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PERIODIC SOLUTIONS FOR
TOTALLY NONLINEAR ITERATIVE
DIFFERENTIAL EQUATIONS

Abderrahim Guerfi and Abdelouaheb Ardjouni

ABSTRACT. This paper studies the existence of periodic solutions of a totally non-
linear iterative differential equation. The equivalent integral equation of the given
equation defines a fixed point mapping written as a sum of a large contraction
and a compact map. The main results assert the existence of periodic solutions
by making use of Krasnoselskii-Burton’s fixed point technique.

1. Introduction

Delay or iterative differential equations have attracted considerable attention in
mathematics during recent years since these equations have been showed to be valu-
able tools in the modeling of many phenomena in various fields of science, physics,
chemistry and engineering, etc. In particular, periodicity, positivity and stability of
solutions for delay or iterative differential equations has been studied extensively by
many authors, see the references [1]-[20]. Motivated by the references [1]-[20] we
consider the following totally nonlinear iterative differential equation

%x@):_a@wuz@»+7%gQﬂmwﬂﬁuw,ﬂﬂﬂaﬁ

(1.1) +f@@uyﬂﬂm,wxwug,

2ty =z (t), 2P (t) =2 (x (1)), ..., 2" (t) = 2"~ (2 (1))
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70 A. GUERFI AND A. ARDJOUNI

and a is a continuous real-valued function. The functions h : R - R, g, f : RxR” — R
are continuous.

Our purpose here is to use Krasnoselskii-Burton’s fixed point technique to prove
the existence of periodic solutions for (1.1). During the process we use the variation of
parameter formula and the integration by parts to transform (1.1) into an equivalent
integral equation written as a sum of two mappings; one is a large contraction and
the other is compact. After that, we use Krasnoselskii-Burton’s fixed point theorem,
to prove the existence of a periodic solution. The obtained results in this work extend
the main results in [7].

2. Preliminaries
For T > 0, define
Pr={2€CR,R):2(t+T)==x(t) forall t € R},

where C' (R,R) denoted the set of all real valued continuous functions map R into R.
Then Pr is a Banach space with the norm

[] = sup[z(t)] = sup [a(t)].
teR t€(0,T)

For L, K > 0, define the set
Pr(L,K)={x € Pr, ||z|| <L, |x(t2) —x (t1)| < K |[t2 — 1] for all t1,t2 € R},

which is a closed convex and bounded subset of Pr.
We assume that

(2.1) a(t+T) = alt), /OTa(t) dt > 0.

The functions f(t,z1, z2, ..., z,) and g(t, z1, T2, ..., ) are supposed periodic in ¢t with
period T and globally Lipschitz in x1, x3, ..., T,, i.€,

fh+T,z1, .. xn) = flt,x1,...,20),

(2.2) gt + T 21,y 2n) = g(t, 21,00y Tp)s

and there exist n positive constants k1, ko, ..., k, and n positive constants ¢y, co, ...,

¢y, such that
n

(23) |f(t,.’E17 ,.’L’n) - f(tvyh 7yn)| < Zk’b |x’b - y’b| ;
i=1

and
n

(24) ‘g(taxh 7'%‘71) - g(tvyla ay’ﬂ)| < Zci |x1 - y1| :
i=1

The function g(¢,z1, ..., x,) is also supposed globally Lipschitz in ¢, i.e, there exists a
positive constant K, such that

(2.5) lg(ta, 1, .oy xp) — g(t1, T1, .oy xn)| < Ky [t2 — 1]

The following lemma is essential for our results.
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LEMMA 2.1. Suppose (2.1) and (2.2) hold. If x € Pr (L, K), then x is a solution
of (1.1) if and only if

(2.6) +g (t,a; 1), 23 @), ...,z (t)) ,
where
exp ([ a(u) du)
(2.7) G(ts) = — Pt ,
exp (fOT a(u) du) -1
and
(2.8) H(z)=xz—h(z).

