BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **12**(1)(2022), 7-16 DOI: 10.7251/BIMVI2201007G

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON b-+-OPEN SETS IN TOPOLOGICAL SPACES

Selvaraj Ganesan

ABSTRACT. In this paper, we used the notion of operator A^+ for defining a new class of set which will be called b++-open set besides we define the concepts of b++-continuous, b++-irresolute. We define the concepts of generalized b+-closed sets, regular generalized b-+-closed sets and gb-+-continuous and rgb-+-continuous. Moreover, some of their properties are shown.

1. Introduction and Preliminaries

The concept of operator A^+ was introduced by Elez and Papaz [4], they defined an operator A^+ by $A^+ = Cl(A) - A$. Carlos Granados [7] introduced and studied semi-+-open sets in topological spaces. S. Ganesan [6] introduced and studied α -+-open set, pre-+-open set and β -+-open set in topological spaces. In this paper, we used the operator A^+ for defining a new class of open sets which will be called b-+-open set.

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , Cl(A), Int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

DEFINITION 1.1. A subset A of a space (X, τ) is called:

(1) ([1]) b-open set if $A \subseteq Int(Cl(A)) \cap Cl(Int(A))$.

(2) ([8]) regular open set [8] if A = Int(Cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54A05; 54D15, 54D30.

Key words and phrases. Operator A^+ , pre-+-open, b-+-open, generalized b-+-closed sets, regular generalized b-+-closed sets.

Communicated by Daniel A. Romano.

DEFINITION 1.2. Let (X, τ) be a topological space and $A \subseteq X$. Then A is called:

([7]) semi-+-open if $A^+ \subseteq Cl(Int(A^+))$.

([6]) pre-+-open if $A^+ \subseteq Int(Cl(A^+))$.

([6]) α -+-open if $A^+ \subseteq Int(Cl(Int(A^+)))$.

The complements of the above mentioned open sets are called their respective closed sets.

REMARK 1.1. ([7]) A^+ does not induce a topological space, because

 $X^+ = Cl(X) - X = X - X = \emptyset$ and $\emptyset^+ = Cl(\emptyset) - \emptyset = \emptyset \cap X = \emptyset$.

We can see that X will never be in the topology.

REMARK 1.2. ([7]) The operator $A^+ = Cl(A) - A = Cl(A) \cap A^c$, where A^c means the complement of the set A.

DEFINITION 1.3. A function $f: (K, \tau) \to (L, \sigma)$ is said to be continuous if $f^{-1}(A)$ is closed set in (K, τ) for every closed set A of (L, σ) .

2. b++-open sets and generalized b++-closed sets

DEFINITION 2.1. A subset A of a space (X, τ) is said to be b-+-open if

 $A^+ \subseteq Int(Cl(A^+)) \cup Cl(Int(A^+)).$

The complement of b-+-open sets is called b-+-closed sets.

The collection of all b++-open sets and b++-closed sets are denoted by $b + O(X, \tau)$ and $b + C(X, \tau)$ respectively.

We denote the power set of X by P(X).

THEOREM 2.1. Every closed set is b-+-open.

PROOF. Let A be a closed set of (X, τ) . Since A is a closed set, then Cl(A) = Aand so $A^+ = Cl(A) - A = A \cap A^c = \phi$. Now,

$$\phi \subseteq Int(Cl(A^+)) \cup Cl(Int(A^+))) = Int(Cl(\phi)) \cup Cl(Int(\phi)) = \phi \cup \phi = \phi.$$

This shows that A is b-+-open.

EXAMPLE 2.1. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then b-+open sets are $\emptyset, X, \{c\}, \{a, c\}, \{b, c\}$. Here $\{a\}$ is a open set but it is not a b-+-open set. Also it is clear that $\{c\}$ is a b-+-open set but it is not a open set.

The following example shows that the notion of b-open set and b-+-open set are independent.

EXAMPLE 2.2. Let X and $\tau(X)$ as in the Example 2.1. Then b-open sets are $\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}$. Here $\{a, b\}$ is a b-open set but it is not a b-+-open set. Also it is clear that $\{c\}$ is a b-+-open set but it is not a b-open set.

THEOREM 2.2. Every semi-+-open set is b-+-open set but not conversely.

