BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **12**(2)(2022), 237-241 DOI: 10.7251/BIMVI2202237C

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

A SPECIAL ONE-POINT CONNECTIFICATION THAT CHARACTERIZES T_0 SPACES

Yu-Lin Chou

ABSTRACT. This article shows in particular that every T_0 space X has some T_0 "special" one-point connectification X_∞ such that X is a closed subspace of X_∞ ; moreover, having such a one-point connectification characterizes T_0 spaces. As an application, it is also shown that i) our one-point connectification of every given topological *n*-manifold is a space more general than, but "close to" a topological *n*-manifold with boundary and ii) there exist "arbitrarily many" connected (compact second countable) T_0 spaces with a disconnected derived set, although every connected T_1 space has a connected derived set.

A topological space (or a topology) is assumed to possess a property if and only if a corresponding declaration is made. For our purposes, by a *one-point connectification* of a given topological space we mean precisely a connected space including (set-theoretically) the given space with exactly one additional element; thus no additional requirement such as denseness is built-in, although the relaxation of denseness is not always standard.

We indicate a one-point connectification result for T_0 spaces that, to some extent, formally resembles the classical Alexandroff one-point compactification result for (noncompact) locally compact Hausdorff spaces:

THEOREM 1. Let X be a topological space. Then X is T_0 if and only if there is some T_0 one-point connectification X_{∞} of X such that X is a closed subspace of X_{∞} .

PROOF. The "if" part follows from the fact that T_0 -ness is hereditary.

237

²⁰¹⁰ Mathematics Subject Classification. Primary 54D05; Secondary 54D35, 57N35.

Key words and phrases. Alexandroff one-point compactification; derived set; pseudo locally *n*-Euclidean spaces with boundary; special one-point connectification; topological manifolds with boundary.

Communicated by Ismet Karaca.

CHOU

To prove the converse, let \mathscr{T} be the given topology of X. Let the set $X_{\infty} := X \cup \{\infty\}$ receive the "naive" topology

$$\mathscr{T}_{\infty} \coloneqq \{\varnothing\} \cup \{G \cup \{\infty\} \mid G \in \mathscr{T}\}$$

Then, since $\{\infty\} \in \mathscr{T}_{\infty}$, the collection \mathscr{T}_{∞} is in particular a connected T_0 topology of X_{∞} , and X is a closed subspace of X_{∞} . This completes the proof. \Box

REMARK 1. In Theorem 1, the topology \mathscr{T}_{∞} of X_{∞} is by construction never T_1 even if X is Hausdorff. And X is not \mathscr{T}_{∞} -dense in X_{∞} as X is by construction closed- \mathscr{T}_{∞} , although \mathscr{T}_{∞} is separable.

Due to Theorem 1, we may fix some terminology:

DEFINITION 1. Let X be a T_0 space; let X_{∞} be the specific topological space obtained from X in Theorem 1. Then X_{∞} is called the *special one-point connectification* of X. Here the uniqueness is certainly understood in the up-tohomeomorphism sense.

In general, a special one-point connectification is by definition precisely a topological space X_{∞} such that there is some T_0 space X for which X_{∞} is the special one-point connectification of X.

NONEXAMPLE 1. Let $X := \{0, 1\}$ be the Sierpiński space receiving the topology $\{\emptyset, \{0\}, \{0, 1\}\}$. Since X is T_0 , we may by Theorem 1 consider the special one-point connectification X_{∞} of X. And we evidently have

$$\mathscr{T}_{\infty} = \{ \varnothing, \{\infty\}, \{0, \infty\}, \{0, 1, \infty\} \}.$$

Thus a connected compact T_0 space can still admit its special one-point connectification, which is not possible in the standard context (e.g. [1], [2], or [3]), where a one-point connectification is understood in a more stringent sense.

