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BRANCHES AND OBSTINATE SBE-FILTERS

OF SHEFFER STROKE BE-ALGEBRAS

Tugce Katican

Abstract. The aim of the study is to introduce an obstinate SBE-filter, a tile,
a branch and a chain of Sheffer stroke BE-algebras (briefly, SBE-algebras). An
obstinate SBE-filter is defined and some properties are investigated. Also, we

determine a tile of a SBE-algebra and state the case which a SBE-subalgebra
of a SBE-algebra is its SBE-filter. It is shown that the set of all tiles of a
SBE-algebra is a SBE-subalgebra of this algebra but it is not a SBE-filter of
this algebra. Finally, we describe a branch of a SBE-algebra by means of a

tile of the algebraic structure and branchwise commutative and branchwise
self-distibutive branches of SBE-algebras.

1. Section title

Sheffer operation (or Sheffer stroke) is introduced by H. M. Sheffer [23]. This
operation is known NAND operator in logic and is one of the two operators that
can be used by itself, without any other logical operators, to built a logical for-
mal system. The well-known example is Boolean algebras whose axioms can be
written in a single axiom using the Sheffer stroke [7]. Also, the most important
application of Sheffer stroke is to have a single diod on the chip forming processor
in a computer, and so, it is simpler and cheaper than to produce different diods
for other Boolean operations. Since this operation can be used to reduce the num-
ber of axioms in a system, it provides new and easily applicable axiom systems
for many algebraic structures. Therefore, Sheffer stroke has many applications in
algebraic structures such as ortholattices [2], orthoimplication algebras [1], Sheffer
stroke Hilbert algebras [8], their fuzzy filters [9] and neutrosophic N -structures
[14], filters of strong Sheffer stroke non-associative MV-algebras [10] and their
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neutrosophic N -structures [13], (fuzzy) filters of Sheffer stroke BL-algebras [11]
and their neutrosophic N -structures [5], Sheffer stroke UP-algebras [12], Sheffer
stroke BG-algebras [15] and their fuzzy implivative ideals [16] and Sheffer stroke
BCK-algebras [17].

On the other side, H S. Kim and Y. H. Kim introduced BE-algebras as a general-
ization of a dual BCK-algebra and defined a filter and an upper set on this algebraic
structure [6]. A. Rezaei and A. B. Saeid described a regular congruence relation to
construct quotient BE-algebras from self-distributive BE-algebras [19] and intro-
duced commutative ideals in BE-algebras with several properties [22]. Recently,
Rezaei et al. stated relations between generalized Hilbert (in short, g-Hilbert) al-
gebras, CI/BE-algebras, implication algebras and other algebraic structures [18],
[20], [21]. Recently, T. Katican et al. studied on BE-algebras with Sheffer stroke
and various properties [4].

In this study, basic definitions and notions of Sheffer stroke BE-algebras (in
short, SBE-algebras) are presented. An obstinate SBE-filter of a SBE-algebra are
defined and some properties are given. We show that every obstinate SBE-filter of a
SBE-algebra is its SBE-filter but the inverse does not generally hold. By describing
a tile of a SBE-algebra, we state that every element of a SBE-algebra is its tile
if and only if every SBE-subalgebra of this algebraic structure is its SBE-filter
and that the set of all tiles of a SBE-algebra is its SBE-subalgebra. Moreover, a
(improper and proper) branch of a SBE-algebra is introduced by means of a tile of
this algebraic structure and the tile is said to be ultimate element for the branch.
Also, it is shown that every branch of a SBE-algebra has an element 1 ◦ 1 of the
algebra and that a SBE-algebra equals to an union of its branches, for all ultimate
elements. We indicate that the set of all ultimate elements of proper branches
of a SBE-algebra have the element 1 of this algebraic structure. After defining
a chain of a SBE-algebra, it is demonstrated that a chain initiated by a tile of a
SBE-algebra is its SBE-filter. Finally, a branchwise commutative and a branchwise
self-distributive branch of a SBE-algebra are determined.

2. Preliminaries

In this section, basic definitions and notions about Sheffer stroke and Sheffer
stroke BE-algebras are given.

