BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **12**(1)(2022), 83-89 DOI: 10.7251/BIMVI2201083G

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON $n\mathcal{I}_g$ -HOMEOMORPHISM IN NANO IDEAL TOPOLOGICAL SPACES

Selvaraj Ganesan

ABSTRACT. In this paper, we introduce and study two new homeomorphisms namely $n\mathcal{I}_g$ -homeomorphism and $*n\mathcal{I}_g$ -Homeomorphism in nano ideal topological spaces.

1. Introduction

Let $(U, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space with an ideal \mathcal{I} on U, where $\mathcal{N} = \tau_R(X)$ and $(.)_n^* : \wp(U) \to \wp(U) \ (\wp(U)$ is the set of all subsets of U) $([\mathbf{6}, \mathbf{7}])$. For a subset $A \subseteq U$, let $A_n^*(\mathcal{I}, \mathcal{N}) = \{x \in U : G_n \cap A \notin \mathcal{I}, \text{ for every } G_n \in G_n(x)\}$, where $G_n = \{G_n \mid x \in G_n, G_n \in \mathcal{N}\}$ is called the nano local map (briefly n-local map) of A with repect to \mathcal{I} and \mathcal{N} . We will simply write A_n^* for $A_n^*(\mathcal{I}, \mathcal{N})$. Parimala et al. [7] introduced the concept of nano ideal generalized closed sets in nano ideal topological spaces and investigated some of its basic properties. Recently, Ganesan [2] introduced and studied $n\mathcal{I}_g$ -continuous map and $n\mathcal{I}_g$ -irresolute map in nano ideal topological spaces. In this paper, we introduced the concept of $n\mathcal{I}_g$ -closed maps, $n\mathcal{I}_g$ -open maps, $n\mathcal{I}_g$ -Homeomorphism in nano ideal topological spaces and study its relationship with excisting homeomorphisms. A new class of maps $*n\mathcal{I}_g$ -Homeomorphism is introduced which from a subclass of $n\mathcal{I}_g$ -Homeomorphisms. we establish that the set of all $*n\mathcal{I}_g$ -Homeomorphism $(O, \mathcal{N}, \mathcal{I})$ onto itself is a group under the composition of maps.

²⁰¹⁰ Mathematics Subject Classification. Primary 20M99, 13F10; Secondary 13A15, 13M05. Key words and phrases. $n\mathcal{I}_g$ -closed sets, $n\mathcal{I}_g$ -continuous map, $n\mathcal{I}_g$ -irresolute map, $n\mathcal{I}_g$ -closed map, $n\mathcal{I}_g$ -open map and $n\mathcal{I}_g$ -homeomorphism.

Communicated by Daniel A. Romano.

⁸³

SELVARAJ GANESAN

2. Preliminaries

DEFINITION 2.1. [6, 7] A subset A of a nano ideal topological space $(U, \mathcal{N}, \mathcal{I})$ is said to be n*-closed if $A_n^* \subseteq A$.

LEMMA 2.1. [6, 7] Let $(U, \mathcal{N}, \mathcal{I})$ be an nano topological space with an ideal \mathcal{I} and $A \subseteq A_n^*$, then $A_n^* = n - cl(A_n^*) = n - cl(A)$

DEFINITION 2.2. [7] A subset A of a nano ideal topological space $(U, \mathcal{N}, \mathcal{I})$ is said to be

- (1) nano- \mathcal{I} -generalized closed (briefly, $n\mathcal{I}_g$ -closed if $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is n-open.
- (2) $n\mathcal{I}_g$ -open if its complement is $n\mathcal{I}_g$ -closed.

DEFINITION 2.3. [5] A map $f : (K, \mathcal{N}, \mathcal{I}) \to (L, \mathcal{N}', \mathcal{J})$ is said to be n*continuous if $f^{-1}(G)$ is n*-closed in $(K, \mathcal{N}, \mathcal{I})$ for every n-closed set G of (L, \mathcal{N}') .

DEFINITION 2.4. [2, 4] A map $f : (K, \mathcal{N}, \mathcal{I}) \to (L, \mathcal{N}', \mathcal{J})$ is said to be $n\mathcal{I}_{g}$ continuous if $f^{-1}(G)$ is $n\mathcal{I}_{g}$ -closed in $(K, \mathcal{N}, \mathcal{I})$ for every n-closed set G of (L, \mathcal{N}') .

