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PERIODIC SOLUTIONS FOR

TOTALLY NONLINEAR ITERATIVE

DIFFERENTIAL EQUATIONS

Abderrahim Guerfi and Abdelouaheb Ardjouni

Abstract. This paper studies the existence of periodic solutions of a totally non-

linear iterative differential equation. The equivalent integral equation of the given
equation defines a fixed point mapping written as a sum of a large contraction
and a compact map. The main results assert the existence of periodic solutions
by making use of Krasnoselskii-Burton’s fixed point technique.

1. Introduction

Delay or iterative differential equations have attracted considerable attention in
mathematics during recent years since these equations have been showed to be valu-
able tools in the modeling of many phenomena in various fields of science, physics,
chemistry and engineering, etc. In particular, periodicity, positivity and stability of
solutions for delay or iterative differential equations has been studied extensively by
many authors, see the references [1]–[20]. Motivated by the references [1]–[20] we
consider the following totally nonlinear iterative differential equation

d

dt
x (t) = −a (t)h (x (t)) + d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+ f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
,(1.1)

where

x[1] (t) = x (t), x[2] (t) = x (x (t)), ..., x[n] (t) = x[n−1] (x (t))
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70 A. GUERFI AND A. ARDJOUNI

and a is a continuous real-valued function. The functions h : R → R, g, f : R×Rn → R
are continuous.

Our purpose here is to use Krasnoselskii-Burton’s fixed point technique to prove
the existence of periodic solutions for (1.1). During the process we use the variation of
parameter formula and the integration by parts to transform (1.1) into an equivalent
integral equation written as a sum of two mappings; one is a large contraction and
the other is compact. After that, we use Krasnoselskii-Burton’s fixed point theorem,
to prove the existence of a periodic solution. The obtained results in this work extend
the main results in [7].

2. Preliminaries

For T > 0, define

PT = {x ∈ C (R,R) : x (t+ T ) = x (t) for all t ∈ R} ,

where C (R,R) denoted the set of all real valued continuous functions map R into R.
Then PT is a Banach space with the norm

∥x∥ = sup
t∈R

|x(t)| = sup
t∈[0,T ]

|x(t)| .

For L,K > 0, define the set

PT (L,K) = {x ∈ PT , ∥x∥ 6 L, |x (t2)− x (t1)| 6 K |t2 − t1| for all t1, t2 ∈ R} ,

which is a closed convex and bounded subset of PT .
We assume that

(2.1) a(t+ T ) = a(t),

∫ T

0

a (t) dt > 0.

The functions f(t, x1, x2, ..., xn) and g(t, x1, x2, ..., xn) are supposed periodic in t with
period T and globally Lipschitz in x1, x2, ..., xn, i.e,

f(t+ T, x1, ..., xn) = f(t, x1, ..., xn),

g(t+ T, x1, ..., xn) = g(t, x1, ..., xn),(2.2)

and there exist n positive constants k1, k2, ..., kn and n positive constants c1, c2, ...,
cn such that

(2.3) |f(t, x1, ..., xn)− f(t, y1, ..., yn)| 6
n∑

i=1

ki |xi − yi| ,

and

(2.4) |g(t, x1, ..., xn)− g(t, y1, ..., yn)| 6
n∑

i=1

ci |xi − yi| .

The function g(t, x1, ..., xn) is also supposed globally Lipschitz in t, i.e, there exists a
positive constant Kg such that

(2.5) |g(t2, x1, ..., xn)− g(t1, x1, ..., xn)| 6 Kg |t2 − t1| .

The following lemma is essential for our results.
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Lemma 2.1. Suppose (2.1) and (2.2) hold. If x ∈ PT (L,K), then x is a solution
of (1.1) if and only if

x (t) =

∫ t+T

t

G (t, s) a (s)H (x (s)) ds

+

∫ t+T

t

{
f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
−a (s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
G (t, s) ds

+ g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
,(2.6)

where

(2.7) G (t, s) =
exp

(∫ s

t
a (u) du

)
exp

(∫ T

0
a (u) du

)
− 1

,

and

(2.8) H (x) = x− h (x) .