Definition 2.1. [2] Let S = ⟨S, ◦⟩ be a groupoid. The operation | on S is said
to be a Sheffer operation (Sheffer stroke) if it satisfies the following conditions for
all x, y, z ∈ S:
(S1) x ◦ y = y ◦ x,
(S2) (x ◦ x) ◦ (x ◦ y) = x,
(S3) x ◦ ((y ◦ z) ◦ (y ◦ z)) = ((x ◦ y) ◦ (x ◦ y)) ◦ z,
(S4) (x ◦ ((x ◦ x) ◦ (y ◦ y))) ◦ (x ◦ ((x ◦ x) ◦ (y ◦ y))) = x.

Definition 2.2. [4] A Sheffer stroke BE-algebra (shortly, SBE-algebra) is a
structure ⟨S; ◦, 1⟩ of type (2, 0) such that 1 is the constant in S and the following
axioms are satisfied for all sx, y, z ∈ S:
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(SBE − 1) x ◦ (x ◦ x) = 1,
(SBE − 2) x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = y ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))).

Lemma 2.1. [4] Let ⟨S; ◦, 1⟩ be a SBE-algebra. Then the following hold for all
x, y ∈ S:
(i) x ◦ (1|1) = 1,
(ii) 1 ◦ (x ◦ x) = x,
(iii) x ◦ ((y ◦ (x ◦ x)) ◦ (y ◦ (x ◦ x))) = 1,
(iv) x ◦ (((x ◦ (y ◦ y)) ◦ (y ◦ y)) ◦ ((x ◦ (y ◦ y)) ◦ (y ◦ y))) = 1,
(v) (x ◦ 1) ◦ (x ◦ 1) = x,
(vi) ((x ◦ y) ◦ (x ◦ y)) ◦ (x ◦ x) = 1 and ((x ◦ y) ◦ (x ◦ y)) ◦ (y ◦ y) = 1,
(vii) x ◦ ((x ◦ y) ◦ (x ◦ y)) = x ◦ y = ((x ◦ y) ◦ (x ◦ y)) ◦ y.

Definition 2.3. [4] A SBE-algebra ⟨S; ◦, 1⟩ is called commutative if

(x ◦ (y ◦ y)) ◦ (y ◦ y) = (y ◦ (x ◦ x)) ◦ (x ◦ x),
for any x, y ∈ S.

Definition 2.4. [4] A SBE-algebra ⟨S; ◦, 1⟩ is called self-distributive if

x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) = (x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))),
for any x, y, z ∈ S.

Definition 2.5. [4] Let ⟨S; ◦, 1⟩ be a SBE-algebra. Define a relation ≼ on S
by

x ≼ y if and only if x ◦ (y ◦ y) = 1,

for all x, y ∈ S.
The relation is not a partial order on S, since it is only reflexive by (SBE−1).

Lemma 2.2. [4] Let ⟨S; ◦, 1⟩ be a SBE-algebra. Then
(1) If x ≼ y, then y ◦ y ≼ x ◦ x,
(2) x ≼ y ◦ (x ◦ x),
(3) y ≼ (y ◦ (x ◦ x)) ◦ (x ◦ x),
(4) If ⟨S; ◦, 1⟩ is self-distributive, then x ≼ y implies y ◦ z ≼ x ◦ z,
(5) If ⟨S; ◦, 1⟩ is self-distributive, then y◦(z◦z) ≼ (z◦(x◦x))◦((y◦(x◦x))◦(y◦(x◦x))).

Definition 2.6. [4] A nonempty subset F ⊆ S is called a SBE-filter of a SBE-
algebra ⟨S; ◦, 1⟩ if it satisfies the following properties:
(SBEf − 1) 1 ∈ F ,
(SBEf − 2) For all x, y ∈ S, x ◦ (y ◦ y) ∈ F and x ∈ F imply y ∈ F .

Lemma 2.3. [4] Let ⟨S; ◦, 1⟩ be a SBE-algebra. Then a nonempty subset F ⊆ S
is a SBE-filter of S if and only if for all x, y ∈ S
(i) x ∈ F and y ∈ F imply (x ◦ y) ◦ (x ◦ y) ∈ F ,
(ii) x ∈ F and x ≼ y imply y ∈ F .

