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A SPECIAL ONE-POINT CONNECTIFICATION THAT
CHARACTERIZES T, SPACES

Yu-Lin Chou

ABSTRACT. This article shows in particular that every Tp space X has some
To “special” one-point connectification X, such that X is a closed subspace
of Xoo; moreover, having such a one-point connectification characterizes Tp
spaces. As an application, it is also shown that i) our one-point connectification
of every given topological n-manifold is a space more general than, but “close
to” a topological n-manifold with boundary and ii) there exist “arbitrarily
many” connected (compact second countable) Ty spaces with a disconnected
derived set, although every connected T space has a connected derived set.

A topological space (or a topology) is assumed to possess a property if and
only if a corresponding declaration is made. For our purposes, by a one-point
connectification of a given topological space we mean precisely a connected space
including (set-theoretically) the given space with exactly one additional element;
thus no additional requirement such as denseness is built-in, although the relaxation
of denseness is not always standard.

We indicate a one-point connectification result for T spaces that, to some ex-
tent, formally resembles the classical Alexandroff one-point compactification result
for (noncompact) locally compact Hausdorff spaces:

THEOREM 1. Let X be a topological space. Then X is Ty if and only if there

is some Ty one-point connectification Xoo of X such that X is a closed subspace of
X

PRrROOF. The “if” part follows from the fact that Ty-ness is hereditary.
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To prove the converse, let 7 be the given topology of X. Let the set X, :=
X U {oo} receive the “naive” topology

T = {2} U{GU {0} | G € T}

Then, since {00} € T, the collection I, is in particular a connected Tj topology
of X, and X is a closed subspace of X,. This completes the proof. O

REMARK 1. In Theorem 1, the topology 4, of X is by construction never
T; even if X is Hausdorff. And X is not Z,,-dense in X, as X is by construction
closed- 7, although 7, is separable. O

Due to Theorem 1, we may fix some terminology:

DEFINITION 1. Let X be a Tj space; let X, be the specific topological space
obtained from X in Theorem 1. Then X, is called the special one-point con-
nectification of X. Here the uniqueness is certainly understood in the up-to-
homeomorphism sense.

In general, a special one-point connectification is by definition precisely a topo-
logical space X, such that there is some T space X for which X, is the special
one-point connectification of X. O

NONEXAMPLE 1. Let X := {0, 1} be the Sierpiniski space receiving the topology
{2, {0}, {0,1}}. Since X is Ty, we may by Theorem 1 consider the special one-point
connectification X, of X. And we evidently have

Too = {9,{o0},{0,0},{0,1,00}}.
Thus a connected compact Ty space can still admit its special one-point connecti-

fication, which is not possible in the standard context (e.g. [1], [2], or [3]), where
a one-point connectification is understood in a more stringent sense. (]

REMARK 2. If X is a (noncompact) locally compact separable metrizable space,
and if X is connectible in the sense of [1], then the Alexandroff one-point compact-
ification of X is not the special one-point connectification of X even though it is a
one-point connectification (in the sense of [1]) of X by Proposition 13 in [1]; for,
the special one-point connectification of X is not Hausdorff. O

Given any Ty space X, the special one-point connectification of X preserves
many nice properties of X; we indicate in particular two relevant ones:

PROPOSITION 1. 4) If X is a locally compact Ty space, then the special one-
point connectification X of X is a locally compact Ty space. ii) If X is a compact
To space, then X is a compact Ty space.

PROOF. Let X be a T, space, so that the special one-point connectification
X of X exists by Theorem 1.

For clarity and completeness, simple justifications of the statements are artic-
ulated.

To prove i), fix any point z € X. If £ = oo, then, since oo lies in every
nonempty open subset of X, the set {oo} is also compact in X.. It then suffices
to consider elements of X.
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Let 2 € X. Suppose X is locally compact, and choose (in X) some neighbor-
hood G of z and some compact superset K of G. Since G U {o0} is open in X,
and since the set K U {00} is compact in X, by inspecting the topology of X,
the space X, is locally compact.