PRrOOF. Let x € Pr (L, K) be a solution of (1.1). Rewrite (1.1) as

%x (1) +a(t)(t) - %g (Lo @), (1), al @)
—aH(@®)+f (La@),a? @), .2 1),

which is equivalent to

% { {x (t)—g (t,x ),z @), ...,z (t))] exp (/Ota(u) du)}

The integration from ¢ to t + T gives

/t ; d% { [2() =g (5.2(),02 ()0l () | exp (/0 “ du) } "

— /tt+T {a (s) H (2 (s)) —a(s) (s, (s), 22 (s) ..., 2" (s))

(/Osa(u)du> ds.

glsx
+f (s,x (s) Lzl (s), o,z (s)) } exp
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Since

[ 6 - (62 ) ) e ([ o) s

{0 =g (ba®.0@ ). at (1))}

co ([ atwm) [ ( [T du> . ] |

then
2(t) =g (Lo t),a (1), .ol @)
+ /tt+T {a (s)H (x(s))—a(s)g (s,x (s), 2z (s), ...,z (s))
2l ] exp ([, a (u) du)
+f (smc (s),z (s), ...,z (s))} o (ftH_T ) du) - 1ds.
The proof is completed. g
LEMMA 2.2. Green function G satisfies the following properties
Gt+T,s+T)=G(ts),
and
exp (— fOT a(u) du) exp (fOT a(u) du)
a= = < |G (t,8)] < - =4
‘exp (fo a(u)du) 71‘ ’exp (fo a(u)du) 71’

LEMMA 2.3 ([20]). For any ¢,v € Pr (L, K), we have
m—1
o™ =l < 3 KT e =l m=1,2,...
=0

LEMMA 2.4 ([19]). It holds
PT (L?K)
={z € Pp, ||| <L, |x(ta) —x(t1)| < K |[ta — t1| for all t1,t3 € [0,T)}.

DEFINITION 2.1 (Large contraction [10]). Let (M, d) be a metric space and con-
sider B : M — M. Then B is said to be a large contraction if given ¢, € M with
¢ # ¢ then d (B¢, By) < d(¢,¢) and if for all € > 0, there exists a § € (0,1) such
that

(6,0 €M, d(¢,¢) > €] = d(B¢, Bp) < dd (¢, ).

THEOREM 2.1 (Krasnoselskii-Burton [10]). Let M be a closed bounded convex

nonempty subset of a Banach space (B, ||.||). Suppose that A and B map M into M
such that

(i) z,y € M, implies Az + By € M,
(ii) A is compact and continuous,
(iii) B is a large contraction mapping.
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Then there exists z € M with z = Az + Bz.
We will use this theorem to show the existence of periodic solutions for (1.1).

THEOREM 2.2 ([1]). Let ||.|| be the supremum norm, M = {¢ € Pr: ||¢| < L}
where L is a positive constant. Suppose that h is satisfying the following conditions
(H1) h: R — R is continuous on [—L, L] and differentiable on (—L, L),
(H2) the function h is strictly increasing on [—L, L],
(H3) sup;e(p )b’ (t) < 1.
Then the mapping H define by (2.8) is a large contraction on the set M.
3. Existence of periodic solutions

To apply the Theorem 2.1 we need to define a Banach space B, a closed bounded
convex subset Ml of B and construct two mappings; one is a completely continuous
and the other is a large contraction. So, we let (B, ||.|]|) = (Pr, ||.||) and

M = Pr (L, K)
(1) ={eelr, lloll <L, [p(t2) =@ (t1)] < K|tz —ta] for all t1,t; € [0, T]},
with L, K > 0. Define a mapping S : M — Pr by
t+T t+T
S0 = [ Guna@ e+ [ {1 (50667 0, e o)
—a(s)g (s, o (s), 02 (s),..., oM (s)) } G (t,s)ds

(32 +g(te® o @) e ).

Therefore, we express the above mapping as
S = Ap + By,
where A, B : M — Pr are given by

0= [ {1 (50,6 9061 )

—a(s)g <s, v (s) Lol (8) ey ol (s)) } G (t,s)ds

(3.3) +9(te® .62 (1), 0)
and
t+T
(3.4) By )= [ G(ts)als) H (o (s) ds.

To simplify notations, we introduce the following constants

. — t — t — t 0.
(35) o trer[lgf%\a()hm tg[lg%\f(,OyO, L0, p2 trerf%lg(,0,0, ,0)]

We need the following assumptions
i—1

(3.6) T BT (pr+0p2) +p2+ LY [ei+ BT (ki + 0ci)] Y K| <L,
i=1 j=0
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and
J((28+Talall) (p1 +op2) + K,
n 1—1
(3.7) + 128+ Talal) L (k; + oc;) +Kci]ZKj) < K,
i=1 7=0

where J is a positive constant with J > 3.