PROOF. Let A be a semi-+-open set in $(X, \tau(X))$. Then $A^+ \subseteq Cl(Int(A^+))$. Hence $A^+ \subseteq Cl(Int(A^+)) \cup Int(Cl(A^+))$ and A is b-+-open in $(X, \tau(X))$. \Box

EXAMPLE 2.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{b, c\}\}$. Then semi-+-open sets are $\emptyset, X, \{a, d\}$; b-+-open sets are

 $\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}.$

Here, $\{a, b\}$ is b-+-open set but it is not a semi-+-open set.

THEOREM 2.3. Every α -+-open set is b-+-open set but not conversely.

PROOF. Let A be a α -+-open set in $(X, \tau(X))$. Then $A^+ \subseteq Int(Cl(Int(A^+)))$. Hence

$$A^+ \subseteq Int(Cl(Int(A^+))) \subseteq Cl(Int(A^+)) \subseteq Cl(Int(A^+)) \cup Int(Cl(A^+))$$

and A is b-+-open in $(X, \tau(X))$.

EXAMPLE 2.4. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Then α -+-open sets are $\emptyset, X, \{c, d\}$; b-+-open sets are

 $\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}.$

Here, $\{b, c\}$ is b-+-open set but it is not a α -+-open set.

THEOREM 2.4. Every pre-+-open set is b-+-open set but not conversely.

PROOF. Let A be a pre-+-open set in $(X, \tau(X))$. Then $A^+ \subseteq Int(Cl(A^+))$. Hence $Cl(A^+) \subseteq Cl(Int(A^+)) \cup Int(Cl(A^+))$ and A is b-+-open in $(X, \tau(X))$. \Box

REMARK 2.1. The union (intersection) of any two b-+-open sets in not b-+-open.

EXAMPLE 2.5. Let X and τ as in the Example 2.4.

(i) Let $M = \{a\}$ and $N = \{b\}$ are b-+-open sets, but $A \cup B = \{a, b\}$ is not b-+-open set.

(ii) Let $P = \{b, d\}$ and $Q = \{c, d\}$ are b+-open sets, but $A \cap B = \{d\}$ is not b+-open set.

DEFINITION 2.2. Let (X, τ) be a topological space and $A \subset X$. An element $x \in A$ is said to be b+-interior point of A if there exits a b-+-open set U such that $x \in U \subseteq A$. The set of all b-+-interior points of A is said to be b+-interior of A an it is denoted by $Int_{b+(A)}$.

THEOREM 2.5. Let (X, τ) be a topological space and $A \subset X$. Then, A is b-+-open if and only if $A = Int_{b+(A)}$.

PROOF. Let A be a b-+-open set. Then, $A \subseteq A$ and this implies that $A \in \{U \mid U \text{ is b+-open and } U \subset A\}$. Since union of this collection is in A. Therefore, $A = Int_{b+(A)}$.

Conversely, suppose that $A = Int_{b+(A)}$. Hence, A is b-+-open.

9

DEFINITION 2.3. Let $A \subset X$. Then $x \in X$ is b++-adherent to A if $U \cap A \neq \emptyset$ for every b++-open set U containing x. The set of all b++-adherent points of A is said to be b++-closure of A and it is denoted by $Cl_{b+(A)}$.

THEOREM 2.6. Let (X, τ) be a topological space and $A, B \subseteq X$. Then, the following statements hold:

- (1) $A \subseteq Cl_{b+(A)}$.
- (2) $Cl_{b+(A)}$ is the smallest b++-closed set containing A, that is $Cl_{b+(A)} = \bigcap \{W \mid W \text{ is } b + -c \text{ closed and } A \subseteq W \}.$
- (3) A is b-+-closed if and only if $A = Cl_{b+(A)}$.
- (4) If $A \subseteq B$, then $Cl_{b+(A)} \subseteq Cl_{b+(B)}$.
- (5) $Cl_{b+(A)} \cup Cl_{b+(A)} \subseteq Cl_{b+(A \cup B)}$.
- (6) $Cl_{b+(A\cap B)} \subseteq Cl_{b+(A)} \cap Cl_{b+(B)}$.

PROOF. (1) Let $x \in A$ and suppose that $x \notin Cl_{b+(A)}$. Then, there exits b-+open set V containing x such that $V \cap A = \emptyset$ and this is a contradiction. Therefore, $x \in Cl_{b+(A)}$.

