W-A \eta(W) R(\xi, Y) U-\eta(U) W_{1}^{\star}(Y, W) \xi \\
& +g(Y, U) W_{1}^{\star}(\xi, W) \xi-\eta(W) W_{1}^{\star}(U, Y) \xi+g(Y, W) W_{1}^{\star}(U, \xi) \xi \\
& -W_{1}^{\star}(U, W) Y+\eta(Y) W_{1}^{\star}(U, W) \xi=0
\end{aligned}
$$

Taking into account that (2.9), (2.10) and (3.5) in (3.21), we get

$$
\begin{equation*}
W_{1}^{\star}(U, W) Y-A g(Y, U) W+A g(Y, W) U=0 \tag{3.22}
\end{equation*}
$$

Setting $U=\xi$ and using (2.11), inner product both sides of (3.22) by $\xi \in \chi(M)$, we have

$$
S(Y, W)=(1-n) g(Y, W)
$$

Thus, M is an Einstein manifold. Conversely, let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold i.e. $S(Y, W)=(1-n) g(Y, W)$, then from (3.22), (3.21), (3.20) and (3.19), we have $R(X, Y) \cdot W_{1}^{\star}=0$.

Theorem 4. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a Kenmotsu manifold. Then M is a W_{3} semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a W_{3} semi-symmetric. This means that

$$
\begin{align*}
\left(R(X, Y) W_{3}\right)(U, W, Z)= & R(X, Y) W_{3}(U, W) Z-W_{3}(R(X, Y) U, W) Z \\
& -W_{3}(U, R(X, Y) W) Z \\
& -W_{3}(U, W) R(X, Y) Z=0 \tag{3.23}
\end{align*}
$$

for any $X, Y, U, W, Z \in \chi(M)$. Setting $X=Z=\xi$ in (3.23) and making use of (3.7), (2.9), for $A=\frac{3 n-1}{2 n}, B=\frac{1}{2 n}$, we obtain

$$
\begin{align*}
\left(R(\xi, Y) W_{3}\right)(U, W) \xi= & R(\xi, Y)(A \eta(U) W-\eta(W) U+B \eta(W) Q U) \\
& -W_{3}(\eta(U) Y-g(Y, U) \xi, W) \xi \\
& -W_{3}(U, \eta(W) Y-g(Y, W) \xi) \xi \\
& -W_{3}(U, W)(Y-\eta(Y) \xi)=0 . \tag{3.24}
\end{align*}
$$

Using (3.7), (3.8), (2.9) in (3.24), we get

$$
\begin{align*}
& W_{3}(U, W) Y-\eta(W) g(Y, U) \xi+B(n-1) \eta(W) \eta(U) Y \\
& +B \eta(W) S(Y, U) \xi+B \eta(W) \eta(U) Q Y-A g(Y, U) W \\
& +A \eta(W) g(U, Y) \xi+A g(Y, W) U=0 \tag{3.25}
\end{align*}
$$

Making use of (2.22), choosing $W=\xi$, and inner product both sides of (3.25) by $\xi \in \chi(M)$, we have

$$
\begin{align*}
& B S(Y, U)-g(Y, U) \xi+B(n-1) \eta(U) Y \\
& +B \eta(U) Q Y+A g(Y, U) \xi=0 \tag{3.26}
\end{align*}
$$

From (3.26) and by using (2.11), we conclude

$$
S(Y, U)=(1-n) g(Y, U)
$$

This tell us, M is an Einstein manifold. Conversely, let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold i.e. $S(Y, U)=(1-n) g(Y, U)$, then from (3.26), (3.25), (3.24) and (3.23), we have $R(X, Y) \cdot W_{3}=0$.

Theorem 5. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a Kenmotsu manifold. Then M is a W_{4} semi-symmetric if and only if M is an η-Einstein manifold.

Proof. Suppose that M is a W_{4} semi-symmetric. This means that

$$
\begin{align*}
\left(R(X, Y) W_{4}\right)(U, W, Z)= & R(X, Y) W_{4}(U, W) Z-W_{4}(R(X, Y) U, W) Z \\
& -W_{4}(U, R(X, Y) W) Z \\
& -W_{4}(U, W) R(X, Y) Z=0 \tag{3.27}
\end{align*}
$$

for any $X, Y, U, W, Z \in \chi(M)$. Setting $X=Z=\xi$ in (3.27) and making use of (3.9), (2.9), (2.10), for $A=\frac{1}{2 n}, B=\frac{n-1}{2 n}$, we obtain

$$
\begin{align*}
\left(R(\xi, Y) W_{4}\right)(U, W) \xi= & R(\xi, Y)(\eta(U) W-\eta(W) U+A \eta(U) Q W \\
& +B g(U, W) \xi)-W_{4}(\eta(U) Y-g(Y, U) \xi, W) \xi \\
& -W_{4}(U, \eta(W) Y-g(Y, W) \xi) \xi \\
& -W_{4}(U, W)(Y-\eta(Y) \xi)=0 \tag{3.28}
\end{align*}
$$