LEMMA 3.1. For A defined in (3.3), suppose that (2.1)-(2.5) and (3.5)-(3.7) hold.
Then A : M — M.

PROOF. Let ¢ € M. For having Ay € M we will show that Ap € Pr, ||[Ap| < L
and |(Ap) (t2) — (A) (t1)] < K |[t2 — t1] for all ¢, € [0, T]. First, it is easy to prove
that (A)(t +T) = (Ap)(t). That is, if p € Pr then Ap € Pp. By (3.5), we get

o) wi<s [ T (5 96 () (9) s

+ Bo /tHT ‘g (s, v (s) ,pl? (8), .ty ol (s)) ‘ ds
o (e . @), ®)).

and in view of conditions (2.4), (2.5) and Lemma 2.3, we obtain

£ (5:08) 02 (3) ) ()|

<7 (50 ()61 () (5)) = £ (5,0, 0,00, 0)| 4 £ (50,0, .,0)
n i—1

<o+ ki Y Kol
i=1  j=0

n i—1

(38)  <p+L) kiy K,
i=1 0

j=

and

9 (. (5) 0 (5) s ) ()|

< ’g (s,go(s) ,gom (s), ...,(p[”] (s)) —9(s,0,0,...,0)| 4+ |g (5,0,0,...,0)|
n i—1

S p2+ Zci ZKj el
=1 j=0
n i—1

i=1 0

Jj=
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Thus, it follows from (3.8) and (3.9) that

I(Ag) (1) < BT (lerLZkiZKj)
i=1 =0

+ (BoT + 1) (p2+LiciZZKj)

i=1  j=0
n i—1 )
=BT (p1+0p2) +p2+ LY [ei+ BT (ki + 0c)] Y K.
i=1 §=0
Therefore, from (3.6), we get
L
Apll < = < L.
Al < 5

Let t1,ts € [0, T] with ¢; < t2, we obtain

But,

[(Ap) (t2) = (Awp) (t1)]

/tt2+T f (3, o (s), o2 (s),..., oM (5)) G (ta,s) ds

<

- /tthLT f (s,go(s),gom (s), ..., o™ (s)) G (t1,8)ds

+ /:2+Ta(s)9 (8,90 (s), 0P (s), ..., o (s)> G (t2,5)ds

) /;1+Ta(s)g (s,cp(S)7<P[2] (8) 4wy o™ (s)) G (t1,5)ds

o (t2.p (t2) 0P (t2) ) (12)) = 9 (11,0 (1) 62 (1) ) ()]

/ T (520 (5) B (5) ) (9)) G )

/ttlJrTf (s,ap(s),gom (s), ...,cp[”] (5)) G (t1,$)ds

< ! G (ta,s) f (s, o (s), 0 (s),..., oM (s)) ds
ta
to+T
G Lo (s), .., ol d
G f (500 6 (), () ds

+

t1 4T
| 69 = Gt (5:005) 2 (5) ™ () ds

75
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t1
< | G (t2,9)]
to

ds

£ (3.0 ) 0 () sl (5)

+ /ttﬁT |G (t2, 5))| ‘f (8790 (5,01 (5) 0l (S)> ’ *

1+T

+ ‘exp (foTazu) du) — /:+T ‘f (s,w(s) L2 (5), ., M) (S))‘

exp (/t:a(u)du> ~exp (/:a(u)du>

X d57

and
t1+4+T s s
/ exp (/ a (u) du) — exp (/ a (u) du) ds
t1 to ty
t14+T s t2
:/ exp(/ a(u)du) 1exp(/ a(u)du> ds
t1 ta t1
T
< T ol 2 = ta] exp (— | e du> ,
0
0