DEFINITION 2.5. [2] A map $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is called $n\mathcal{I}_g$ -irresolute if $f^{-1}(G)$ is a $n\mathcal{I}_g$ -closed set of $(O, \mathcal{N}, \mathcal{I})$ for every $n\mathcal{I}_g$ -closed set G of $(P, \mathcal{N}', \mathcal{J})$.

DEFINITION 2.6. [1] A map $f: (O, \mathcal{N}) \to (P, \mathcal{N}')$ is said to be n-closed map if for every n-closed subset G of (O, \mathcal{N}) , f(G) is n-closed in (P, \mathcal{N}') .

THEOREM 2.1. (1) Every n-closed is $n\star$ -closed set but not conversely [3]. (2) Every $n\star$ -closed set is $n\mathcal{I}_q$ -closed but not conversely [7]

PROPOSITION 2.1. [2] Every $n\star$ -continuous is $n\mathcal{I}g$ -continuous but not conversely.

3. $n\mathcal{I}_q$ -Closed and $n\mathcal{I}_q$ -Open maps

In this section, we introduce the concepts of n*-closed map, $n\mathcal{I}_g$ -closed map and $n\mathcal{I}_g$ -open map.

DEFINITION 3.1. A map $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is called

- (1) n*-closed if for every n-closed subset G of (O, \mathcal{N} , \mathcal{I}), f(G) is n*closed in (P, \mathcal{N}' , \mathcal{J}).
- (2) $n\mathcal{I}_g$ -closed (resp. $n\mathcal{I}_g$ -open) map if for every n-closed (resp. n-open) subset G of (O, \mathcal{N}, \mathcal{I}). f(G) is $n\mathcal{I}_g$ -closed (resp. $n\mathcal{I}_g$ -open) in (P, $\mathcal{N}', \mathcal{J}$).

THEOREM 3.1. A map $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is $n\mathcal{I}_g$ -closed if and only if for each n-open set U containing $f^{-1}(S)$, there is a $n\mathcal{I}_g$ -open set V of $(P, \mathcal{N}', \mathcal{J})$ such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

PROOF. Necessity: Let U be n-open in $(O, \mathcal{N}, \mathcal{I})$. Then U^c is n-closed in $(O, \mathcal{N}, \mathcal{I})$. Since f is an $n\mathcal{I}_g$ -closed map. $f(U^c)$ is $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$. Thus $(P, \mathcal{N}', \mathcal{J}) - f(U^c)$ is $n\mathcal{I}_g$ -open, say V containing S such that

$$f^{-1}(V) \subseteq f^{-1}((P, \mathcal{N}', \mathcal{J}) - f(U^c)) = U.$$

Sufficiency: Let F be a n-closed set in $(O, \mathcal{N}, \mathcal{I})$. Then F^c is n-open in $(O, \mathcal{N}, \mathcal{I})$. By hypothesis, there exits an $n\mathcal{I}_g$ -open set V of $(P, \mathcal{N}', \mathcal{J})$ such that $S \subseteq V$ and $f^{-1}(V) \subseteq F^c$ and so $F \subseteq (f^{-1}(V))^c = f^{-1}(V^c)$. Therefore, $f(F) = V^c$. Since V^c is $n\mathcal{I}_g$ -closed, then f(F) is $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$. Hence f is $n\mathcal{I}_g$ -closed.

THEOREM 3.2. If $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is a n-closed map, then it is $n\star$ -closed map.

PROOF. Let G be a n-closed subset of $(O, \mathcal{N}, \mathcal{I})$. Since f is a n-closed map, f(G) is n-closed in $(P, \mathcal{N}', \mathcal{J})$. Every n-closed is a n*-closed, f(G) is n*-closed in $(P, \mathcal{N}', \mathcal{J})$. Hence f is a n*-closed map.