Definition 2.7. [4] A subset T of a SBE-algebra ⟨S; ◦, 1⟩ is called a SBE-
subalgebra of S if x ◦ (y ◦ y) ∈ T , for any x, y ∈ T . Clearly, S itself and {1} are
SBE-subalgebras of S.
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Lemma 2.4. [4] Any SBE-filter of a SBE-algebra ⟨S; ◦, 1⟩ is a SBE-subalgebra
of S.

Definition 2.8. [3] A weak BCC-algebra X is an abstract algebra (X, ∗, 0) of
type (2, 0) satisfying the following axioms:

(i) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(ii) x ∗ x = 0,
(iii) x ∗ 0 = x,
(iv) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X.

Definition 2.9. [3] The set B(a) = {x ∈ X : a 6 x}, where a is an atom of a
weak BCC-algebra X, is called a branch of X. The element a is called initial for
B(a). In the case when there exists b ̸= a such that B(a) ⊂ B(b), we say that the
branch B(a) is improper. So, B(a) is proper if no b ∈ X such that b ̸= a and b 6 a.
The set of all initial elements of proper branches of X is denoted by I(X).

3. Obstinate SBE-filters

In this section, we introduce obstinate SBE-filters of SBE-algebras. Unless
otherwise specified, S denotes a SBE-algebra.

Definition 3.1. Let F be a SBE-filter of a SBE-algebra S. Then F is called
obstinate if x, y /∈ F implies x ◦ (y ◦ y), y ◦ (x ◦ x) ∈ F , for all x, y ∈ S.

Example 3.1. Consider the SBE-algebra ⟨S; ◦, 1⟩ where S = {0, u, v, w, t, 1}
and Sheffer operation ◦ with the following Cayley table [4]:

Table 1. Table of the Sheffer operation ◦ on S

◦ 0 u v w t 1
0 1 1 1 1 1 1
u 1 t w 1 1 t
v 1 w w 1 1 w
w 1 1 1 v u v
t 1 1 1 u u u
1 1 t w v u 0

Then {u, v, 1} is an obstinate SBE-filter of S.

Lemma 3.1. Let F be a SBE-filter of a SBE-algebra S. Then F is obstinate if
and only if x ∈ F or x ◦ x ∈ F , for all x ∈ S.

Proof. Let F be an obstinate SBE-filter of S. Assume that x ◦ x /∈ F . Since
x ◦ x /∈ F and 1 ◦ 1 /∈ F , it follows from Lemma 2.1 (i)-(ii), (S1) and (S2) that
x = 1 ◦ (x ◦ x) = (x ◦ x) ◦ ((1 ◦ 1) ◦ (1 ◦ 1)) ∈ F and 1 = (1 ◦ 1) ◦ ((x ◦ x) ◦ (x ◦ x)) =
x ◦ (1 ◦ 1) ∈ F . Suppose that x /∈ F . Since x /∈ F and 1 ◦ 1 /∈ F , it is obtained from
Lemma 2.1 (i), (v), (S1) and (S2) that x ◦ x = x ◦ 1 = x ◦ ((1 ◦ 1) ◦ (1 ◦ 1)) ∈ F and
1 = (x ◦ x) ◦ (1 ◦ 1) = (1 ◦ 1) ◦ (x ◦ x) ∈ F .
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Conversely, let F be a SBE-filter of S such that x ∈ F or x ◦ x ∈ F , for
any x ∈ S. Assume that x, y /∈ F . Then x ◦ x ∈ F anf y ◦ y ∈ F . Since
x◦x ≼ (y◦y)◦((x◦x)◦(x◦x)) = x◦(y◦y) and y◦y ≼ (x◦x)◦((y◦y)◦(y◦y)) = y◦(x◦x)
from Lemma 2.2 (2), (S1) and (S2), we have from Lemma 2.3 (ii) that x◦(y◦y) ∈ F
and y ◦ (x ◦ x) ∈ F . Thus, F is obstinate. �

Lemma 3.2. Let F be a SBE-filter of a SBE-algebra S. Then F is obstinate if
and only if

(3.1) x ◦ (y ◦ y) ∈ F or y ◦ (x ◦ x) ∈ F,

for all x, y ∈ S.

