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SOME CURVATURE RESULTS ON KENMOTSU
METRIC SPACES

Pakize Uygun, Siileyman Dirik, and Mehmet Atgeken

ABSTRACT. In this paper we present the curvature tensors of Kenmotsu man-
ifold satisfying the conditions R(X,Y) - Wy =0, R(X,Y) - W} =0, R(X,Y) -
Wi =0, RIX,Y) W3 =0 and R(X,Y) - Wy = 0. According these cases,
Kenmotsu manifolds have been characterized. I think that some interesting
results on a Kenmotsu metric manifold are obtained.

1. Introduction

K.Kobayashi and K. Nomizu shown that any two simply connected complete
Riemannian manifolds of constant curvature k are isometric to each other in 1963
[9]. After that Kenmotsu manifolds have been studied by many authors in several
ways to a different extent such as [17].

K. Kenmotsu studied a class of contact Riemannian manifolds an call them
Kenmotsu manifold [8]. He denote that if a Kenmotsu manifold satisfies the con-
dition R(X,Y)- R = 0, where R is the Riemanniann curvature tensor and R(X,Y")
denotes the derivation of the tensor algebra at each point of the tangent space.

Subsequent to, K. De and U.C. De obtained conharmonically flat and ¢—conhar
monically flat Kenmotsu manifold and they proved that the manifold is an Einstein
manifold and a n—Einstein manifold. They researched a 3— dimensional Kenmotsu
manifold admitting a non-null concircular vector field [4].
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The object of this paper is to study properties of the some certain curvature
tensor in a Kenmotsu metric manifold. In the present paper we survey R(X,Y) -
Wo=0,R(X,)Y)W}=0, RX,Y)W; =0,R(X,Y) W3=0 and R(X,Y)-W, =
0, where Wy, W1, Wi, W3, and W, denote the curvature tensors of a manifold,
respectively.

2. Preliminaries

Let M be a (2n + 1)—dimensional connected almost contact metric manifold
with an almost contact metric structure (¢,&,n,g), that is, ¢ is an (1,1) tensor
field, ¢ is a vector field, 7 is a 1-form and the Riemannian metric g satisfying

(2.1) ¢*(X) = =X +n(X)E, n(¢X) =0,

(2.2) nE) =1, ¢£=0, np=0

for all X,Y € x(M) [8]. Let g be Riemannian metric compatible with (¢, &, n),
that is

(2.3) 9(0X,¢Y) = g(X,Y) = n(X)n(Y),

or equivalently,

(2.4) 9(X,9Y) = —g(¢X,Y) and g(X,§) =n(X)
for all X,Y € x(M) [2]. If moreover,

(2.5) (Vx@)Y = —n(Y)oX — g(X, 9Y)¢,

(2.6) Vx§=X-n(X)E,

where V denotes the Riemannian connection of g hold, then (M, ¢,£,n, g) is called
an almost Kenmotsu manifold. An almost Kenmotsu manifold becomes a Kenmotsu
manifold if

(2.7) 9(X,¢Y) = dn(X,Y).
In a Kenmotsu manifold M, the following relation holds [8, 5]:
(2.8) (Vxn)Y = g(X,Y) = n(X)n(Y),
(2.9) R(X,Y)E =n(X)Y —n(Y)X,
(2.10) R(&X)Y =n(Y)X — g(X,Y)¢,
(2.11) 5(X,¢) = —(n—1)n(X),
(2.12) Q¢ = —(n— 1),

where R is the Riemannian curvature tensor and S is Ricci tensor defined by
S(X,Y)=g(QX,Y), where @ is Ricci operator. It yields to

(2.13) S(¢X,0Y)=S(X,Y)+ (n— 1)n(X)n(Y).
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A Kenmotsu manifold M is said to be an n—Einstein manifold if its Ricci tensor S
of the form

(2.14) S(X.Y) = ag(X,Y) + bn(X)n(Y)

for arbitrary vector fields X, Y; where a and b are functions on (M?"+1 g). If b = 0,
then n— Einstein manifold becomes Einstein manifold [13, 8].

Let M be an (2n + 1)—dimensional Kenmotsu manifold. The curvature tensor
R of M with respect to the connection V is defined by

(2.15) R(X,Y)Z =VxVyZ - VyVxZ —VixyZ.
Then, in a Kenmotsu manifold, we have
(2.16) R(X,Y)Z = R(X,Y)Z +g(Y, 2)X - g(X, 2)Y,

where R(X,Y)Z = VxVyZ — VyVxZ — V|x y]Z, is the curvature tensor of M
with respect to the connection V.