EXAMPLE 3.1. Let $O = \{5, 6, 7\}$, with $O/R = \{\{5\}, \{6, 7\}\}$ and $X = \{5, 6\}\}$. Then the nano topology $\mathcal{N} = \{\phi, \{5\}, \{6, 7\}, O\}$ and $\mathcal{I} = \{\emptyset\}$. Let $P = \{5, 6, 7\}$, with $P/R = \{\{5\}, \{6, 7\}\}$ and $X = \{5\}\}$. Then the nano topology $\mathcal{N}' = \{\phi, \{5\}, P\}$ and $\mathcal{J} = \{\emptyset, \{5\}\}$. Thus n*-closed sets are ϕ , P, $\{5\}, \{6, 7\}$. Define $f : (O, \mathcal{N}, \mathcal{I}) \rightarrow (P, \mathcal{N}', \mathcal{J})$ be the identity map. Therefore f is a n*-closed map but not a n-closed map because the subset $\{5\}$ is n-closed in $(O, \mathcal{N}, \mathcal{I}), f(\{5\}) = \{5\}$ is not n-closed in $(P, \mathcal{N}', \mathcal{J})$.

THEOREM 3.3. If $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is a n-closed map, then it is $n\mathcal{I}_g$ -closed map.

PROOF. Let G be a n-closed subset of $(O, \mathcal{N}, \mathcal{I})$. Since f is a n-closed map, f(G) is n-closed in $(P, \mathcal{N}', \mathcal{J})$. Every n-closed is $n\mathcal{I}_g$ -closed, f(G) is $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$. Hence f is a $n\mathcal{I}_g$ -closed map.

EXAMPLE 3.2. Let O, \mathcal{N} , \mathcal{I} and f be defined as in Example 3.1. Let $P = \{5, 6, 7\}$, with $P/R = \{\{7\}, \{5, 6\}, \{6, 5\}\}$ and $X = \{5, 6\}$. Then the nano topology $\mathcal{N}' = \{\phi, \{5, 6\}, P\}$ and $\mathcal{J} = \{\emptyset, \{5\}\}$. The $n\mathcal{I}_g$ -closed sets are ϕ , P, $\{5\}, \{7\}, \{5, 7\}, \{6, 7\}$. Then f is a $n\mathcal{I}_g$ -closed map but not a n-closed map because the subset $\{6, 7\}$ is n-closed in $(O, \mathcal{N}, \mathcal{I}), f(\{6, 7\}) = \{6, 7\}$ is not n-closed in $(P, \mathcal{N}', \mathcal{J})$.

THEOREM 3.4. If $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is a n*-closed map, then it is $n\mathcal{I}_q$ -closed map.

PROOF. Let G be a n-closed subset of $(O, \mathcal{N}, \mathcal{I})$. since f is a n*-closed map, f(G) is n*-closed in $(P, \mathcal{N}', \mathcal{J})$. Every n*-closed is $n\mathcal{I}_g$ -closed, f(G) is $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$. Hence f is a $n\mathcal{I}_g$ -closed map.

EXAMPLE 3.3. Let O, \mathcal{N} , \mathcal{I} , P, \mathcal{N}' , \mathcal{J} and f be defined as in Example 3.2. Then n*-closed sets are ϕ , P, {5}, {7}, {5, 7}. Then f is a n \mathcal{I}_g -closed map but not a n*-closed map because the subset {6, 7} is n-closed in (O, \mathcal{N} , \mathcal{I}), f({6, 7}) = {6, 7} is not n*-closed in (P, \mathcal{N}' , \mathcal{J}).

SELVARAJ GANESAN

4. $n\mathcal{I}_q$ -Homeomorphisms

DEFINITION 4.1. A bijection f : (O, \mathcal{N} , \mathcal{I}) \rightarrow (P, \mathcal{N}' , \mathcal{J}) is called a n \star -Homeomorphism, if both f and f^{-1} are n \star -continuous.

DEFINITION 4.2. A bijection $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is called a $n\mathcal{I}_{g}$ -Homeomorphism, if both f and f^{-1} are $n\mathcal{I}_{g}$ -continuous.

We say that the space (O, \mathcal{N} , \mathcal{I}) and (P, \mathcal{N}' , \mathcal{J}) are $n\mathcal{I}_g$ -Homeomorphism if there exists an $n\mathcal{I}_g$ -Homeomorphic from (O, \mathcal{N} , \mathcal{I}) onto (P, \mathcal{N}' , \mathcal{J}).

