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SOLUTION OF DUFFING EQUATION WITH

FOURIER DECOMPOSITION METHOD

Murat Düz

Abstract. In this article, we aim to find an alternative solution to the Duffing
Equation, which is an important ordinary differential equation in mathemat-
ical physics. We used for solution Fourier Transform and Adomian decom-

position method. Adomian polynomials have been used for nonlinear term.
Finally we obtained the complete solution by using the Pade Approach from
the approximate solutions founded with the Fourier Adomian Decomposition
Method(FADM).

1. Introduction

Various natural systems are modelled by differential equations and most of
them are nonlinear. However, solving such nonlinear equations is not easy in gen-
eral. Therefore, investigation of various efficient methods to solve these equations
have been an important topic of the research. In recent years, many methods have
been developed to obtain exact and approximate solutions of such equations. But
the point reached for the solution of such equations is not enough. Because for all
nonlinear equations there is no method that gives the exact solution or the closest
solution. Therefore, the method that gives the closest solution to the exact solution
may be differ to equation from the equation. Some methods used for such equations
are Adomian decomposition method, Homotopy perturbation method, Variational
iteration method, tanh method, differential transform method, etc. The solution
of such equations cannot be obtained by using integral transforms. However, non-
linear equations can be solved by combining integral transforms with the above-
mentioned methods. For example, nonlinear equations are solved by using Laplace
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and Adomain,Elzaki and Homotopy perturbation, Fourier and Adomian method
together. [14, 7, 8, 5]

One of the most common physical nonlinear ordinary differential equations,
governs many oscillative systems, is the Duffing equations. These equations can be
found in a wide variety of engineering and scientific applications. There are many
articles about the Duffing equation [14, 11, 12, 10, 4, 6, 9, 13, 1]. In this study,
we tried to find approximate solution of Duffing equation by using FADM. We have
applied the Pade approach to the Fourier transform of this approximate solution.
We obtained the complete solution by taking the inverse Fourier transform of the
obtained function. The Duffing equation is described by second order ordinary
differential equation with the common form

y′′ + py′ + p1y + p2y
3 = f(x)

y(0) = α, y′(0) = β

where p, p1, p2, α, β are real constants.
We found that our results are consistent with the literature.

2. Basic Definitions and Theorems

2.1. Fourier Transform.

Definition 2.1. Let f be an absolutely integrable on the real line and piecewise
continuous on every finite interval. Then Fourier Transform is defined by

F [f(t)] =

∫ ∞

−∞
f(t)e−iwtdt = F (w)

and similarly inverse Fourier transform is

F−1[F (w)] =
1

2π

∫ ∞

−∞
f(t)eiwtdt = F (w)

Theorem 2.1 ([2]). Let f(t) be continuous or partly continuous in the interval
(−∞,∞) and

f(t), f ′(t), f ′′(t), ..., f (n−1)(t) → 0 for |t| → ∞.

If f(t), f ′(t), f ′′(t), , f (n−1)(t) are absolutely integrable in the interval (−∞,∞),
then

F [f (n)(t)] = (iw)nF [f(t)].

Definition 2.2. The Dirac delta distribution can be rigorously thought of as
a distribution on real line which is zero every where except at the origin, where it
is infinite,

δ(t) =

{
0, t ̸= 0
∞, t = 0

Some properties ([2]) of the Dirac delta are∫ ∞

−∞
δ(t)dt = 1
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∫ ∞

−∞
f(t)δ(t− t0)dt = f(t0)∫ ∞

−∞
f(t)δ(n)(t− t0)dt = (−1)n.f (n)(t0)

(t− to)
nδ(n)(t− t0) = (−1)n.n!.δ(t− t0)∫ ∞

−∞

δ(t− to)f(w)

(t− to)n
dw =

1

n!

dnf(w)

dwn
(t = t0)

f(w).δ(w − w0) = f(w + w0)δ(w)

Theorem 2.2. [3] If Fourier transforms of some functions are following

(i) F [1] = 2πδ(w)
(ii) F [tn] = 2π.inδ(n)(w)
(iii) F [eiw0t] = 2πδ(w − w0)

3. FADM for Duffing Equation

In this section, FADM is applied to the Duffing equation. Let us consider
following general Duffing equation with initial conditions

y′′ + αy′ + βy + γy3 = f(x), y(0) = A, y′(0) = B

Let we apply Fourier transform to this equation.

F(y′′) + αF(y′) + βF(y) + γF(y3) = F [f(x)]

(iw)2F(y) + α(iw)F(y) + βF(y) + γF(y3) = F [f(x)]

F(y) = −(αiw+β)F(y)−γF(y3)+F [f(x)]
−w2 and F(y) = (αiw+β)F(y)+γF(y3)−F [f(x)]

w2

If we apply inverse Fourier transform to above equality, than we get that:

F−1[F(y)] = F−1(
(αiw + β)F(y)

w2
) + F−1(

F(γy3))

w2
−F−1(

F(f(x))

w2
)

So we get the following iteration relation:

yn+1 = F−1[
(αiw + β)F(yn)

w2
] + F−1(

γF(An)

w2
)

where An’s Adomian polynomials.