Proof. Let F be an obstinate SBE-filter of a SBE-algebra S. Assume that
x ◦ (y ◦ y) /∈ F . Then (x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y)) ∈ F from Lemma 3.1. Since

((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y))) ◦ ((y ◦ (x ◦ x)) ◦ (y ◦ (x ◦ x)))
= ((((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y))) ◦ y) ◦ (((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y))) ◦ y)) ◦ (x ◦ x)
= ((x ◦ ((y ◦ (y ◦ y)) ◦ (y ◦ (y ◦ y)))) ◦ (x ◦ ((y ◦ (y ◦ y)) ◦ (y ◦ (y ◦ y))))) ◦ (x ◦ x)
= ((x ◦ (1 ◦ 1)) ◦ (x ◦ (1 ◦ 1))) ◦ (x ◦ x)
= 1 ∈ F

from Lemma 2.1 (i), (S1), (S3), (SBE-1) and (SBEf-1), it follows from (SBEf-2) that
y ◦ (x◦x) ∈ F . Suppose that y ◦ (x◦x) /∈ F . Similarly, (y ◦ (x◦x))◦ (y ◦ (x◦x)) ∈ F
from Lemma 3.1. Since

((y ◦ (x ◦ x)) ◦ (y ◦ (x ◦ x))) ◦ ((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y)))
= ((((y ◦ (x ◦ x)) ◦ (y ◦ (x ◦ x))) ◦ x) ◦ (((y

◦(x ◦ x)) ◦ (y ◦ (x ◦ x))) ◦ x)) ◦ (y ◦ y)
= ((y ◦ ((x ◦ (x ◦ x)) ◦ (x ◦ (x ◦ x)))) ◦ (y◦
((x ◦ (x ◦ x)) ◦ (x ◦ (x ◦ x))))) ◦ (y ◦ y)

= ((y ◦ (1 ◦ 1)) ◦ (y ◦ (1 ◦ 1))) ◦ (y ◦ y)
= 1 ∈ F

from Lemma 2.1 (i), (S1), (S3), (SBE-1) and (SBEf-1), we get from (SBEf-2) that
x ◦ (y ◦ y) ∈ F .

Conversely, let F be a SBE-filter of S satisfying the statement (3.1). Suppose
that x, x ◦ x /∈ F . Then it is obtained from (S2) and the statement (3.1) that
x = (x◦x)◦ (x◦x) ∈ F or x◦x = x◦ ((x◦x)◦ (x◦x)) ∈ F , which is a contradiction.
Hence, x ∈ F or x ◦ x ∈ F , for all x ∈ S. By Lemma 3.1, F is obstinate. �

Remark 3.1. Every obstinate SBE-filter of a SBE-algebra S is a SBE-filter of
S but the inverse is generally not true.

Example 3.2. Consider the SBE-algebra S in Example 3.1. Then {1} is a SBE-
filter of S but it is not obstinate since w ◦ (u ◦ u) = u /∈ F and u ◦ (w ◦w) = w /∈ F
when u,w /∈ F .
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4. Branches

In this section, we present tiles and branches of SBE-algebras.

Definition 4.1. An element s of a SBE-algebra S is called a tile of S if
s ◦ (x ◦ x) = 1 implies x = s or x = 1. The set of all tiles of S is denoted by R(S).

Example 4.1. Consider the SBE-algebra ⟨S; ◦, 1⟩ where S = {0, u, v, w, t, 1}
and Sheffer stroke | with the following Cayley table [4]:

Table 2. Table of the Sheffer stroke ◦ on S

◦ 0 u v w t 1
0 1 1 1 1 1 1
u 1 v 1 1 1 v
v 1 1 u 1 1 u
w 1 1 1 t 1 t
t 1 1 1 1 w w
1 1 v u t w 0

Then 1 is a tile of S while u is not since w ̸= u and w ̸= 1 when u◦ (w ◦w) = 1.