L7 (50606 6)) G 1200

- /ttlJrTf (s,cp(s),apm (s), ...,cp[”] (s)) G (t1,s)ds

n i—1 n i—1
< 2Bt — ta] (m +LZMZKJ’) +Talla] |tz -t (m +L2kiZKj)
=1

i=1  j=0 =0
(3.10)

i—1

< to — t1] (,01 +sziZKj> (28 +Taal).
i=1 ;=0

Similarly, we get

/tt2+Ta 5)g <$,¢(S)’w[2] (5) 5 ey ol (s)) G (t2,s)ds

) /tt1+Ta(8)g (s,so (s), 0P (s), ..., oM (s)) G (t1,5)ds
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<[ [ 000 (5206067 6) o () G 2,5) s
#0600 (506167 ) e 6)) G 1,5)
[T @09 - 609 (506 (), (9) s
g/ttl la (s)] |G (2, s,ga( ), 02 (s), ..., o] (5)) ds
+ /:TT ()11G (t2: )l |9 (3. (5), 9 (), o) (5)) | s
! w a(s s,0(s), 02 (s), ..., 0™ (s
o (e ARG GO ORI O]
X exp(/ a(u)d )—exp(/:a(u)du) ds
(311) < |ty —ti]o <p2+LZciin) (28 + Taal]).
Also, we have
9 (f2:0 (t2) 9 (t2) ) (82)) = g (1,0 (1) 0 (1) o) (1))
= o (ta 0 (t2) 0 (1), ...,so[”] (t2) = g (t1, 0 (t2) 9P (t2) oo (t2))
9 (10 (12) 6 (1) (82)) = g (1,0 (01) 0 (1) o) (1))
< g (t2ep () 02 (t2). [”]<2>) g (t1, 0 (t2), 6 (1) 6™ (12))|
o (t1 0 (t2) 0 (t2) s (12)) = g (1,60 (1) 6 (1) s ) (1))
By (2.3)-(2.5) and Lemma 2.3, we get
9 (t200 (42,62 (12) , 6 (12)) = g (11,50 (01) 6 (81) o ) (1))

< Kylta = tal + e[ (2) — o (1)
=1

n i—1
(312) < (Kg + ZciZKj‘H) lto —t1] .

i=1  j=0
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Thus, it follows from (3.10)—(3.12) and (3.7) that

(Ap) (t2) — (Aw) (t1)]

n i—1
< | @8+ Talal) [ pr+op+ LY (ki +oe) S K
i=1 j=0
n i—1 )
H Ko+ e Y KT | [t =t
i=1 =0
Therefore,
K
|(Ap) (t2) = (Ap) ()] < [t =t < K ft2 — ta].
Consequently, A : M — M. O

LEMMA 3.2. Suppose that conditions (2.1)-(2.5) and (3.5)—(3.7) hold. Then the
operator A : M — M given by (3.3), is continuous and compact.

PROOF. Since M is a uniformly bounded and equicontinuous subset of the space of
continuous functions on the compact [0,7] we can apply the Ascoli-Arzela theorem to
confirm that M is a compact subset from this space. Also, and since any continuous

operator maps compact sets into compact sets, then to prove that A is a compact
operator it’s suffices to prove that it is continuous. For ¢, € M, we have

(49) (1) = (4%) (1)

< [0 (50667 6) o 0)

—f (5. (5) ¥ (), 0l (5)) | s

t [ NG s (5066 ), )

g (5,0(9), 9% (5),. 01 (3)) | ds

g (8o (0 (@) o (1)) = g (86062 (1), ()]
In view of conditions (2.4) and (2.5) and notations (3.5), we have

[(Agp) (t) — (Ay) (2)]
< ﬁTfjki ] — b
i=1

n

+ (BoT +1) Zci Hgo[i] — ol

=1
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From Lemma 2.3, it follows that

|(Ap) () — (A9) (B)]

n i—1 n i—1
<BTY ki d Kl |lo—vll+ BoT+1)Y ;Y K |l — 1|
=1 j=0 i=1  j=0
n i—1
=Y (BThi+ (BoT+1)c)) Y K [lp =]
i=1 7=0

which proves that the operator A is continuous. Therefore, A is compact and contin-
uous. U

The next result proves the relationship between the mappings H and B in the
sense of large contractions. Assume that

(3.13) BoT < 1

(3.14) max (|H (—L)|, |H (L)]) < (‘]; Uy,
and

(3.15) 28+ Tala|)oL < K.

LEMMA 3.3. Let B be defined by (3.4), suppose (2.1), (3.13), (3.14), (3.15) and
all conditions of Theorem 2.2 hold. Then B : Ml — M s a large contraction.