(2) Let $x \in Cl_{b+(A)}$. Then, $V \cap A \neq \emptyset$ for every b-+-open set V containing x. Now, suppose the contrary, that $x \notin \bigcap \{ W \mid W \text{ is } b\text{-}+\text{-}closed \text{ ans } A \subseteq W \}$. Then, $x \notin W$ for some b-+-closed set W, so $x \in X - W$ for some b-+-open set X - W. So, $(X - W) \cap A = \emptyset$ for some b-+-open set X - W containing x and this is a contradiction. Therefore, $x \notin \{ W \mid W \text{ is } b\text{-}+\text{-}closed \text{ ans } A \subseteq W \}$. Conversely, let $y \in x \notin \bigcap \{ W \mid W \text{ is } b\text{-}+\text{-}closed \text{ ans } A \subseteq W \}$. Then, $y \in W$ for all b-+-closed set W containing A. Now, suppose that $y \notin Cl_{b+(A)}$. Then, there exits b-+-open set V containing y such that $V \cap A = \emptyset$. Therefore, X - V is b-+-closed set containing A and $y \notin X - V$ and this is a contradiction. Therefore, $y \in Cl_{b+(A)}$.

The proof of (3) and (4) are followed directly from the Definition 2.3.

The proof of (5) and (6) are followed by applying part (4) of this Theorem. \Box

THEOREM 2.7. Let (X, τ) be a topological space and $A, B \subseteq X$. Then, the following statements hold:

- (1) If $A \subseteq B$, then $Int_{b+(A)} \subseteq Int_{b+(B)}$.
- (2) $Int_{b+(A)} \cup Int_{b+(A)} \subseteq Int_{b+(A\cup B)}$.
- (3) $Int_{b+(A\cap B)} \subseteq Int_{b+(A)} \cap Int_{b+(B)}$.

PROOF. The proof of (1) is followed directly from the Definition 2.2. (2) and (3) are followed by applying part (1) of this Theorem. \Box

THEOREM 2.8. Let (X, τ) be a topological space and $A, B \subseteq X$. Then, the following statements hold:

(1) $Int_{b+(X \smallsetminus A)} = X \smallsetminus Cl_{b+(A)}.$

- (2) $Cl_{b+(X \smallsetminus A)} = X \smallsetminus Int_{b+(A)}.$
- (3) $X \smallsetminus Cl_{b+(X \smallsetminus A)} = Int_{b+(A)}.$
- (4) $X \smallsetminus Int_{b+(X \smallsetminus A)} = Cl_{b+(A)}.$

(5) $x \in Int_{b+(A)}$ if and only if there exists a b-+-open set M such that $x \in M \subseteq A$.

PROOF. (1) For $A \subseteq X$, holds $X \smallsetminus Cl_{b+(A)} = X \smallsetminus \cap \{F : A \subseteq F, F \text{ is b+-closed}\}$ $= \cup \{X \smallsetminus F : A \subseteq F, F \text{ is b+-closed}\}$ $= \cup \{X \smallsetminus F : X \smallsetminus F \subseteq X \smallsetminus A, F \text{ is b-+-closed}\} = Int_{b+(X \smallsetminus A)}.$ (2) For $A \subseteq X$, holds $X \smallsetminus Int_{b+(A)} = X \smallsetminus \cup \{U : U \subseteq A, U \text{ is b+-open}\}$ $= \cap \{X \smallsetminus U : U \subseteq A, U \text{ is b+-open}\} = Cl_{b+(X \smallsetminus A)}.$

(3) From (2), $Cl_{b+(X \smallsetminus A)} = X \smallsetminus Int_{b+(A)}$ i.e. $Int_{b+(A)} + Cl_{b+(X \smallsetminus A)} = X$ which implies $X \smallsetminus Cl_{b+(X \smallsetminus A)} = Int_{b+(A)}$.

(4) From (1), $Int_{b+(X \setminus A)} = X \setminus Cl_{b+(A)}$ i.e. $Int_{b+(X \setminus A)} + Cl_{b+(A)} = X$ which implies $X \setminus Int_{b+(X \setminus A)} = Cl_{b+(A)}$.

THEOREM 2.9. Let A be a subset of a topological space (X, τ) . Then, $x \in Cl_{b+(A)}$ if and only if for every b++open subset M of X containing $x, A \cap M \neq \emptyset$.