Proof. Let x ∈ PT (L,K) be a solution of (1.1). Rewrite (1.1) as

d

dt
x (t) + a (t)x (t)− d

dt
g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
= a (t)H (x (t)) + f

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
,

which is equivalent to

d

dt

{[
x (t)− g

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)]
exp

(∫ t

0

a (u) du

)}
=
{
a (t)H (x (t))− a (t) g

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+f
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)}
exp

(∫ t

0

a (u) du

)
.

The integration from t to t+ T gives∫ t+T

t

d

ds

{[
x (s)− g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)]
exp

(∫ s

0

a (u) du

)}
ds

=

∫ t+T

t

{
a (s)H (x (s))− a (s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)}
exp

(∫ s

0

a (u) du

)
ds.
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Since ∫ t+T

t

d

ds

{[
x (s)− g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)]
exp

(∫ s

0

a (u) du

)}
ds

=
{
x (t)− g

(
t, x (t) , x[2] (t) , ..., x[n] (t)

)}
× exp

(∫ t

0

a (u) du

)[
exp

(∫ t+T

t

a (u) du

)
− 1

]
,

then

x (t) = g
(
t, x (t) , x[2] (t) , ..., x[n] (t)

)
+

∫ t+T

t

{
a (s)H (x (s))− a (s) g

(
s, x (s) , x[2] (s) , ..., x[n] (s)

)
+f
(
s, x (s) , x[2] (s) , ..., x[n] (s)

)} exp
(∫ s

t
a (u) du

)
exp

(∫ t+T

t
a (u) du

)
− 1

ds.

The proof is completed. �
Lemma 2.2. Green function G satisfies the following properties

G (t+ T, s+ T ) = G (t, s) ,

and

α =
exp

(
−
∫ T

0
a (u) du

)
∣∣∣exp(∫ T

0
a (u) du

)
− 1
∣∣∣ 6 |G (t, s)| 6

exp
(∫ T

0
a (u) du

)
∣∣∣exp(∫ T

0
a (u) du

)
− 1
∣∣∣ = β.

Lemma 2.3 ([20]). For any φ,ψ ∈ PT (L,K), we have∥∥∥φ[m] − ψ[m]
∥∥∥ 6

m−1∑
j=0

Kj ∥φ− ψ∥ , m = 1, 2, ....

Lemma 2.4 ([19]). It holds

PT (L,K)

= {x ∈ PT , ∥x∥ 6 L, |x (t2)− x (t1)| 6 K |t2 − t1| for all t1, t2 ∈ [0, T ]} .

Definition 2.1 (Large contraction [10]). Let (M, d) be a metric space and con-
sider B : M → M. Then B is said to be a large contraction if given ϕ, φ ∈ M with
ϕ ̸= φ then d (Bϕ,Bφ) 6 d (ϕ, φ) and if for all ε > 0, there exists a δ ∈ (0, 1) such
that

[ϕ, φ ∈ M, d (ϕ, φ) > ε] ⇒ d (Bϕ,Bφ) 6 δd (ϕ, φ) .

Theorem 2.1 (Krasnoselskii-Burton [10]). Let M be a closed bounded convex
nonempty subset of a Banach space (B, ∥.∥). Suppose that A and B map M into M
such that

(i) x, y ∈ M, implies Ax+By ∈ M,
(ii) A is compact and continuous,
(iii) B is a large contraction mapping.
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Then there exists z ∈ M with z = Az +Bz.

We will use this theorem to show the existence of periodic solutions for (1.1).

Theorem 2.2 ([1]). Let ∥.∥ be the supremum norm, M = {φ ∈ PT : ∥φ∥ 6 L}
where L is a positive constant. Suppose that h is satisfying the following conditions

(H1) h : R → R is continuous on [−L,L] and differentiable on (−L,L),
(H2) the function h is strictly increasing on [−L,L],
(H3) supt∈(−L,L) h

′ (t) 6 1.

Then the mapping H define by (2.8) is a large contraction on the set M .