THEOREM 4.1. Every $n\star$ -Homeomorphism is a $n\mathcal{I}_q$ -Homeomorphism

PROOF. Let $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is be a n*-homeomorphism. Then f and f^{-1} are n*-continuous and f is a bijection. Since every n*-continuous map is $n\mathcal{I}_g$ -continuous, it follows that f is $n\mathcal{I}_g$ -Homeomorphism. \Box

EXAMPLE 4.1. Let O, \mathcal{N} , \mathcal{I} , P, \mathcal{N}' , \mathcal{J} and f be defined as in Example 3.3. Then $n\mathcal{I}_g$ -closed sets are ϕ , O, {5}, {6}, {7}, {5, 6}, {5, 7}, {6, 7}. Then f is $n\mathcal{I}_g$ -homeomorphism but not n*-homeomorphism because the subset f^{-1} ({7}) = {7} is n-closed in (P, \mathcal{N}' , \mathcal{J}) but not n*-closed in (O, \mathcal{N} , \mathcal{I}).

REMARK 4.1. The composition of two $n\mathcal{I}_g$ -homeomorphisms need not be $n\mathcal{I}_g$ -homeomorphism.

EXAMPLE 4.2. Let $O, \mathcal{N}, \mathcal{I}, P, \mathcal{N}', \mathcal{J}$ and f be defined as an Example 3.3. Let $Q = \{5, 6, 7\}$ with $Q/R = \{\{5\}, \{6, 7\}\}$ and $X = \{5\}$. Then the nano topology $\mathcal{N}'_* = \{\phi, \{5\}, Q\}$ and $\mathcal{K} = \{\emptyset\}$. Then $n\mathcal{I}_g$ -open sets are ϕ , $O, \{5\}, \{6\}, \{7\}, \{5, 6\}, \{5, 7\}, \{6, 7\}, n\mathcal{I}_g$ -open sets are ϕ , $P, \{5\}, \{6\}, \{5, 6\}, \{6, 7\}$ and $n\mathcal{I}_g$ -open sets are ϕ , $Q, \{5\}, \{6\}, \{7\}, \{5, 6\}, \{5, 7\}$. Define $g : (P, \mathcal{N}', \mathcal{J}) \to (Q, \mathcal{N}'_*, \mathcal{K})$ be the identity map. Then both f and g are $n\mathcal{I}_g$ -homeomorphisms but their composition $g \circ f : (O, \mathcal{N}, \mathcal{I}) \to (Q, \mathcal{N}'_*, \mathcal{K})$ is not a $n\mathcal{I}_g$ -homeomorphism, because for the open set $\{6, 7\}$ of $(O, \mathcal{N}, \mathcal{I}), g \circ f\{6, 7\} = g(f(\{6, 7\})) = g(\{6, 7\}) = \{6, 7\}$ which is not $n\mathcal{I}_g$ -open in $(Q, \mathcal{N}'_*, \mathcal{K})$. Therefore, $g \circ f$ is not $n\mathcal{I}_g$ -open and not an $n\mathcal{I}_g$ -homeomorphism.

The following theorem gives a characterization of $n\mathcal{I}_q$ -homeomorphism.

THEOREM 4.2. For any bijection $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ the following statements are equivalent.

- (1) f^{-1} : $(P, \mathcal{N}', \mathcal{J}) \to (O, \mathcal{N}, \mathcal{I})$ is $n\mathcal{I}_g$ -continuous map.
- (2) f is a $n\mathcal{I}_g$ -open map.
- (3) f is a $n\mathcal{I}_g$ -closed map.

PROOF. (1) \Rightarrow (2): Let G be an n-open set (O, \mathcal{N} , \mathcal{I}). By assumption $(f^{-1})^{-1}(G) = f(G)$ is $n\mathcal{I}_g$ -open in (P, \mathcal{N}' , \mathcal{J}). so f is a $n\mathcal{I}_g$ -open map.

 $(2) \Rightarrow (3)$: Let G be n-closed set of $(O, \mathcal{N}, \mathcal{I})$. Then G^c is n-open in $(O, \mathcal{N}, \mathcal{I})$. Since f is $n\mathcal{I}_g$ -open, f (G^c) is $n\mathcal{I}_g$ -open in $(P, \mathcal{N}', \mathcal{J})$. This implies $[f(G)]^c$ is $n\mathcal{I}_g$ -open in $(P, \mathcal{N}', \mathcal{J})$. This implies f(G) is $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$. Therefore, f is a $n\mathcal{I}_g$ -closed map. (3) \Rightarrow (1): Suppose G is n-closed set in (O, \mathcal{N}, \mathcal{I}). Then by assumption $(f^{-1})^{-1}(G) = f(G)$ is $n\mathcal{I}_g$ -closed in (P, $\mathcal{N}', \mathcal{J}$). Hence f^{-1} is a $n\mathcal{I}_g$ -continuous map.