For ii), let € be an open cover of Xo,. Then {V~{oo} | V € €} is an open cover
of X and hence admits by assumption a finite subcover {V1 \ {0}, ..., V, ~{oo}}.
But since {V4,...,V,} is a finite subcover of €, the proof is complete. O

REMARK 3. It would be worth indicating that the special one-point connecti-
fications may be useful in constructing counterexamples. O

By an n-manifold we always mean a topological n-manifold, i.e. a second-
countable Hausdorff space where every point has some neighborhood homeomorphic
to the Euclidean space R™. For our purposes, we introduce the following

DEFINITION 2. Let n € N. A topological space X is called a pseudo locally
n-Fuclidean space with boundary if and only if X is a second countable T space
where every point has some neighborhood equinumerous to some subset of H'} :=
{(z1,...,2,) € R™ | 2, = 0} such that this subset less the topological boundary
OH" of H} is open in R™.

We take the phrase “pseudo locally n-FEuclidean with boundary” as a modifier.

O

Thus every n-manifold (with boundary or not) is a pseudo locally n-Euclidean
space with boundary.
An application of the previous results is the following.

THEOREM 2. If X is an (resp. compact) n-manifold, then the special one-point
connectification X, of X is a (resp. compact) locally compact connected Ty space
that is pseudo locally n-FEuclidean with boundary.

PRrROOF. Since X is by definition Hausdorff and hence Ty, the special one-
point connectification X, of X exists as a Ty space by Theorem 1. Since X is
in addition locally compact from assumption, Proposition 1 implies also that X,
is locally compact. If X is compact, then X, is compact by Proposition 1. The
connectedness, Tp-ness, and second countableness of X, are evident.

For the remaining desired property of X, fix any z € X and choose by
assumption some chart (G, ¢) of X about x such that G is ¢-homeomorphic to the
Euclidean subspace R} , = {(x1,...,2,) € R" | 2; > 0 for all 1 <i < n}. We are
considering only those points of X as oo by construction lies in every nonempty
open subset of X. Let Go = G U {0}, and define the map ¢ : Goo —
R, U{(0)i_1} by ¢ocla = ¢ with ps(00) = (0);;. Then ¢ is a bijection.
Since (R, U {(0)7,}) ~ OH} =R’ is open in R", we are through. O

We may now turn our attention to another application of special one-point
connectification. Given any topological space X and any connected set A in X, it
is a basic fact that the closure cl(A) of A is also a connected set in X. To what
extent can one assert connectedness for the derived set cl'(A) of the connected set
Ain X7
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An immediate observation, recorded here for completeness, is the following
proposition:

PrOPOSITION 2. If X is a Ty space, and if A C X is connected with at least
two elements, then cl’(A) is connected.

PrOOF. We claim that A C cl’(A). Indeed, if z € A is an isolated point of the
subspace A, then, since {z} is clopen in A from assumption, it follows that A is
disconnected.

But then cl(A4) = cl'(A); the desired conclusion follows. O

Thus, in particular, every connected set with at least two elements in any given
Hausdorff space has a connected derived set.
From Proposition 2 we immediately have

COROLLARY 1. If X is a connected Ty space, then cl'(X) is connected.

PrOOF. If X is the empty set or a singleton, we are through. Otherwise, the
desired conclusion follows from Proposition 2. O

However, as will be shown, it is “easy” for a T space to admit a disconnected
derived set even though the space is connected (and compact second countable).
We will indicate a general simple construction of such counterexamples via special
one-point connectification.

We first prove a more fundamental result:

THEOREM 3. If X is a Ty space, then there is some connected separable Ty
space Y such that X is a subspace of Y and cl'(Y) = X.

PrOOF. Denote by Jx the given topology of X; fix any point oo not contained
in X. Since X is a Ty space by assumption, let Y := X U {oo} be the special one-
point connectification of X. Then Y is by Theorem 1 (for concreteness) a connected
Ty space, and Jx coincides with the subspace topology of X received from Y.

By inspecting the given topology 9y of Y, it is seen that the only closed
superset of {oo} in Y is Y itself; the space Y is therefore separable.

Moreover, by inspection of 7, we have X C cl’(Y). But since {oo} is by
construction a neighborhood of co, we obtain the desired equality X = cl'(Y).
This completes the proof. O

The desired result is the following.

THEOREM 4. There exists a compact second countable connected Ty space with
a disconnected derived set.

Proor. Fix any compact second countable disconnected Ty space X, choices
of which are certainly “abundant”, e.g. the subspace [0,1] U [2, 3] of the Euclidean
space R; let there be given a point oo not contained in X.

If Y := X U{oo} is the special one-point connectification of X, then Y is by
Proposition 1 compact. That Y is second countable is evident by inspecting the
given topology of Y.

The desired conclusion then follows from Theorem 3. (]
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