3. Existence of periodic solutions

To apply the Theorem 2.1 we need to define a Banach space B, a closed bounded
convex subset M of B and construct two mappings; one is a completely continuous
and the other is a large contraction. So, we let (B, ∥.∥) = (PT , ∥.∥) and

M = PT (L,K)

= {φ ∈ PT , ∥φ∥ 6 L, |φ (t2)− φ (t1)| 6 K |t2 − t1| for all t1, t2 ∈ [0, T ]} ,(3.1)

with L,K > 0. Define a mapping S : M → PT by

(Sφ) (t) =
∫ t+T

t

G (t, s) a (s)H (φ (s)) ds+

∫ t+T

t

{
f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
−a (s) g

(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)}
G (t, s) ds

+ g
(
t, φ (t) , φ[2] (t) , ..., φ[n] (t)

)
.(3.2)

Therefore, we express the above mapping as

Sφ = Aφ+Bφ,

where A,B : M → PT are given by

(Aφ) (t) =

∫ t+T

t

{
f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
−a (s) g

(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)}
G (t, s) ds

+ g
(
t, φ (t) , φ[2] (t) , ..., φ[n] (t)

)
,(3.3)

and

(3.4) (Bφ) (t) =

∫ t+T

t

G (t, s) a (s)H (φ (s)) ds.

To simplify notations, we introduce the following constants

(3.5) σ = max
t∈[0,T ]

|a (t)| , ρ1 = max
t∈[0,T ]

|f (t, 0, 0, ..., 0)| , ρ2 = max
t∈[0,T ]

|g (t, 0, 0, ..., 0)| .

We need the following assumptions

(3.6) J

βT (ρ1 + σρ2) + ρ2 + L
n∑

i=1

[ci + βT (ki + σci)]
i−1∑
j=0

Kj

 6 L,
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and

J ((2β + Tα ∥a∥) (ρ1 + σρ2) +Kg

+

n∑
i=1

[(2β + Tα ∥a∥)L (ki + σci) +Kci]

i−1∑
j=0

Kj

 6 K,(3.7)

where J is a positive constant with J > 3.

Lemma 3.1. For A defined in (3.3), suppose that (2.1)–(2.5) and (3.5)–(3.7) hold.
Then A : M → M.

Proof. Let φ ∈ M. For having Aφ ∈ M we will show that Aφ ∈ PT , ∥Aφ∥ 6 L
and |(Aφ) (t2)− (Aφ) (t1)| 6 K |t2 − t1| for all t1, t2 ∈ [0, T ]. First, it is easy to prove
that (Aφ)(t+ T ) = (Aφ)(t). That is, if φ ∈ PT then Aφ ∈ PT . By (3.5), we get

|(Aφ) (t)| 6 β

∫ t+T

t

∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)
)∣∣∣ ds

+ βσ

∫ t+T

t

∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)
)∣∣∣ ds

+
∣∣∣g (t, φ (t) , φ[2] (t) , ..., φ[n] (t)

)∣∣∣ ,
and in view of conditions (2.4), (2.5) and Lemma 2.3, we obtain∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)∣∣∣
6
∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
− f (s, 0, 0, ..., 0)

∣∣∣+ |f (s, 0, 0, ..., 0)|

6 ρ1 +

n∑
i=1

ki

i−1∑
j=0

Kj ∥φ∥

6 ρ1 + L
n∑

i=1

ki

i−1∑
j=0

Kj ,(3.8)

and ∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)
)∣∣∣

6
∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
− g (s, 0, 0, ..., 0)

∣∣∣+ |g (s, 0, 0, ..., 0)|

6 ρ2 +
n∑

i=1

ci

i−1∑
j=0

Kj ∥φ∥

6 ρ2 + L
n∑

i=1

ci

i−1∑
j=0

Kj .(3.9)
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Thus, it follows from (3.8) and (3.9) that

|(Aφ) (t)| 6 βT

ρ1 + L

n∑
i=1

ki

i−1∑
j=0

Kj


+ (βσT + 1)

ρ2 + L

n∑
i=1

ci

i−1∑
j=0

Kj


= βT (ρ1 + σρ2) + ρ2 + L

n∑
i=1

[ci + βT (ki + σci)]
i−1∑
j=0

Kj .

Therefore, from (3.6), we get

∥Aφ∥ 6 L

J
6 L.