THEOREM 4.3. Let $f : (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ be a bijective and $n\mathcal{I}_g$ continuous map. Then the following statements are equivalent.

(1) f is a $n\mathcal{I}_g$ -open map.

(2) f is a $n\mathcal{I}_q$ -homeomorphism.

(3) f is a $n\mathcal{I}_q$ -closed map.

PROOF. Follows from Definitions 2.4, 3.1, 4.1 and Theorem 4.2.

5. ${}^{*}n\mathcal{I}_{q}$ -Homeomorphisms

We introduce a new class of maps called ${}^*n\mathcal{I}_g$ -Homeomorphisms which forms a subclass of $n\mathcal{I}_g$ -Homeomorphisms. This class of maps is closed under composition of maps.

DEFINITION 5.1. A map $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ is called $*n\mathcal{I}_g$ -open if for every $n\mathcal{I}_g$ -open subset G of $(O, \mathcal{N}, \mathcal{I})$. f(G) is $n\mathcal{I}_g$ -open in $(P, \mathcal{N}', \mathcal{J})$.

THEOREM 5.1. For any bijection $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ the following statements are equivalent.

(1) The inverse map $f^{-1}: (P, \mathcal{N}', \mathcal{J}) \to (O, \mathcal{N}, \mathcal{I})$ is $n\mathcal{I}_q$ -irresolute.

(2) f is a $*n\mathcal{I}_g$ -open map.

(3) f is a $*n\mathcal{I}_g$ -closed map.

PROOF. (1) \Rightarrow (2): Let G be $n\mathcal{I}_g$ -open in (O, \mathcal{N}, \mathcal{I}). By (1), $(f^{-1})^{-1}(G) = f(G)$ is $n\mathcal{I}_g$ -open in (P, $\mathcal{N}', \mathcal{J}$). Hence (2) holds.

 $(2) \Rightarrow (3)$: Let G be $n\mathcal{I}_g$ -closed in $(O, \mathcal{N}, \mathcal{I})$. Then $(O, \mathcal{N}, \mathcal{I}) - G$ is $n\mathcal{I}_g$ -open and by (2) $f((O, \mathcal{N}, \mathcal{I}) - G) = (P, \mathcal{N}', \mathcal{J}) - f(G)$ is $n\mathcal{I}_g$ -open in $(P, \mathcal{N}', \mathcal{J})$. That is f(G) is $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$ and so f is $*n\mathcal{I}_g$ -closed map.

 $(3) \Rightarrow (1)$: Let G be $n\mathcal{I}_g$ -closed in $(O, \mathcal{N}, \mathcal{I})$. By (3), f(G) is $n\mathcal{I}_g$ -closed in (P, $\mathcal{N}', \mathcal{J}$). But $f(G) = (f^{-1})^{-1}(G)$. Thus (1) holds.

Next we introduce a new class of maps as follows.

DEFINITION 5.2. A bijection f : (O, \mathcal{N}, \mathcal{I}) \rightarrow (P, $\mathcal{N}', \mathcal{J}$) is called $*n\mathcal{I}_{g}$ -Homeomorphisms if both f and f⁻¹ are $n\mathcal{I}_{g}$ -irresolute.

We say that the spaces $(O, \mathcal{N}, \mathcal{I})$ and $(P, \mathcal{N}', \mathcal{J})$ are $*n\mathcal{I}_g$ -Homeomorphic if there exists an $*n\mathcal{I}_g$ -Homeomorphisms from $(O, \mathcal{N}, \mathcal{I})$ onto $(P, \mathcal{N}', \mathcal{J})$. The family of all $n\mathcal{I}_g$ -Homeomorphisms (resp $*n\mathcal{I}_g$ -Homeomorphisms) from $(O, \mathcal{N}, \mathcal{I})$ onto $(P, \mathcal{N}', \mathcal{J})$ is denoted by $n\mathcal{I}_g$ -h $(O, \mathcal{N}, \mathcal{I})$ (resp $*n\mathcal{I}_g$ -h $(O, \mathcal{N}, \mathcal{I})$).