The Ricci tensor S and the scalar curvature 7 of the Kenmotsu manifold M
with respect to the connection V is given by

(2.17) S(X,Y) =) g(R(e;, X)Y,ei) = S(X,Y) + (n— 1)g(X,Y)
=1

and

(2.18) F= Zg(ei,ei) =r+n(n—1),

where 7 and 7 are the scalar curvatures of the connection V and V, respectively
[18, 19, 21].

The concept of Wy-curvature tensor was defined by [12]. Wy-curvature ten-
sor, Wi—curvature tensor, W{—curvature tensor, Ws-curvature tensor and Wj-
curvature tensor of a (2n + 1)-dimensional Riemannian manifold are, respectively,
defined as

(2.19) Wo(X,Y)Z = R(X,Y)Z — %[S(Y, 7)X — g(X, Z)QY],
(2.20) Wi(X,Y)Z = R(X,Y)Z + %[S(Y, 7)X — S(X, 2)Y],
(2.21) Wi(X,Y)Z = R(X,Y)Z — %[S(Y, 7)X — 8(X, 2)Y],
(2.22) Ws(X,Y)Z = R(X,Y)Z — %[S(X, 2)Y — g(Y, 2)QX],

(2.23) Wi(X,Y)Z = R(X,Y)Z + %[g(?ﬂ 2)QY — ¢(X,Y)QZ),
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for all X,Y,Z € x(M) [11, 12].

3. Some Curvature Results On Kenmotsu Metric Spaces

In this section, we will give the main results for this paper.

Let M be (2n+1)—dimensional Kenmotsu metric manifold and we denote Wy
curvature tensor from (2.19), we have for later

1 1
(3.1) Wo(X,Y)E = n(X)Y — “E=(¥)X + 5 -n(X)QY.
Putting X = ¢, in (3.1)
n+1 1
(3:2) Wo(§,Y)E=Y — WU(Y)S + %QY-
In (2.20) choosing Z = £ and using (2.9), we obtain
3n —
(33) WX, Y)E = T (XY n(¥)X).
In (3.3), it follows
(3.4) WiEV)E = T5 (Y~ n(¥)E).
From (2.21) and (2.9), we arrive
1

(35) WX Y)E = L= (n(X)Y = (1) X),
and
(36) Wie Ve = "R (e
Choosing Z = &, in (2.22), we obtain

3n — 1
(37) Wy(X,¥)E = TS (X)Y —n(¥)X + 5on(V)QX.
In (3.7) it follows
(38) Wa(6,V)E = T5 (Y~ n(¥)E).

In (2.23), choosing Z = ¢ and using (2.9), we get
(39) WX, Y)E=n(X)Y —n(V)X + o {n(X)QY + (n— 1)g(X,)e}.

Setting X = ¢, in (3.9), we arrive

n+1 1
n(Y)§ + —QY.

n 2n

THEOREM 1. Let Mt (¢, €., g) be a Kenmotsu manifold. Then M is a Wy
semi-symmetric if and only if M is an FEinstein manifold.

(3.10) Wi Y)E =Y —
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PROOF. Suppose M is a W semi-symmetric. This implies that
(RX,YYWo)(UW)Z = RX,YYWo(UW)Z—-Wo(R(X,Y)UW)Z
-Wo(U,R(X,YYW)Z
(3.11) -Wo(U,W)R(X,Y)Z =0,
for any X,Y,U,W,Z € x(M). Taking X = Z = ¢ in (3.11), making use of (3.1),
(2.9) and (2.10), for A = —%tL B = 5 we have
(R(EYI)Wo)(U,W)E = R(&Y) (U)W + An(W)U + Bn(U)QW)
~Wo(n(U)Y) — g(Y,U)E, W)§
~Wo(U,n(W)Y —g(Y,W)§)E
(3.12) —Wo(U,W)(Y —n(Y)E) = 0.
Taking into account (3.1), (3.2), (2.9) in (3.12), we obtain
Wo(U, W)Y +n(U)g(Y,W)§ + B(n — 1)n(U)n(W)Y
+Bn(U)S(Y,W)§ — g(Y, U)W — Bg(Y,U)QW
+BnU)n(W)QY + g(Y, W)U + An(U)g(Y, W)§
(3.13) +Bg(Y,W)QU = 0.
Putting (2.19), (2.4), choosing W = ¢ in (3.13), we arrive
BS(U,Y)§ =n(Y)U — Bn(Y)QU +n(U)n(Y)€ + B(n — 1)n(U)Y
—B(n = n(U)n(Y)§ + B(n = 1)g(Y,U)¢ + Bn(U)QY
(3.14) +n(Y)U + An(U)n(Y)é + Bn(Y)QU = 0.
Inner product both sides of (3.14) by & € x(M) and using (2.11),we conclude
S(U,Y)=(1-n)g(UY).
So, M is an Einstein manifold. Conversely, let M?"*1(¢, £ n,g) be an Einstein
(