A0 = y30 , A1 = 3y1 · (y0)2, A2 = 3y2 · (y0)2 + 3y0(y1)
2,

A3 = 3y3(y0)
2 + 6y0y1 · y2 + (y1)

3,...

y0 = Bx+A−F−1(F [f(x)
w2 ), y1 = F−1( (αiw+β)F(y0)

w2 + F−1(γF (A0)
w2

y2 = F−1( (αiw+β)F(y1)
w2 + F−1(γF (A1)

w2 .

Since the complicated excitation term f(x) can cause difficult integrations and
proliferation of terms, we can express f(x) in Taylor series at x0 = 0, which is
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truncated for simplification. If we replace in place of f(x)

f ≈
K∑
i=0

aix
i

than as the approximate solution with the first n terms, the sum of the terms up
to the mth degree in the expression y = y0 + y+y2 + ...yn−1 can be taken. Here m
is the order of the first term (y0). It is clear that m = K + 2.

Example 3.1. ([14, 9]) Consider the Duffings equation in the following type:

y′′ + 3y − 2y3 = cosx · sin2x
with initial conditions y(0) = 0, y′(0) = 1.

The analytic solution of this equation is

y(x) = sinx.

Approximation value at x = 0 of f(x) = cosx · sin2x is

f(x)≈2x− 7x3

3
+

61x5

60
− 547x7

2520
.

Coefficients of equation which we investigate are α = 0, β = 3, γ = −2.

y0 = x−F−1(
F(2x− 7x3

3 + 61x5

60 − 547x7

2520 )

w2
)

y0 = x−F−1(
2π(i2δ′ − 7i3δ(3)

3 + 61i5δ(v)

60 − 547i7δ(7)

2520 )

w2
)

From properties of Dirac delta function y0 can be written as following

y0 = x+2i

∫ ∞

−∞

δeiwxdw

w3
+14i

∫ ∞

−∞

δeiwxdw

w5
+122i

∫ ∞

−∞

δeiwxdw

w7
+

547i

2520

∫ ∞

−∞

7!δeiwxdw

w9
.

= x+ 2i (ix)
3

3! + 14i (ix)
5

5! + 122i (ix)
7

7! + 547i
2520

(ix)9

72

= x+ x3

3 − 7x5

60 + 61x7

2520 − 547x9

181440

y1 = F−1(
3F(y0)−2F(y3

0)
w2 ).

y1 ≈ F−1(
F(3x−x3− 47x5

20 + 2119x7

20000

w2 )

y1 ≈ 2πF−1(
3iδ′−i3δ(3)− 47i5δ(5)

20 + 2119i7δ(7)

20000

w2 )

y1 ≈ 2πF−1(−3iδ
w3 − 6iδ

w5 + 282iδ
w7 + 133497iδ

250w9 )

≈ −3i (ix)
3

3! − 6i (ix)
5

5! + 282i (ix)
7

7! + 133497i
250

(ix)9

9!

≈ −x3

2 + x5

20 + 47x7

840 − 89x9

60480

y2 = F−1(
3F(y1)−2F(3y2

0y1)
w2 )

y2 ≈ F−1(
F(− 3x3

2 + 63x5

20 + 523x7

280 )

w2 )
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≈ 2πF−1(
−3i3δ′′′

2 + 63i5δ(5)

20 + 523i7δ(7)

280

w2 )

≈ 2πF−1(−18iδ(w)
2w5 − 63i5!δ(w)

20w7 + 523i7!δ(w)
280w9 )

≈ 3x5

40 − 3x7

40 − 523x9

20160

y3 = F−1(
3F(y2)−2F(3y2

0y2+3y0y
2
1)

w2 )

y3 ≈ F−1(
F( 9x5

40 − 87x7

40 )

w2 )

y3 ≈ F−1( 9.2πi
5δ(5)

40w2 )−F−1( 87.2πi
7δ(7)

40w2 )

y3 ≈ − 3x7

560 + 29x9

960

y4 = F−1(
3F(y3)−2F(3y2

0y3+6y0y1y2+y3
1)

w2 )

y4 ≈ F−1(
F(−9x7

560 )

w2 ) = −9
560F

−1( 2πi
7δ(7)

w2 )

≈ −9
560F

−1( 2πi
77!δ

w9 ) = x9

4480

y ≈ y0 + y1 + y2 + y3 + y4

y ≈ x− x3

3! +
x5

5! −
x7

7! +
x9

9! = ϕ5(x)

ϕ5(x) is the sum of the terms up to the 9th order of the first 5 terms If we take
Fourier transform of ϕ5(x) than we get

F [ϕ5(x)] = 2πδ′ − 2πi3δ′′′

3! + 2πi5δ(5)

5! − 2πi7δ(7)

7! + 2πi9δ(9)

9!