PROOF. Let $\mathbf{x} \in \operatorname{Cl}_{b+(A)}$ and suppose that $\mathbf{M} \cap \mathbf{A} = \emptyset$ for some b-+-open set \mathbf{M} which contains \mathbf{x} . Then, $(\mathbf{X} \smallsetminus \mathbf{M})$ is b-+-closed and $\mathbf{A} \subset (\mathbf{X} \smallsetminus \mathbf{M})$, thus $\operatorname{Cl}_{b+(A)} \subset (\mathbf{X} \smallsetminus \mathbf{M})$. But this implies that $\mathbf{x} \in (\mathbf{X} \smallsetminus \mathbf{M})$, a contradiction. Thus, $\mathbf{A} \cap \mathbf{M} \neq \emptyset$.

Conversely, let $A \subseteq X$ and $x \in X$ such that for each b-+-open set M_1 which contains x, $M_1 \cap \neq \emptyset$. If $x \notin \operatorname{Cl}_{b+(A)}$, there is a b-+-closed set F such that $A \subseteq F$ and $x \notin F$. Then, $(X \setminus F)$ is a b-+-open set with $x \in (X \setminus F)$, and thus $(X \setminus F)$ $\cap A \neq \emptyset$, which is a contradiction. \Box

THEOREM 2.10. Let (X, τ) be a topological space $M \subseteq X$. Then M is b-+-open if and only if for each $s \in M$, there exists a b-+-open set D such that $s \in D \subseteq M$.

PROOF. It follows from Definition 2.2 and Theorem 2.5.

DEFINITION 2.4. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be b+-irresolute if $f^{-1}(A)$ is b-+-open set in (X, τ) for every b+-open set A of (Y, σ) .

THEOREM 2.11. Let $f : (X, \tau) \to (Y, \sigma)$ be a function, then the following statements are equivalent:

(1) f is b-+-irresolute.

(2) $f(Cl_{b+(A)}) \subseteq Cl_{b+(f(A))}$ holds for every subset A of X.

(3) $f^{-1}(A)$ is b-+-closed set in X, for every b-+-closed subset A of Y.

PROOF. (2) \Rightarrow (3): Let A be a b++closed set in Y. Then $Cl_{b+(A)} = A$. By using (2), we have $f(Cl_{b+f^{-1}(A)}) \subseteq Cl_{b+(A)} = A$. Thus, $(Cl_{b+f^{-1}(A)}) \subseteq f^{-1}(A)$ and hence $f^{-1}(A)$ is b++closed in X.

 $(3) \Rightarrow (2)$: If $A \subseteq K$, then $Cl_{b+(f(A))}$ is b-+-closed in Y and by (3) holds $f^{-1}(Cl_{b+(f(A))})$ is b-+-closed in X. Furthermore,

$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(Cl_{b+(f(A))}).$$

Thus, $Cl_{b+(A)} \subseteq f^{-1}(Cl_{b+(f(A))})$, consequently,

$$f(Cl_{b+(A)}) \subseteq f(f^{-1}(Cl_{b+(f(A))})) \subseteq Cl_{b+(f(A))}.$$

 $(3) \Leftrightarrow (1)$: Obvious.

DEFINITION 2.5. A function $f : X \to Y$ is said to be b-+-continuous at a point $x \in X$ if for each open subset K of Y containing f(x), there exists a b-+-open subset L of X containing x such that $f(L) \subseteq K$. The function f is said to be b-+-continuous if it has this property at each $x \in X$.

THEOREM 2.12. A function $f: X \to Y$ is b-+-continuous if and only if the inverse image of every open set in Y is b-+-open in X.

PROOF. Let f be b-+-continuous and K be any open set in Y. If $f^{-1}(K) = \emptyset$, then $f^{-1}(K)$ is a b-+-open set in X but if $f^{-1}(K) \neq \emptyset$, then there exists $x \in f^{-1}(K)$ which implies $f(x) \in K$. Since f is b-+-continuous, then there exists a b-+-open set L in X containing x such that $f(L) \subseteq K$. This implies that $x \in L \subseteq f^{-1}(K)$ and hence $f^{-1}(K)$ is b-+-open.

Conversely, let K be any open set in Y containing f(x), then $x \in f^{-1}(K)$ and by hypothesis $f^{-1}(K)$ is a b-+-open set in X containing x, so $f(f^{-1}(K)) \subseteq K$. Thus, f is b-+-continuous.