THEOREM 5.2. Every $*n\mathcal{I}_q$ -Homeomorphism is a $n\mathcal{I}_q$ -Homeomorphism.

PROOF. Let $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ be a $*n\mathcal{I}_g$ -homeomorphism. Then f and f^{-1} are $n\mathcal{I}_g$ irrosolute and f is a bijection. Thus f and f^{-1} are $n\mathcal{I}_g$ -continuous. Hence f is $n\mathcal{I}_g$ -Homeomorphism.

EXAMPLE 5.1. Let $O = \{5, 6, 7\}$, with $O/R = \{\{7\}, \{5, 6\}\{6, 5\}\}$ and $X = \{5, 6\}$. Then the Nano topology $\mathcal{N} = \{\phi, \{5, 6\}, O\}$ and $\mathcal{I} = \{\emptyset, \{5\}\}$. Let $P = \{5, 6, 7\}$, with $P/R = \{\{5\}, \{6, 7\}\}$ and $X = \{5\}$. Then the Nano topology $\mathcal{N}' = \{\phi, \{5\}, P\}$ and $\mathcal{J} = \{\emptyset\}$. Then $n\mathcal{I}_g$ -closed sets are ϕ , O, $\{5\}, \{7\}, \{5, 7\}, \{6, 7\}$ and $n\mathcal{I}_g$ -closed sets are ϕ , P, $\{6\}, \{7\}, \{5, 6\}, \{5, 7\}, \{6, 7\}$. Define $f : (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ be the identity map. Then f is a $n\mathcal{I}_g$ -closed in $(P, \mathcal{N}', \mathcal{J})$, but $f^{-1}\{5, 6\} = \{5, 6\}$ is not $n\mathcal{I}_g$ -closed in $(O, \mathcal{N}, \mathcal{I})$.

THEOREM 5.3. Let $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ and $g: (P, \mathcal{N}', \mathcal{J}) \to (Q, \mathcal{N}'_*, \mathcal{K})$ be a $*n\mathcal{I}_g$ -homeomoephism then their composition $g \circ f: (O, \mathcal{N}, \mathcal{I}) \to (Q, \mathcal{N}'_*, \mathcal{K})$ is $*n\mathcal{I}_g$ -homeomoephism.

PROOF. Let G be a $n\mathcal{I}_g$ -open set in $(Q, \mathcal{N}'_*, \mathcal{K})$ since g is $n\mathcal{I}_g$ -irresolute, $g^{-1}(G)$ is $n\mathcal{I}_g$ -open set in $(P, \mathcal{N}', \mathcal{J})$. Since f is $n\mathcal{I}_g$ -irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is an $n\mathcal{I}_g$ -open set in $(O, \mathcal{N}, \mathcal{I})$. Therefore $(O, \mathcal{N}, \mathcal{I})$ is $n\mathcal{I}_g$ -irrosolute. Also for a $n\mathcal{I}_g$ open set G in $(O, \mathcal{N}, \mathcal{I})$. We have $(g \circ f)(G) = g(f(G)) = g(S)$ where S = f(G). By the hypothesis f(G) is $n\mathcal{I}_g$ -open in $(P, \mathcal{N}', \mathcal{J})$ and also by hypothesis g(f(G))is a $n\mathcal{I}_g$ -open in $(Q, \mathcal{N}'_*, \mathcal{K})$. That is $(g \circ f)(G)$ is a $n\mathcal{I}_g$ -open set in $(Q, \mathcal{N}'_*, \mathcal{K})$ and therefore $(g \circ f)^{-1}$ is $n\mathcal{I}_g$ -irrosolute. Also $(g \circ f)$ is a bijection. Hence $(g \circ f)$ is $*n\mathcal{I}_g$ -Homeomorphism. \Box

THEOREM 5.4. The set $*n\mathcal{I}_g$ - $h(O, \mathcal{N}, \mathcal{I})$ is a group under the composition of maps.