REMARK 2. If X is a (noncompact) locally compact separable metrizable space, and if X is connectible in the sense of [1], then the Alexandroff one-point compactification of X is not the special one-point connectification of X even though it is a one-point connectification (in the sense of [1]) of X by Proposition 13 in [1]; for, the special one-point connectification of X is not Hausdorff.

Given any T_0 space X, the special one-point connectification of X preserves many nice properties of X; we indicate in particular two relevant ones:

PROPOSITION 1. i) If X is a locally compact T_0 space, then the special onepoint connectification X_{∞} of X is a locally compact T_0 space. ii) If X is a compact T_0 space, then X_{∞} is a compact T_0 space.

PROOF. Let X be a T_0 space, so that the special one-point connectification X_{∞} of X exists by Theorem 1.

For clarity and completeness, simple justifications of the statements are articulated.

To prove i), fix any point $x \in X_{\infty}$. If $x = \infty$, then, since ∞ lies in every nonempty open subset of X_{∞} , the set $\{\infty\}$ is also compact in X_{∞} . It then suffices to consider elements of X.

238

Let $x \in X$. Suppose X is locally compact, and choose (in X) some neighborhood G of x and some compact superset K of G. Since $G \cup \{\infty\}$ is open in X_{∞} , and since the set $K \cup \{\infty\}$ is compact in X_{∞} by inspecting the topology of X_{∞} , the space X_{∞} is locally compact.

For ii), let \mathscr{C} be an open cover of X_{∞} . Then $\{V \setminus \{\infty\} \mid V \in \mathscr{C}\}$ is an open cover of X and hence admits by assumption a finite subcover $\{V_1 \setminus \{\infty\}, \ldots, V_n \setminus \{\infty\}\}$. But since $\{V_1, \ldots, V_n\}$ is a finite subcover of \mathscr{C} , the proof is complete. \Box

REMARK 3. It would be worth indicating that the special one-point connectifications may be useful in constructing counterexamples. \Box

By an *n*-manifold we always mean a topological *n*-manifold, i.e. a secondcountable Hausdorff space where every point has some neighborhood homeomorphic to the Euclidean space \mathbb{R}^n . For our purposes, we introduce the following

DEFINITION 2. Let $n \in \mathbb{N}$. A topological space X is called a *pseudo locally* n-Euclidean space with boundary if and only if X is a second countable T_0 space where every point has some neighborhood equinumerous to some subset of $\mathbb{H}^n_+ := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n \ge 0\}$ such that this subset less the topological boundary $\partial \mathbb{H}^n_+$ of \mathbb{H}^n_+ is open in \mathbb{R}^n .

We take the phrase "pseudo locally n-Euclidean with boundary" as a modifier.

 \square

Thus every n-manifold (with boundary or not) is a pseudo locally n-Euclidean space with boundary.

An application of the previous results is the following.

THEOREM 2. If X is an (resp. compact) n-manifold, then the special one-point connectification X_{∞} of X is a (resp. compact) locally compact connected T_0 space that is pseudo locally n-Euclidean with boundary.

PROOF. Since X is by definition Hausdorff and hence T_0 , the special onepoint connectification X_{∞} of X exists as a T_0 space by Theorem 1. Since X is in addition locally compact from assumption, Proposition 1 implies also that X_{∞} is locally compact. If X is compact, then X_{∞} is compact by Proposition 1. The connectedness, T_0 -ness, and second countableness of X_{∞} are evident.

For the remaining desired property of X_{∞} , fix any $x \in X$ and choose by assumption some chart (G, φ) of X about x such that G is φ -homeomorphic to the Euclidean subspace $\mathbb{R}_{++}^n \coloneqq \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_i > 0 \text{ for all } 1 \leq i \leq n\}$. We are considering only those points of X as ∞ by construction lies in every nonempty open subset of X_{∞} . Let $G_{\infty} \coloneqq G \cup \{\infty\}$, and define the map $\varphi_{\infty} : G_{\infty} \to$ $\mathbb{R}_{++}^n \cup \{(0)_{i=1}^n\}$ by $\varphi_{\infty}|_G \coloneqq \varphi$ with $\varphi_{\infty}(\infty) \coloneqq (0)_{i=1}^n$. Then φ_{∞} is a bijection. Since $(\mathbb{R}_{++}^n \cup \{(0)_{i=1}^n\}) \setminus \partial \mathbb{H}_{+}^n = \mathbb{R}_{++}^n$ is open in \mathbb{R}^n , we are through. \Box