Theorem 2.13. For a function $f: X \to Y$, the following statements are equivalent:

(1) f is b-+-continuous.

(2) $f^{-1}(K)$ is a b-+-open set in X, for each open subset K of Y.

- (3) $f^{-1}(F)$ is a b-+-closed set in X, for each closed subset F of Y.
- (4) $f(Cl_{b+(A)}) \subseteq Cl(f(A))$, for each subset A of X.
- (5) $Cl_{b+(f^{-1}(B))} \subseteq f^{-1}(Cl(B))$, for each subset B of Y.
- (6) $f^{-1}(Int(B)) \subseteq Int_{b+(f^{-1}(B))}$, for each subset B of Y.

PROOF. (1) \Rightarrow (2): Directly from Theorem 2.12.

(2) \Rightarrow (3): Let F be any closed subset of Y. Then, $Y \\ \subseteq F$ is a open subset of Y. By (2), $f^{-1}(Y \\ \subseteq F) = X \\ \subseteq f^{-1}(F)$ is a b-+-open set in X and hence $f^{-1}(F)$ is a b-+-closed set in X.

 $(3) \Rightarrow (4)$: Let A be any subset of X. Then, $f(A) \subseteq Cl(f(A))$ and Cl(f(A)) is a closed set in Y. Hence, $A \subseteq f^{-1}(Cl(f(A)))$. By (3), we have $f^{-1}(Cl(f(A)))$ is a b++-closed set in X. Therefore, $Cl_{b+(A)} \subseteq f^{-1}(Cl(f(A)))$. Hence, $f(Cl_{b+(A)}) \subseteq Cl(f(A))$.

(4) \Rightarrow (5): Let *B* be any subset of *Y*. Then, $f^{-1}(B)$ is a subset of *X*. By (4), we have $f(Cl_{b+(f^{-1}(B))}) \subseteq Cl(f(f^{-1}(B))) \subseteq Cl(B)$. Hence, $Cl_{b+(f^{-1}(B))} \subseteq f^{-1}(Cl(B))$.

(5) \Leftrightarrow (6): Let *B* be any subset of *Y*. Then, apply (5) to $Y \smallsetminus B$ we obtain $Cl_{b+(f^{-1}(Y \smallsetminus B))} \subseteq f^{-1}(Cl(Y \smallsetminus B)) \Leftrightarrow Cl_{b+(X \smallsetminus f^{-1}(B))} \subseteq f^{-1}(X \smallsetminus Int(B)) \Leftrightarrow X \smallsetminus Int_{b+(f^{-1}(B))} \subseteq X \smallsetminus f^{-1}(int(B)) \Leftrightarrow f^{-1}(Int(B)) \subseteq Int_{b+(f^{-1}(B))}.$ Thus, $f^{-1}(Int(B))) \subseteq Int_{b+(f^{-1}(B))}.$

(6) \Rightarrow (1): Let $x \in X$ and K be any open subset of Y containing f(x). By (6), we have $f^{-1}(Int(K)) \subseteq Int_{b+(f^{-1}(K))}$ implies that $f^{-1}(K) \subseteq Int_{b+(f^{-1}(K))}$. Hence, $f^{-1}(K)$ is a b-+-open set in X which contains x and clearly $f(f^{-1}(K)) \subseteq K$. Thus, f is b-+-continuous.

DEFINITION 2.6. Let (X, τ) be a topological space and $A \subseteq X$. Then, A is said to be a generalized b++-closed set or simply gb++-closed set if $Cl_{b+(A)} \subseteq U$, whenever $A \subseteq U$ and U is a open set. The complement of a gb++-closed set is called gb++-open set. The collection of all gb++-closed sets and gb++-open sets are denoted by gb+c(X, τ) and gb+o(X, τ), respectively.

PROPOSITION 2.1. Every b-+-closed set is gb-+-closed set.

PROOF. The proof is followed by the Definition 2.6.

The following example shows that the converse of the above Proposition, it is not always true.

EXAMPLE 2.6. Let X and $\tau(X)$ as in the Example 2.1. Then b++-closed sets are \emptyset , X, {a}, {b}, {a, b}; gb+-closed sets are power set of X. Here {a, c} is a gb++-closed set but it is not a b++-closed set.

THEOREM 2.14. Let A be a gb+-closed subset of X. Then, $Cl_{b+(A)} - A$ does not contain any non-empty closed sets.