Let t1, t2 ∈ [0, T ] with t1 < t2, we obtain

|(Aφ) (t2)− (Aφ) (t1)|

6
∣∣∣∣∣
∫ t2+T

t2

f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t1, s) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2+T

t2

a (s) g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

a (s) g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t1, s) ds

∣∣∣∣∣
+
∣∣∣g (t2, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)
− g

(
t1, φ (t1) , φ

[2] (t1) , ..., φ
[n] (t1)

)∣∣∣ .
But, ∣∣∣∣∣

∫ t2+T

t2

f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t1, s) ds

∣∣∣∣∣
6
∣∣∣∣∫ t1

t2

G (t2, s) f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
ds

+

∫ t2+T

t1+T

G (t2, s) f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t1+T

t1

[G (t2, s)−G (t1, s)] f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
ds

∣∣∣∣∣
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6
∫ t1

t2

|G (t2, s)|
∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)∣∣∣ ds
+

∫ t2+T

t1+T

|G (t2, s)|
∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)∣∣∣ ds
+

1∣∣∣exp(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)
)∣∣∣

×
∣∣∣∣exp(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds,
and

∫ t1+T

t1

∣∣∣∣exp(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds
=

∫ t1+T

t1

exp

(∫ s

t2

a (u) du

) ∣∣∣∣1− exp

(∫ t2

t1

a (u) du

)∣∣∣∣ ds
6 T ∥a∥ |t2 − t1| exp

(
−
∫ T

0

a (u) du

)
,

so, ∣∣∣∣∣
∫ t2+T

t2

f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

f
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t1, s) ds

∣∣∣∣∣
6 2β |t2 − t1|

ρ1 + L
n∑

i=1

ki

i−1∑
j=0

Kj

+ Tα ∥a∥ |t2 − t1|

ρ1 + L
n∑

i=1

ki

i−1∑
j=0

Kj



6 |t2 − t1|

ρ1 + L

n∑
i=1

ki

i−1∑
j=0

Kj

 (2β + Tα ∥a∥) .

(3.10)

Similarly, we get∣∣∣∣∣
∫ t2+T

t2

a (s) g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

−
∫ t1+T

t1

a (s) g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t1, s) ds

∣∣∣∣∣
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6
∣∣∣∣∫ t1

t2

a (s) g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

+

∫ t2+T

t1+T

a (s) g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
G (t2, s) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t1+T

t1

a (s) [G (t2, s)−G (t1, s)] g
(
s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
ds

∣∣∣∣∣
6
∫ t1

t2

|a (s)| |G (t2, s)|
∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)∣∣∣ ds
+

∫ t2+T

t1+T

|a (s)| |G (t2, s)|
∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)∣∣∣ ds
+

1∣∣∣exp(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

|a (s)|
∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)∣∣∣
×
∣∣∣∣exp(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds
6 |t2 − t1|σ

ρ2 + L

n∑
i=1

ci

i−1∑
j=0

Kj

 (2β + Tα ∥a∥) .(3.11)

Also, we have

∣∣∣g (t2, φ (t2) , φ
[2] (t2) , ..., φ

[n] (t2)
)
− g

(
t1, φ (t1) , φ

[2] (t1) , ..., φ
[n] (t1)

)∣∣∣
=
∣∣∣g (t2, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)
− g

(
t1, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)
+ g

(
t1, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)
− g

(
t1, φ (t1) , φ

[2] (t1) , ..., φ
[n] (t1)

)∣∣∣
6
∣∣∣g (t2, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)
− g

(
t1, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)∣∣∣
+
∣∣∣g (t1, φ (t2) , φ

[2] (t2) , ..., φ
[n] (t2)

)
− g

(
t1, φ (t1) , φ

[2] (t1) , ..., φ
[n] (t1)

)∣∣∣ .
By (2.3)–(2.5) and Lemma 2.3, we get

∣∣∣g (t2, φ (t2) , φ
[2] (t2) , ..., φ

[n] (t2)
)
− g

(
t1, φ (t1) , φ

[2] (t1) , ..., φ
[n] (t1)

)∣∣∣
6 Kg |t2 − t1|+

n∑
i=1

ci

∥∥∥φ[i] (t2)− φ[i] (t1)
∥∥∥

6

Kg +
n∑

i=1

ci

i−1∑
j=0

Kj+1

 |t2 − t1| .(3.12)
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Thus, it follows from (3.10)–(3.12) and (3.7) that

|(Aφ) (t2)− (Aφ) (t1)|

6

(2β + Tα ∥a∥)

ρ1 + σρ2 + L
n∑

i=1

(ki + σci)
i−1∑
j=0

Kj


+

Kg +
n∑

i=1

ci

i−1∑
j=0

Kj+1

 |t2 − t1| .