We may now turn our attention to another application of special one-point connectification. Given any topological space X and any connected set A in X, it is a basic fact that the closure cl(A) of A is also a connected set in X. To what extent can one assert connectedness for the derived set cl'(A) of the connected set A in X?

An immediate observation, recorded here for completeness, is the following proposition:

PROPOSITION 2. If X is a T_1 space, and if $A \subset X$ is connected with at least two elements, then cl'(A) is connected.

PROOF. We claim that $A \subset cl'(A)$. Indeed, if $x \in A$ is an isolated point of the subspace A, then, since $\{x\}$ is clopen in A from assumption, it follows that A is disconnected.

But then cl(A) = cl'(A); the desired conclusion follows.

Thus, in particular, every connected set with at least two elements in any given Hausdorff space has a connected derived set.

From Proposition 2 we immediately have

COROLLARY 1. If X is a connected T_1 space, then cl'(X) is connected.

PROOF. If X is the empty set or a singleton, we are through. Otherwise, the desired conclusion follows from Proposition 2. $\hfill \Box$

However, as will be shown, it is "easy" for a T_0 space to admit a disconnected derived set even though the space is connected (and compact second countable). We will indicate a general simple construction of such counterexamples via special one-point connectification.

We first prove a more fundamental result:

THEOREM 3. If X is a T_0 space, then there is some connected separable T_0 space Y such that X is a subspace of Y and cl'(Y) = X.

PROOF. Denote by \mathscr{T}_X the given topology of X; fix any point ∞ not contained in X. Since X is a T_0 space by assumption, let $Y \coloneqq X \cup \{\infty\}$ be the special onepoint connectification of X. Then Y is by Theorem 1 (for concreteness) a connected T_0 space, and \mathscr{T}_X coincides with the subspace topology of X received from Y.

By inspecting the given topology \mathscr{T}_Y of Y, it is seen that the only closed superset of $\{\infty\}$ in Y is Y itself; the space Y is therefore separable.

Moreover, by inspection of \mathscr{T}_Y , we have $X \subset \mathrm{cl}'(Y)$. But since $\{\infty\}$ is by construction a neighborhood of ∞ , we obtain the desired equality $X = \mathrm{cl}'(Y)$. This completes the proof.

The desired result is the following.

THEOREM 4. There exists a compact second countable connected T_0 space with a disconnected derived set.

PROOF. Fix any compact second countable disconnected T_0 space X, choices of which are certainly "abundant", e.g. the subspace $[0,1] \cup [2,3]$ of the Euclidean space \mathbb{R} ; let there be given a point ∞ not contained in X.

If $Y \coloneqq X \cup \{\infty\}$ is the special one-point connectification of X, then Y is by Proposition 1 compact. That Y is second countable is evident by inspecting the given topology of Y.

The desired conclusion then follows from Theorem 3.

240

SPECIAL ONE-POINT CONNECTIFICATION

References

- 1. M. Abry, J. J. Dijkstra, and J. van Mill, On one-point connectifications, Topology Appl. 154 (2007), 725–733.
- M. R. Koushesh, One-point connectifications, J. Aust. Math. Soc. 99 (2015), 76–84.
 M. R. Koushesh, The existence of one-point connectifications, arXiv:1711.09636, 2017.

Received by editors 20.1.2022; Revised version 7.3.2022; Available online 21.3.2022.

YU-LIN CHOU, FREELANCE AUTHOR, HSINCHU COUNTY, TAIWAN (R.O.C.) Email address: chou.y.l.edu@gmail.com