Remark 4.1. For every SBE-algebra S, it is clear from (SBE-1) that 1 ∈ R(S).

Lemma 4.1. Let S be a SBE-algebra. Then 1 ̸= s is a tile of S if and only if
a subset {s, 1} of S is a SBE-filter of S.

Proof. Let 1 ̸= s be a tile of S. It is obvious that 1 ∈ {s, 1}. Assume that
x, x ◦ (y ◦ y) ∈ {s, 1}. If x = s, then s ◦ (y ◦ y) = 1. Thus, y = s or y = 1, and so,
y ∈ {s, 1}. If x = 1, then y = s or y = 1 from Lemma 2.1 (ii), and so, y ∈ {s, 1}.
Hence, {s, 1} is a SBE-filter of S.

Conversely, let {s, 1} be a SBE-filter of S and x ∈ S such that s ◦ (x ◦ x) = 1.
Since s ◦ (x ◦ x) = 1 ∈ {s, 1} and s ∈ {s, 1}, it is obtained from (SBEf-2) that
x ∈ {s, 1}. Then x = s or x = 1, which means that s is a tile of S. �

Lemma 4.2. A SBE-algebra S contains only tiles (i.e., every element of S is a
tile of S) if and only if every SBE-subalgebra of S is a SBE-filter of S.

Proof. Let every element s of S be a tile of S and T be a SBE-subalgebra
of S. Then it is obvious that 1 ∈ T . Assume that x, x ◦ (y ◦ y) ∈ T . Since
y ◦ ((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y))) = 1 from Lemma 2.1 (iii) and y is a tile of S, it
follows that x ◦ (y ◦ y) = y or x ◦ (y ◦ y) = 1. If x ◦ (y ◦ y) = y, then y ∈ T . If
x ◦ (y ◦ y) = 1, then y = x or y = 1 since x is a tile of S. Thus, y ∈ T . Hence, T is
a SBE-filter of S.

Conversely, let every SBE-subalgebra T of S be a SBE-filter of S and s ∈ S be
not a tile of S. Then {s, 1} is not a SBE-filter of S from Lemma 4.1, and so, {s, 1}
is not a SBE-subalgebra of S. Since s◦(1◦1) = 1 ∈ {s, 1} and 1◦(s◦s) = s ∈ {s, 1}
from Lemma 2.1 (i)-(ii), {s, 1} is a SBE-subalgebra of S, which is a contradiction.
Thus, every element of S is a tile of S, i.e., S contains only tiles. �
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Lemma 4.3. Let s1 and s2 be any elements of a SBE-algebra S such that s1 ̸=
1 ̸= s2. If s1 and s2 are tiles of S, then s2 ◦ (s1 ◦ s1) = s2 and s1 ◦ (s2 ◦ s2) = s2.

Proof. Let s1 and s2 be tiles of S such that s1 ̸= 1 ̸= s2. By Lemma 4.1,
{s1, 1} and {s2, 1} are SBE-filters of S. Since s1 ≼ s2◦(s1◦s1) and s2 ≼ s1◦(s2◦s2)
from Lemma 2.2 (2), it follows from Lemma 2.3 (ii) that s2 ◦ (s1 ◦ s1) ∈ {s1, 1} and
s1◦(s2◦s2) ∈ {s2, 1}. If s2◦(s1◦s1) = 1 or s1◦(s2◦s2) = 1, then s1 = s2 or s1 = 1 or
s2 = 1, which is a contradiction. Thus, s2 ◦ (s1 ◦s1) = s1 and s1 ◦ (s2 ◦s2) = s2. �

However, the inverse of Lemma 4.3 does not usually hold.

Example 4.2. Consider the SBE-algebra S in Example 4.1. Then u◦(v◦v) = v
and v◦(u◦u) = u but the elements u and v of S are not tiles of S since R(S) = {1}.

Lemma 4.4. R(S) is a SBE-subalgebra of a SBE-algebra S.