PROOF. Define a binary operation $\star : {}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I}) \times {}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$ by f \star g = (g \circ f) for all f, g $\in {}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$ and \circ is the usal operation of maps. Then by Theorem 5.3, (g \circ f) $\in {}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$. We know that composition of maps associative and the identity map I : (O, $\mathcal{N}, \mathcal{I}) \to (O, \mathcal{N}, \mathcal{I})$ belonging to ${}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$ serves as the identity element. for any f $\in {}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$, f \circ f⁻¹ = f⁻¹ \circ f = I. Hence inverse exists for each element of ${}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$. ${}^*n\mathcal{I}_g\text{-h}(O, \mathcal{N}, \mathcal{I})$ forms a group under the operation of composition of maps. \Box

THEOREM 5.5. Let $f: (O, \mathcal{N}, \mathcal{I}) \to (P, \mathcal{N}', \mathcal{J})$ be an $*n\mathcal{I}_g$ -homeomorphism. Then f induces an isomorphism from the group $*n\mathcal{I}_g - h(O, \mathcal{N}, \mathcal{I})$ onto the group $*n\mathcal{I}_g - h(P, \mathcal{N}', \mathcal{J})$.

PROOF. Let $f \in {}^*n\mathcal{I}_g - h(O, \mathcal{N}, \mathcal{I})$. We define a map $\phi_f : {}^*n\mathcal{I}_g$ -h $(O, \mathcal{N}, \mathcal{I}) \to {}^*n\mathcal{I}_g$ -h $(P, \mathcal{N}', \mathcal{J})$ by $\phi_f = f \circ h \circ f^{-1}$ for every $h \in {}^*n\mathcal{I}_g$ -h $(O, \mathcal{N}, \mathcal{I})$. Then f is a bijection. Now for all g, $h \in {}^*n\mathcal{I}_g$ -h $(O, \mathcal{N}, \mathcal{I})$, ϕ_f (g \circ h) = f \circ (g \circ h) \circ f⁻¹ = (f \circ g \circ f⁻¹) \circ (f \circ h \circ f⁻¹) = ϕ_f (g) $\circ \phi_f$ (h).

6. Conclusion

In this paper, we introduced the concepts of $n\mathcal{I}_g$ -closed maps, $n\mathcal{I}_g$ -open maps, $n\mathcal{I}_g$ -Homeomorphism in nano ideal topological spaces and study its relationship with excisting homeomorphisms. A new class of maps $*n\mathcal{I}_g$ -Homeomorphism is introduced which from a subclass of $n\mathcal{I}_g$ -Homeomorphisms. we establish that the set of all $*n\mathcal{I}_g$ -Homeomorphism (O, \mathcal{N}, \mathcal{I}) onto itself is a group under the composition

of maps. In future, we have extended this work in various nano ideal topological spaces.

Acknowledgement I thank to referees for giving their useful suggestions and help to improve this manuscript.

References

- M. Bhuvaneswari and N. Nagaveni. On Nwg-normal and Nwg-regular spaces. International Journal of Mathematics Trends and Technology (IJMTT), Special Issue ICRMIT March (2018), 1–5.
- S. Ganesan. CnIg-continuous maps in nano ideal topological spaces. Math Lab Journal, 4(2019), 182-190.
- [3] S. Ganesan, C. Alexander, S. Jeyashri and S. M. Sandhya. nI_g-closed sets. Math Lab Journal, 5(2020), 23-34.
- [4] S. Ganesan. $n\mathcal{I}_{g\mu}$ -closed sets in nano ideal topological spaces. Palest. J. Math., **10**(1) (2021), 340-348.
- [5] J. Jayasudha and T. Rekhapriyadharsini. On some decompositions of nano *-continuity. International Journal of Mathematics and Statistics Invention, 7(1)(2019), 01–06.
- [6] M. Parimala, T. Noiri and S. Jafari. New types of nano topological spaces via nano ideals. Q & A in General Topology, 38(1)(2020), 59–65.
- [7] M. Parimala, S. Jafari and S. Murali. Nano ideal generalized closed sets in nano ideal topological spaces. Ann. Univ. Sci. Budap. Rolando Etvs, Sect. Math., 60(1)(2017), 3-11.

Received by editors 07.02.2021; Revised version 04.08.2021; Available online 09.08.2021.

PG & Research Department of Mathematics Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India.

E-mail address: sgsgsgsgsg77@gmail.com