PROOF. Let B be defined by (3.4). For having By € M we will show that || Byl <
L and |(By) (t2) — (By) (t1)] < K |t2 — t1| for all ¢1,t2 € [0,T]. First, it is easy to
show that (Bg)(t +T) = (By)(t). That is, if ¢ € Pr then By € Pr. Let ¢ € M, by
(3.14), we obtain
t+T
[(Be) ()] < /t |G (¢, 8)[a ()| [H (¢ (5))] ds

< PoTmax{|H (=L)|,[H (=L)[} <

Then, for any ¢ € M, we have

Bl < L
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Let t1,ts € [0, T] with ¢; < t2, by (3.13)—(3.15), we get
(Bg) (t1) — (Bo) (t2)|
to+T t1+T
/ G (t2,5) a (s) H (¢ (s)) ds — / G (tr, ) a () H (¢ (s)) ds
ta t1

<

to+T

/t 1 G (ta2,8)a(s) H (¢ (s))ds—k/t G (ta,8)a(s) H (p(s))ds

1+T

<

t1+T
+ / (G (t2,5) — G (11, 8) a(s) H (o (5)) ds

t1 to+T
</t IG(tz,S)Ila(S)IIH(sD(S))IdSJr/t |G (t2,8)] |a ()] |H (¢ (5))] ds

1+7T

f1+T
foTa — _1‘/ I H (2 (5))

BT

) lta — t1] + ‘eXp (fTazu)du> B 1‘ /tltlJrTa(SN |H (¢ (s))]
0

ds

[¢)
o]
e}
/\/—\/—\
\
@

xexp</a >‘1exp</t2a(u)du) ds
t1
<250’<J ) |t2—t1‘+TOZ||a||O'% |t2—t1|
— (2+7a ||a||>a@ T
Then
B ()~ (Be) () < TPy ) < Kty — .

Therefore, B : Ml — M.
It remains to prove that B is a large contraction. By Theorem 2.2, H is a large
contraction on M, then for any ¢, 9 € M, with ¢ # ¥ we get

(Be) (1) — (BY) (1)
t+T
/t G (t.5) a(s) [H (¢ (s)) — H (6 (5))] ds

< BoT o =vll < lle =2

Then ||By — Byl < ||¢ —¢|. Now, let € € (0,1) be given and let ¢,¢p € M, with
llo — || = & from the proof of Theorem 2.2, we have found a ¢ € (0,1), such that

[(He) () = (HY) ()] < 3 [l =]

<
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Thus,
(By) () — (BY) (1)
t+T
< / G (t,5)a(s)[H (¢ () — H (¥ (5))] ds
< BoT6 o —vl| < 8llp — ]
The proof is complete. O

THEOREM 3.1. Suppose the hypothesis of Lemmas 3.1-3.3 hold. Let M defined by
(3.1), then (1.1) has a T-periodic solution in M.

PrROOF. By Lemmas 3.1 and 3.2 A : M — M is continuous and A(M) is con-
tained in a compact set. Also, from Lemma 3.3, the mapping B : M — M is a
large contraction. Next, we prove that if ¢, € M, we have ||Ap + Bv| < L and
[(Ap + B) (t2) — (Ap + B) (t1)| < K [to — t1] for all ¢1,t2 € [0,T]. Let p,¢p € M
with [|¢], [|#|| < L. By (3.6) and (3.14), we have

| A¢ + Bd||
n i—1 . (J—].)L
<ﬁT(p1 +Jp2)+ﬂ2+L;[Ci+ﬂT(ki+G’Ci)]jgoK]+#
L (J-1)L
< A A
7T

Now, let p,¢ € M and t1,t5 € [0,7]. By (3.7) and (3.15), we get

|(Ap + BY) (t2) — (Ap + BY) (t1)]

< [(Ap) (t2) — (Ap) (t1)] + [(BY) (t2) — (BY) (t1)]
K (J-1K

< |t2 — t1| + f

< — to — 1t
5 t2 — t1]
<Kt —t].

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there
exists a fixed point z € M such that z = Az + Bz. By Lemma 2.1, this fixed point is
a solution of (1.1). Hence (1.1) has a T-periodic solution. O

Acknowledgement. The authors would like to thank the anonymous referee for
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