Using (3.9) and (3.10) in (3.28), we get

$$
\begin{align*}
& W_{4}(U, W) Y+\eta(U) g(Y, W) \xi-\eta(W) g(Y, U) \xi \\
& +A(n-1) \eta(U) \eta(W) Y+A \eta(U) S(Y, W) \xi \\
& +B g(U, W) Y+g(Y, U) W+A g(Y, U) Q W \\
& +A(U) \eta(W) Q Y+g(Y, W) U+A g(Y, W) Q U=0 . \tag{3.29}
\end{align*}
$$

Making use of (2.23) and choosing $U=\xi$ and inner product both sides of in (3.29) by $\xi \in \chi(M)$, we have

$$
\begin{align*}
& \eta(Y) \eta(W)+g(Y, W)+A S(Y, W)+B \eta(Y) \eta(W) \\
& -A(n-1) \eta(Y) \eta(W)-A(n-1) g(Y, W)=0 \tag{3.30}
\end{align*}
$$

From (3.30) and (2.11), we obtain

$$
S(Y, W)=-(n+1) g(Y, W)-2 n \eta(Y) \eta(W)
$$

Thus, M is an η-Einstein manifold. Conversely, let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an η-Einstein manifold i.e. $S(Y, W)=-(n+1) g(Y, W)-2 n \eta(Y) \eta(W)$, then from (3.30), (3.29), (3.28) and (3.27), we have $R(X, Y) \cdot W_{4}=0$.

References

1. M. Atçeken and P. Uygun, Characterizations for totally geodesic submanifolds of (k, μ) paracontact metric manifolds, Korcan J. Math. 28(2020), 555-571.
2. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, Springer-Verlag, Berlin-New York, (3)(1976), 509.
3. D. E. Blair, Riemannian geometry of contact and symlectic manifolds, Progress in Mathematics, Birkhauser Boston, Inc., Boston, (2002), 203.
4. K. De and U. C. De, Conharmonic curvature tensor on Kenmotsu manifolds, Bull. Transilv Univ. Braşov, Ser. III, Math. Inform. Phys., 6(55)(1)(2013),9-22.
5. U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. pure Appl. Math., 35(2)(2004), 159-165.
6. S. Dirik, M. Atçeken, and Ü. Yıldırım, On contact CR-Submanifolds of a Kenmotsu manifold, Turkish Journal of Mathematics and Computer Science, 10(2018),153-159.
7. J. B. Jun, U.C. De, and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc., 42(3)(2005), 447-455.
8. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., II, Ser. 24(1972), 93-103.
9. K. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 1,2, Wiley-Interscience, New York, (1963).
10. G. Pitiş, Geometry of Kenmotsu manifolds. Publishing House of Transilvania Braşov, (2007).
11. G.P. Pokhariyal and R.S.Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J., 18(2)(1970), 105-108.
12. G.P. Pokhariyal and R.S.Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J., 19(2)(1971), 97-103.
13. S. Sasaki, Almost contact manifolds, Part 1, Lecture Notes, Mathematical Institue, Tohoku University, (1965).
14. S. Sasaki, Almost contact manifolds, Part 2, Lecture Notes, Mathematical Institue, Tohoku University, (1967).
15. S. Sasaki, Almost contact manifolds, Part 3, Lecture Notes, Mathematical Institue, Tohoku University, (1968).
16. R. N. Singh, S. K. Pandey, and G. Pandey, On $W_{2}-$ curvature tensor in a Kenmotsu manifold, Tamsui Oxf. J. Inf. Math. Sci., 29(2)(2013), 129-141.
17. B. B. Sinha and A. K. Srivastava, Curvatures on Kenmotsu manifold, Indian J. Pure Appl. Math., 22(1)(1991), 23-28.
18. N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebra and Cartan connections, Jap. J. Math., new Ser., 2(1)(1976), 131-190.
19. S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Am. Math. Soc., 314(1)(1989), 349-379.
20. P. Uygun and M. Atçeken, On (k, μ)-paracontact metric spaces satisfying some conditions on the W_{0}^{\star}-curvature tensor, New Trends in Mathematical Sciences, 9(2)(2021), 26-37.
21. S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differ. Geom. 13(1)(1978), 25-41.

Received by editors 26.6.2021; Revised version 11.3.2022; Available online 24.3.2022.
Pakize Uygun, Department of Mathematics, Faculty of Arts and Sciences, Tokat University, 60100, Токat, Turkey

Email address: pakizeuygun@hotmail.com
Süleyman Dirik, Department of Mathematics, Faculty of Arts and Sciences, Amasya University, 05100, Amasya, Turkey

Email address: slymndirik@gmail.com
Mehmet Atçeken, Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray, Turkey

Email address: mehmet.atceken382@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 53C25; Secondary 53C35.
 Key words and phrases. Kenmotsu manifold, η-Einstein manifold, Einstein manifold, Riemannian curvature tensor.

 Communicated by Daniel A. Romano.