PROOF. Let F be a closed set of X such that $F \subseteq Cl_{b+(A)} - A$. Since X - F is a open set, then $A \subseteq X - F$ and A is gb+-closed, it follows $Cl_{b+(A)} \subseteq X - F$, in consequence $F \subseteq X - Cl_{b+(A)}$. This implies that $F \subseteq (X - Cl_{b+(A)}) \cap (Cl_{b+(A)} - A) = \emptyset$, therefore $F = \emptyset$.

COROLLARY 2.1. Let A be a gb-+-closed set. Then, A is b-+-closed if and only if $Cl_{b+(A)} - A$ is a closed set.

PROOF. Let A be gb-+-closed set. If A is b-+-closed, it has $\operatorname{Cl}_{b+(A)} - A = \emptyset$ which is a closed set.

Conversely, let $\operatorname{Cl}_{b+(A)} - A$ be a closed set. Then, by the Theorem 2.26, $\operatorname{Cl}_{b+(A)} - A$ does not contain any non-empty closed set and $\operatorname{Cl}_{b+(A)}$ is a closed set of itself. Thus, $\operatorname{Cl}_{b+(A)} - A = \emptyset$. Therefore, $A = \operatorname{Cl}_{b+(A)}$, in consequence A is a b++closed set.

COROLLARY 2.2. Let A be an open set and gb-+-closed set. Then, $A \cap J$ is gb-+-closed set whenever b-+-closed set J of X.

PROOF. Since A is gb++-closed and open set, then $\operatorname{Cl}_{b+(A)} \subseteq A$ and so A is a b++-closed. Therefore, $A \cap J$ is b++-closed set of X and this implies that $A \cap J$ is gb++-closed set of X.

THEOREM 2.15. Let (X, τ) be a topological space and $A, B \subseteq X$. If A is a gb+-closed set and B is any set such that $A \subseteq B \subseteq Cl_{b+(A)}$, then B is a gb-+-closed set of X.

PROOF. Let $B \subseteq V$ where V is an open set of X. Since A is a gb++-closed set and $A \subseteq V$, then $\operatorname{Cl}_{b+(A)} \subseteq V$ and so $\operatorname{Cl}_{b+(A)} = \operatorname{Cl}_{b+(B)}$. Therefore, $\operatorname{Cl}_{b+(B)} \subseteq V$ and hence B is a gb++-closed set of X.

THEOREM 2.16. Let (X, τ) be a topological space and $A \subset X$. A is a gb-+-open set if and only if $J \subseteq Int_{b+(A)}$ whenever J closed set and $J \subseteq A$.

PROOF. Let A be a gb-+-open set and let $J \subseteq A$ where J is a closed set. Then, X - A is a gb-+-closed set contained in the open set X - J. Therefore, $Cl_{b+(X-A)} \subseteq X - J$ and $X - Int_{b+(A)} \subseteq X - J$. In consequence, $J \subseteq Int_{b+(A)}$.

Conversely, if A is a closed set with $J \subseteq Int_{b+(A)}$ and $J \subseteq A$, then $X - Int_{b+(A)} \subseteq X - J$. Therefore, $Cl_{b+(X-A)} \subseteq X - J$. Hence, X - A is a gb-+-closed set and A is a gb-+-open set of X.

DEFINITION 2.7. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be gb-+-continuous if $f^{-1}(A)$ is gb-+-closed set in (X, τ) for every closed set A of (Y, σ) .

THEOREM 2.17. Every b-+-continuous is gb-+-continuous but not conversely.

 \square

PROOF. The proof follows from Proposition 2.1.

DEFINITION 2.8. Let (X, τ) be a topological space and $A \subseteq X$. Then, A is said to be a regular generalized b-+-closed set or simply rgb-+-closed set if $\operatorname{Cl}_{b+(A)} \subseteq$ U, whenever $A \subseteq U$ and U is a regular open set. The complement of a rgb-+-closed set is called rgb-+-open set. The collection of all rgb-+-closed sets and rgb-+-open sets are denoted by $rgb + c(X, \tau)$ and $rgb + o(X, \tau)$, respectively.

PROPOSITION 2.2. Every closed set is rgb-+-closed set.