Proof. Let x, y ∈ R(S). If x = y, then x ◦ (x ◦ x) = 1 ∈ R(S) from (SBE-1)
and Remark 4.1. If x ̸= y, then x ◦ (y ◦ y) = y and y ◦ (x ◦ x) = x from Lemma 4.3,
and so, x ◦ (y ◦ y) ∈ R(S) and y ◦ (x ◦ x) ∈ R(S). Thus, R(S) is a SBE-subalgebra
of S. �

R(S) is not a SBE-filter of a SBE-algebra S in general.

Example 4.3. Consider the SBE-algebra ⟨S; ◦, 1⟩ where S = {0, u, v, 1} and
Sheffer stroke ◦ with Cayley table as below [4]:

Table 3. Table of the Sheffer stroke ◦ on S

◦ 0 u v 1
0 1 1 1 1
u 1 v 1 v
v 1 1 u u
1 1 v u 0

Then R(S) = {u, v, 1} is a SBE-subalgebra of S but it is not a SBE-filter of S
since 0 /∈ R(S) when u ∈ R(S) and u ◦ (0 ◦ 0) = v ∈ R(S).

Definition 4.2. Let S be a SBE-algebra. Then a subset B(s) = {x ∈ S :
x ◦ (s ◦ s) = 1} of S is called a branch of S, where s is a tile of S. The element s is
called ultimate for B(s). If there exists y ̸= x such that B(x) ⊂ B(y), then B(x) is
called improper. If there does not exist y ∈ S such that y ̸= x and x ◦ (y ◦ y) = 1,
then B(x) is called proper. The set of all ultimate elements of proper branches of
S is denoted by I(S). Obviously, I(S) ⊆ R(S).

Example 4.4. Consider the SBE-algebra S in Example 4.3. Then R(S) =
{u, v, 1}, B(u) = {0, u}, B(v) = {0, v}, B(1) = S and I(S) = {1}. Thus, B(1) is
a proper branch of S but B(u) and B(v) are improper branches of S. I(S) is a
SBE-filter (and a SBE-subalgebra) of S, and R(S) is a SBE-subalgebra of S but it
is not a SBE-filter of S.
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Lemma 4.5. Let S be a SBE-algebra. Then B(1) = S and it is a proper branch
of S.

Proof. Let S be a SBE-algebra. Since we have from Lemma 2.4 (i) that
x ◦ (1 ◦ 1) = 1, for all x ∈ S, it follows that B(1) = S and it is a proper branch of
S. �

Theorem 4.1. Let S be a SBE-algebra. Then 1 ◦ 1 ∈ B(s), for all ultimate
elements s ∈ S.

Proof. Let S be a SBE-algebra. Since (1 ◦ 1) ◦ (s ◦ s) = (s ◦ s) ◦ (1 ◦ 1) = 1
from (S1) and Lemma 2.1 (i), it follows that 1 ◦ 1 ∈ B(s), for all ultimate elements
s ∈ S. �

Corollary 4.1. Let S be a SBE-algebra. Then S =
∪
B(s), for all ultimate

elements s ∈ S.

Lemma 4.6. Let S be a SBE-algebra. Then 1 ∈ I(S).

Proof. Let S be a SBE-algebra. Since B(1) = S is a proper branch of S from
Lemma 4.5 and 1 ∈ R(S) is ultimate element of S from Remark 4.1, it is obtained
that 1 ∈ I(S). �

Definition 4.3. Let S be a SBE-algebra. Then
•it is called a branchwise commutative if (x◦(y◦y))◦(y◦y) = (y◦(x◦x))◦(x◦x),

and
•it is called a branchwise self-distributive if x ◦ ((y ◦ (z ◦ z)) ◦ (y ◦ (z ◦ z))) =

(x ◦ (y ◦ y)) ◦ ((x ◦ (z ◦ z)) ◦ (x ◦ (z ◦ z))),
for all x, y and z in the same branch.