manifold i.e. S(U,Y) = (1 —n)g(U,Y), then from (3.14), (3.13), (3.12) and (3.11),
we have R(X,Y) - Wy = 0. O
THEOREM 2. Let M*"H1(¢, &, n,9) be a Kenmotsu manifold. Then M is a Wy
semi-symmetric if and only if M is an Einstein manifold.
PRrROOF. Suppose that M is a Wj semi-symmetric. This yields to
(RIX, Y)W (UW)Z = RX, YW (UW)Z—-W(R(X,Y)UW)Z
W (U,R(X,Y)W)Z
(3.15) Wi (U,W)R(X,Y)Z =0,
for any X, Y, U, W,Z € x(M). Taking X = Z = ¢ in (3.15) and using (3.3), (2.9),
(2.10), for A = 22=1 we obtain
(R(&Y)W)(U,W)E = R(EY)(An(U)W — An(W)U)
—Wi(n(U)Y) —g(Y,U)§, W)§
Wi (U,n(W)Y —g(Y,W)§)E
(3.16) Wi (U, W)Y —n(Y)E) = 0.
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And we arrive
An(U)R(E Y)W = An(W)R(E,Y)U — n(U)W1i (Y, W)¢
+g(Y, U)W1(§, W)€ — n(W)W1(U,Y)§ + g(Y, W)W (U, €)§

(3.17) -Wi(U,W)Y + Y)W, (U W) =0.
Taking into account that (2.9), (2.10) and (3.3) in (3.17), we get
(3.18) Wi (U,W)Y — Ag(Y, U)W + Ag(Y, W)U = 0.

Putting U = &, using (2.20) in (3.18) and inner product both sides of (3.18) by
¢ € x(M),we conclude

SO, W) = (1= n)g(, W).
Thus, M is an Einstein manifold. Conversely, let M2"*1(¢,¢, 7, g) be an Einstein
manifold i.e. S(Y,W) = (1—n)g(Y, W), then from (3.18), (3.17), (3.16) and (3.15),
we have R(X,Y) - W; =0. O

THEOREM 3. Let M?" (¢, &,n, g) be a Kenmotsu manifold. Then M is a W
semi-symmetric if and only if M is an Finstein manifold.

PROOF. Suppose that M is a W semi-symmetric. This yields to
(RX,YYWHU,W)Z = RX, YW (UW)Z-W{RX,YUW)Z
WU, R(X,YYW)Z
(3.19) WU W)R(X,Y)Z =0,
for any X, Y, U, W, Z € x(M). Taking X = Z = £ in (3.19) and using (3.5), (2.9),
(2.10), for A = 2L we obtain

(REYIW)(UW)E = R(EY)(An(U)W — An(W)U)
Wi (n(U)Y) —g(Y,U)§, W)§
WU n(W)Y —g(Y,W)E)§
(3.20) —WHU,W)(Y =n(Y)E) = 0.
and from (3.20), we arrive
An(U)R(E, Y)W — An(W)R(E,Y)U — n(U)W (Y, W)§
+9(Y, U)W (& W)E —n(W)W(U,Y)E + g(Y, W)WT (U, §)¢

(3.21) -WrUW)Y + Y)W (U W)E=D0.
Taking into account that (2.9), (2.10) and (3.5) in (3.21), we get
(3.22) WHEUW)Y — Ag(Y, U)W + Ag(Y, W)U = 0.