PROOF. Let B be any closed set of X such that $B \subseteq V$. where V is a regular open set. Since $Cl_{b+(B)} \subseteq Cl(B) = B$. Therefore, $Cl_{b+(B)} \subseteq V$. In consequence, B is a rgb+-closed set.

The following example shows that the converse of the above Theorem need not be true.

EXAMPLE 2.7. Let X and $\tau(X)$ as in the Example 2.6. Then rgb+-closed sets are power set of X. Here, $\{a, b\}$ is rgb+-closed set but it is not closed set.

PROPOSITION 2.3. Every b-+-closed set is rgb-+-closed set.

PROOF. Let B be any b-+-closed set of X such that V is any regular open set containing B. Since B is a b-+- closed set, then $\operatorname{Cl}_{b+(B)} = B$. Therefore, $\operatorname{Cl}_{b+(B)} \subseteq V$. Hence, B is a rgb-+-closed set.

The following example shows that the converse of the above Theorem need not be true.

EXAMPLE 2.8. Let X and $\tau(X)$ as in the Example 2.7. Here, {a, c} is rgb-+closed set but it is not b-+-closed set.

PROPOSITION 2.4. Every gb++-closed set is rgb++-closed set but not conversely.

PROOF. If A is a gb++-closed subset of (X, τ) and G is any regular open set containing A, since every regular open set is open, we have $G \supseteq \operatorname{Cl}_{b+(A)}$. Hence A is rgb++-closed in (X, τ) .

EXAMPLE 2.9. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b, c\}\}$. Then gb+-closed sets are $\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}$; rgb+-closed sets are power of X. Here $\{a, b, c\}$ is rgb-+-closed set but it is not a gb-+-closed set.

DEFINITION 2.9. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be regular generalized b-+-continuous (berifly, rgb-+-continuous) if $f^{-1}(A)$ is rgb-+-closed set in (X, τ) for every closed set A of (Y, σ) .

THEOREM 2.18. Every semi-+-open set is b-+-open set but not conversely.

PROOF. The proof follows from Theorem 2.2.

THEOREM 2.19. Every α -+-continuous set is b-+-continuous set but not conversely.

PROOF. The proof follows from Theorem 2.3. $\hfill \Box$

THEOREM 2.20. Every pre-+-continuous set is b-+-continuous set but not conversely.

PROOF. The proof follows from Theorem 2.4. $\hfill \Box$

THEOREM 2.21. Every continuous is rgb-+-continuous but not conversely.

PROOF. The proof follows from Proposition 2.2.

THEOREM 2.22. Every b-+-continuous set is rgb-+-continuous but not conversely.

PROOF. The proof follows from Proposition 2.3. \Box

PROPOSITION 2.5. Every gb-+-continuous is rgb-+-continuous but not conveserly.

PROOF. The proof follows from Proposition 2.4.

3. Conclusion

In this paper we introduced a new operator of b-+-open sets, generalized b-+closed sets and regular generalized b-+-closed sets in topological spaces. Also we characterize the relations between them and the related properties. In future, we have extended this work in various topological fields.

Acknowledgement I thank to referees for giving their useful suggestions and help to improve this manuscript.

SELVARAJ GANESAN

References

- [1] D. Andrijević. On b-open sets. Mat. Vesn., 48(1-2)(1996), 59-64.
- [2] N. Elez. Equations related to the boundary operator in topological space. Kragujevac J. Math., 18(1996), 5-8.
- [3] N. Elez. Certain topological qualities of convex sets in euclidean space. Math. Morav., 17(1)(2013), 59–62.
- [4] N. Elez and O. Papaz. The new operator in topological spaces. Math. Morav., 17(2)(2013), 63–68.
- [5] R. Engelking. General Topology. PWN Warszava, 1977.
- S. Ganesan. The new operator of open sets and generalized closed sets in topological spaces. *International Journal of Analytical and Experimental Model Analysis*, 12(9)(2020), 382–418. DOI:18.0002.IJAEMA.2020.V12I9.200001.015685900498
- [7] C. Granados. On semi-+-open sets in topological spaces. MathLAB Journal, 6(2020), 75-80.
- [8] M. Stone. Application of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc., 41(3)(1937), 374-481.

Received by editors 03.12.2020; Revised version 06.06.2021; Available online 26.07.2021.

 $\rm PG$ and Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai - 630561, Tamil Nadu, India.

 $E\text{-}mail\ address:\ \tt sgsgsgsgsg70gmail.com$