Therefore,

|(Aφ) (t2)− (Aφ) (t1)| 6
K

J
|t2 − t1| 6 K |t2 − t1| .

Consequently, A : M → M. �

Lemma 3.2. Suppose that conditions (2.1)–(2.5) and (3.5)–(3.7) hold. Then the
operator A : M → M given by (3.3), is continuous and compact.

Proof. SinceM is a uniformly bounded and equicontinuous subset of the space of
continuous functions on the compact [0, T ] we can apply the Ascoli-Arzela theorem to
confirm that M is a compact subset from this space. Also, and since any continuous
operator maps compact sets into compact sets, then to prove that A is a compact
operator it’s suffices to prove that it is continuous. For φ,ψ ∈ M, we have

|(Aφ) (t)− (Aψ) (t)|

6
∫ t+T

t

|G (t, s)|
∣∣∣f (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
−f
(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣∣ ds
+

∫ t+T

t

|a (s)| |G (t, s)|
∣∣∣g (s, φ (s) , φ[2] (s) , ..., φ[n] (s)

)
−g
(
s, ψ (s) , ψ[2] (s) , ..., ψ[n] (s)

)∣∣∣ ds
+
∣∣∣g (t, φ (t) , φ[2] (t) , ..., φ[n] (t)

)
− g

(
t, ψ (t) , ψ[2] (t) , ..., ψ[n] (t)

)∣∣∣ .
In view of conditions (2.4) and (2.5) and notations (3.5), we have

|(Aφ) (t)− (Aψ) (t)|

6 βT

n∑
i=1

ki

∥∥∥φ[i] − ψ[i]
∥∥∥+ (βσT + 1)

n∑
i=1

ci

∥∥∥φ[i] − ψ[i]
∥∥∥ .
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From Lemma 2.3, it follows that

|(Aφ) (t)− (Aψ) (t)|

6 βT
n∑

i=1

ki

i−1∑
j=0

Kj ∥φ− ψ∥+ (βσT + 1)
n∑

i=1

ci

i−1∑
j=0

Kj ∥φ− ψ∥

=
n∑

i=1

(βTki + (βσT + 1) ci)
i−1∑
j=0

Kj ∥φ− ψ∥ .

which proves that the operator A is continuous. Therefore, A is compact and contin-
uous. �

The next result proves the relationship between the mappings H and B in the
sense of large contractions. Assume that

(3.13) βσT 6 1,

(3.14) max (|H (−L)| , |H (L)|) 6 (J − 1)

J
L,

and

(3.15) (2β + Tα ∥a∥)σL 6 K.

Lemma 3.3. Let B be defined by (3.4), suppose (2.1), (3.13), (3.14), (3.15) and
all conditions of Theorem 2.2 hold. Then B : M → M is a large contraction.

Proof. Let B be defined by (3.4). For having Bφ ∈ M we will show that ∥Bφ∥ 6
L and |(Bφ) (t2)− (Bφ) (t1)| 6 K |t2 − t1| for all t1, t2 ∈ [0, T ]. First, it is easy to
show that (Bφ)(t+ T ) = (Bφ)(t). That is, if φ ∈ PT then Bφ ∈ PT . Let φ ∈ M, by
(3.14), we obtain

|(Bφ) (t)| 6
∫ t+T

t

|G (t, s)| |a (s)| |H (φ (s))| ds

6 βσT max {|H (−L)| , |H (−L)|} 6 (J − 1)L

J
6 L.

Then, for any φ ∈ M, we have

∥Bφ∥ 6 L.
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Let t1, t2 ∈ [0, T ] with t1 < t2, by (3.13)–(3.15), we get

|(Bφ) (t1)− (Bφ) (t2)|

6
∣∣∣∣∣
∫ t2+T

t2

G (t2, s) a (s)H (φ (s)) ds−
∫ t1+T

t1

G (t1, s) a (s)H (φ (s)) ds

∣∣∣∣∣
6
∣∣∣∣∣
∫ t1

t2

G (t2, s) a (s)H (φ (s)) ds+

∫ t2+T

t1+T

G (t2, s) a (s)H (φ (s)) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t1+T