= −2πi
(
δ
w + δ

w3 + δ
w5 + δ

w7 + δ
w9

)
All of the [L/M] pade approximation of F [ϕ5(x)], yields [L/M ] = 2πiwδ(w)

1−w2 .

2πiwδ(w)
1−w2 = 2πiδ(w)

2 ( 1
1−w − 1

1+w )

= πi( δ(w)
1−w − δ(w)

1+w ) = πi( δ(w+1)
−w − δ(w−1)

w )

By using the inverse Fourier transformation to [L/M ],

F−1[πi( δ(w+1)
−w − δ(w−1)

w )] = i
2

∫∞
−∞( δ(w+1)

−w − δ(w−1)
w )eiwxdw

= i
2 (e

−ix − eix) = sinx.

Thus, a complete solution was obtained.

Example 3.2. [11, 13] Let us consider the Duffings equation

y′′ + y′ + y + y3 = cos3x− sinx with y(0) = 1, y′(0) = 0.

The exact solution of the initial value problem is y(x)=cosx. Approximation value
of f(x) can be found by using Maclaurin expansion as

f(x) = cos3x− sinx ≈ 1− x− 3x2

2
+

x3

6
+

7x4

8
.

Coefficients of the equation which we investigate are α = β = γ = 1.
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y0 = 1−F−1(
1−x− 3x2

2 + x3

6 + 7x4

8

w2 ) = 1 + x2

2 − x3

6 − x4

8 + x5

120 + 21x6

720

y1 = F−1( 1
w2 (iw + 1)F(y0)) + F−1( 1

w2F(y30)) ≈ −x2 − x3

6 − x4

8 + 7x5

120 − 7x6

720 .

y2 ≈ F−1( 1
w2 (iw + 1)F(y1)) + F−1( 1

w2F(3y20y1))

y2 ≈ F−1[ 1
w2 (iw + 1)F(−x2 − x3

6 − x4

8 + 7x5

120 − 7x6

720 )]

+F−1[ 1
w2F(−3x2 − x3

2 − 27x4

8 + 27x5

40 + 19x6

80 )]

= 2x3

6 + 9x4

24 + 7x5

120 + 77x6

720 .

y3 ≈ F−1( 1
w2 (iw + 1)F(y2)) + F−1( 1

w2F(3y20y2 + 3y0y
2
1))

y3 = F−1[ 1
w2 (iw + 1)F( 2x

3

6 + 9x4

24 + 7x5

120 + 77x6

720 )]

+F−1[ 1
w2 (F(x3 + 33x4

8 + 87x5

40 + 827x6

240 )]

≈ − 2x4

24 − 17x5

120 − 115x6

720 .

y4 ≈ F−1( 1
w2 (iw + 1)F(y3)) + F−1( 1

w2F(3y20y3 + 6y0y1y2 + y31))

y4 = F−1[ 1
w2 (iw + 1)F(−2x4

24 − 17x5

120 − 115x6

720 )]

+F−1[ 1
w2F(−x4

4 − 97x5

40 − 69x6

16 )]

≈ 2x5

120 + 25x6

720 .

y5 ≈ F−1( 1
w2 (iw + 1)F(y4)) + F−1( 1

w2F(3y20y4 + 6y0y1y3 + 3y0y
2
2 + 3y21y2))

≈ − 2x6

720 .

y ≈ y0 + y1 + y2 + y3 + y4 + y5

≈ 1− x2

2 + x4

4! −
x6

6! = ϕ5(x).

All of the [L/M] pade approximation of F [ϕ5(x)], yields [L/M ] = 2πδ(w) w2

w2−1 . Let

us use specials of dirac delta function for 2πδ(w)w2

w2−1 .

2πδ(w)w2

w2 − 1
= 2πw

wδ(w)

w2 − 1
= πw(

δ(w)

w − 1
+

δ(w)

w + 1
)

.

= πw(
δ(w + 1)

w
+

δ(w − 1)

w
)

= π(δ(w + 1) + δ(w − 1)).

If we take inverse fourier transform of π(δ(w + 1) + δ(w − 1)), we get that

F−1(π(δ(w + 1) + δ(w − 1))) =
∫∞
−∞

δ(w+1)+δ(w−1)
2 eiwxdw

= eix+e−ix

2 = cosx.

Thus, a complete solution was obtained.



SOLUTION OF DUFFING EQUATION WITH FOURIER DECOMPOSITION METHOD 67

4. conclusion

In this article, approximate solution of Duffing equation is obtained by using
Fourier Transform and Adomian decomposition method. Some samples, which
were solved by other methods, were examined by this method and it is shown that
results are consistent. Since the technique is direct and powerful it can be used to
handle a variety of equations which appears in applications in several branch of the
nonlinear equations.
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