Example 4.5. In Example 4.4, the branches B(u) = {0, u}, B(v) = {0, v} and
B(1) = S are branchwise commutative and branchwise self-distributive. However,
B(1) = S is not a branchwise commutative and a branchwise self-distributive for the
SBE-algebra S in Example 4.1 since (u◦(w◦w))◦(w◦w) = w ̸= u = (w◦(u◦u))|(u|u)
and t◦((u◦(w◦w))◦(u◦(w◦w))) = 1 ̸= w = (t◦(u◦u))◦((t◦(w◦w))◦(t◦(w◦w))).

Definition 4.4. A nonempty subset T of a SBE-algebra S is called a chain if
x ◦ (y ◦ y) = 1 or y ◦ (x ◦ x) = 1, for x, y ∈ T . A chain initiated by s is denoted by
C(s), i.e., s ◦ (x ◦ x) = 1, for all x ∈ C(s).

Example 4.6. Consider the SBE-algebra S in Example 4.3. Then C1(0) =
{0, u, 1}, C2(0) = {0, v, 1}, C(u) = {u, 1}, C(v) = {v, 1} and C(1) = {1}. Also,
S = C1(0) ∪ C2(0).

Lemma 4.7. Let S be a SBE-algebra. Then C(s) is a SBE-filter of S, for tiles
s ∈ S.

Proof. Let s be a tile of S. Since it is known from Lemma 2.1 (i) that
x◦(1◦1) = 1, for x ∈ C(s), we have that 1 ∈ C(s). Assume that x, x◦(y◦y) ∈ C(s).
Since C(s) is initiated by s, it is obtained that s ◦ (a ◦ a) = 1, for all a ∈ C(s).
Thus, s ◦ (x ◦x) = 1 and s ◦ ((x ◦ (y ◦ y)) ◦ (x ◦ (y ◦ y))) = 1, and so, x = s or x = 1,
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and x ◦ (y ◦ y) = s or x ◦ (y ◦ y) = 1. If x = s, then s ◦ (y ◦ y) = 1. Hence, y = s or
y = 1, i.e., y ∈ C(s). If x = 1, then 1 ◦ (y ◦ y) = s or 1 ◦ (y ◦ y) = 1, and so, y = s
or y = 1 from Lemma 2.1 (ii). Thereby, y ∈ C(s). Therefore, C(s) is a SBE-filter
of S. �

5. Conclusion

In this study, an obstinate SBE-filter, a tile, a branch and a chain of a SBE-
algebra are introduced and some properties are investigated. The statements equiv-
alent to the definition of an obstinate SBE-filter of a SBE-algebra are presented. It
is illustrated that every obstinate SBE-filter of a SBE-algebra is its SBE-filter but
the inverse is not true in general. We define a tile of a SBE-algebra and it is shown
that 1 ̸= s is a tile of a SBE-algebra if and only if a subset {s, 1} of the algebraic
structure is its SBE-filter. Indeed, it is proved that A SBE-algebra contains only
tiles if and only if every SBE-subalgebra of this algebraic structure is the SBE-filter.
Infact, we demonstrate that s2 ◦ (s1 ◦ s1) = s2 and s1 ◦ (s2 ◦ s2) = s2 if s1 and s2
are different tiles of a SBE-algebra, but the inverse does not mostly hold. Also, it
is stated that the set R(S) of all tiles of a SBE-algebra is its SBE-subalgebra. We
describe a branch of a SBE-algebra by means of a tile of this algebraic structure
and this tile is called ultimate for the branch. We show that the branch B(1) of
a SBE-algebra equals to the algebraic structure and is a proper branch of the al-
gebraic structure. Besides, it is indicated that every branch of a SBE-algebra has
an element 1 ◦ 1 of the algebra and the algebra equals to an union of its branches,
for all ultimate elements. By giving definitions of improper and proper branches
of a SBE-algebra, the set I(S) of all ultimate elements of proper branches of a
SBE-algebra have the element 1 of the algebra. A chain of a SBE-algebra is in-
troduced and it is propounded that a chain initiated by a tile of a SBE-algebra is
its SBE-filter. Finally, we determine a branchwise commutative and a branchwise
self-distributive branch of a SBE-algebra.

In the future works, we want to study on different SBE-filters and algebraic
neighborhoods of SBE-algebras.
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