Setting U = ¢ and using (2.11), inner product both sides of (3.22) by £ € x (M),
we have

S(Y, W) = (1= m)g(Y, W),
Thus, M is an Einstein manifold. Conversely, let M?"*1(¢$,£,n, g) be an Einstein
manifold i.e. S(Y,W) = (1—n)g(Y, W), then from (3.22), (3.21), (3.20) and (3.19),
we have R(X,Y) - W} =0. O
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THEOREM 4. Let M?" (¢, €, m,g) be a Kenmotsu manifold. Then M is a W3
semi-symmetric if and only if M is an Finstein manifold.

PROOF. Suppose that M is a W3 semi-symmetric. This means that

(RX,Y)W3)(U,W,Z) = R(X,Y)Ws(U,W)Z—W5(R(X,Y)U,W)Z
—W3(U, R(X,Y)W)Z
(3.23) —W3(U,W)R(X,Y)Z =0,

for any X,Y,U, W, Z € x(M). Setting X = Z = £ in (3.23) and making use of (3.7),

(2.9), for A =321 B =L we obtain

(R(EYI)W3)(U,W)E = R(EY)(An(U)W — (W)U + Bn(W)QU)
—Ws(n(U)Y —g(Y,U)§, W)¢
—Ws(U,n(W)Y —g(Y, W)&)E
(3.24) —Ws (U, W)Y —n(Y)€) =0.

Using (3.7), (3.8), (2.9) in (3.24), we get

W(U,W)Y —n(W)g(Y,U)§ + B(n — 1)n(W)n(U)Y
+Bn(W)S(Y,U)§ + Bn(W)n(U)QY — Ag(Y, U)W
(3.25) +An(W)g(U,Y )¢ + Ag(Y, W)U = 0.

Making use of (2.22), choosing W = &, and inner product both sides of (3.25) by
¢ € x(M), we have

BS(Y,U) — g(Y,U)¢ + B(n — 1)n(U)Y
(3.26) +By(U)QY + Ag(Y,U)¢ = 0.

From (3.26) and by using (2.11), we conclude
S(Y,U) = (1 = n)g (Y ).

This tell us, M is an Einstein manifold. Conversely, let M?"*1(¢, & n,g) be an
Einstein manifold i.e. S(Y,U) = (1 —n)g(Y,U), then from (3.26), (3.25), (3.24)
and (3.23), we have R(X,Y) - W3 = 0. O

THEOREM 5. Let M?" (¢, £,m,9) be a Kenmotsu manifold. Then M is a W,
semi-symmetric if and only if M is an n— Einstein manifold.

PROOF. Suppose that M is a Wy semi-symmetric. This means that

(RX,V)W)(U,W,2Z) = R(X,Y)Wy(U,W)Z - Wi(R(X,Y)UW)Z
WU, R(X,Y)W)Z
(3.27) —W4(U,W)R(X,Y)Z =0,
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forany X, Y, U, W, Z € x(M). Setting X = Z = £ in (3.27) and making use of (3.9),
(2.9), (2.10), for A = 5~, B = "1 we obtain

(RE&Y)W)(UW)E = R(EY)nU)W —n(W)U + An(U)QW
+Bg(U,W)§) = Wa(n(U)Y — g(Y,U)§, W)E
~Wa(U,n(W)Y — g(Y,W)§ )

(3.28) =Wa(UW)(Y —n(Y)E) =

Using (3.9) and (3.10) in (3.28), we get
Wa(U, W)Y +n(U)g(Y,W)§ —n(W)g(Y,U)¢§
+A(n = Dn(U)n(W)Y + An(U)S(Y, W)§
+Bg(U, W)Y + g(Y, U)W + Ag(Y,U)QW

(3.29) FAU(W)QY + g(Y, W)U + Ag(Y, W)QU = 0.

Making use of (2.23) and choosing U = ¢ and inner product both sides of in (3.29)
by £ € x(M), we have

n(Y)n(W) +g(Y, W) + AS(Y, W) + Bn(Y )n(W)
(3.30) —A(n —1)n(Y)n(W) — A(n—1)g(Y,W) =0.
From (3.30) and (2.11), we obtain

SY,W)=—(n+1g(Y,W) = 2nn(Y)n(W).

Thus, M is an n—Einstein manifold. Conversely, let M2"*1(¢,£,7,g) be an
n—Einstein manifold i.e. S(Y,W) = —(n+ 1)g(Y,W) — 2nn(Y)n(W), then from
(3.30), (3.29), (3.28) and (3.27), we have R(X,Y) - Wy = 0. O
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