t1

[G (t2, s)−G (t1, s)] a (s)H (φ (s)) ds

∣∣∣∣∣
6
∫ t1

t2

|G (t2, s)| |a (s)| |H (φ (s))| ds+
∫ t2+T

t1+T

|G (t2, s)| |a (s)| |H (φ (s))| ds

+
1∣∣∣exp(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

|a (s)| |H (φ (s))|

×
∣∣∣∣exp(∫ s

t2

a (u) du

)
− exp

(∫ s

t1

a (u) du

)∣∣∣∣ ds
6 2βσ

(
(J − 1)L

J

)
|t2 − t1|+

1∣∣∣exp(∫ T

0
a (u) du

)
− 1
∣∣∣
∫ t1+T

t1

|a (s)| |H (φ (s))|

× exp

(∫ s

t2

a (u) du

) ∣∣∣∣1− exp

(∫ t2

t1

a (u) du

)∣∣∣∣ ds
6 2βσ

(J − 1)L

J
|t2 − t1|+ Tα ∥a∥σ (J − 1)L

J
|t2 − t1|

= (2β + Tα ∥a∥)σ (J − 1)L

J
|t2 − t1| .

Then

|(Bφ) (t1)− (Bφ) (t2)| 6
(J − 1)K

J
|t2 − t1| 6 K |t2 − t1| .

Therefore, B : M → M.
It remains to prove that B is a large contraction. By Theorem 2.2, H is a large

contraction on M, then for any φ,ψ ∈ M, with φ ̸= ψ we get

|(Bφ) (t)− (Bψ) (t)|

6
∣∣∣∣∣
∫ t+T

t

G (t, s) a (s) [H (φ (s))−H (ψ (s))] ds

∣∣∣∣∣
6 βσT ∥φ− ψ∥ 6 ∥φ− ψ∥ .

Then ∥Bφ−Bψ∥ 6 ∥φ− ψ∥. Now, let ε ∈ (0, 1) be given and let φ,ψ ∈ M, with
∥φ− ψ∥ > ε from the proof of Theorem 2.2, we have found a δ ∈ (0, 1), such that

|(Hφ) (t)− (Hψ) (t)| 6 δ ∥φ− ψ∥ .



PERIODIC SOLUTIONS 81

Thus,

|(Bφ) (t)− (Bψ) (t)|

6
∣∣∣∣∣
∫ t+T

t

G (t, s) a (s) [H (φ (s))−H (ψ (s))] ds

∣∣∣∣∣
6 βσTδ ∥φ− ψ∥ 6 δ ∥φ− ψ∥ .

The proof is complete. �

Theorem 3.1. Suppose the hypothesis of Lemmas 3.1–3.3 hold. Let M defined by
(3.1), then (1.1) has a T -periodic solution in M.

Proof. By Lemmas 3.1 and 3.2 A : M → M is continuous and A(M) is con-
tained in a compact set. Also, from Lemma 3.3, the mapping B : M → M is a
large contraction. Next, we prove that if φ,ψ ∈ M, we have ∥Aφ+Bψ∥ 6 L and
|(Aφ+Bψ) (t2)− (Aφ+Bψ) (t1)| 6 K |t2 − t1| for all t1, t2 ∈ [0, T ]. Let φ,ψ ∈ M
with ∥φ∥ , ∥ψ∥ 6 L. By (3.6) and (3.14), we have

∥Aφ+Bϕ∥

6 βT (ρ1 + σρ2) + ρ2 + L
n∑

i=1

[ci + βT (ki + σci)]
i−1∑
j=0

Kj +
(J − 1)L

J

6 L

J
+

(J − 1)L

J
= L.

Now, let φ,ψ ∈ M and t1, t2 ∈ [0, T ]. By (3.7) and (3.15), we get

|(Aφ+Bψ) (t2)− (Aφ+Bψ) (t1)|
6 |(Aφ) (t2)− (Aφ) (t1)|+ |(Bψ) (t2)− (Bψ) (t1)|

6 K

J
|t2 − t1|+

(J − 1)K

J
|t2 − t1|

6 K |t2 − t1| .

Clearly, all the hypotheses of Krasnoselskii-Burton’s theorem are satisfied. Thus there
exists a fixed point z ∈ M such that z = Az +Bz. By Lemma 2.1, this fixed point is
a solution of (1.1). Hence (1.1) has a T -periodic solution. �
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