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INVERT TRANSFORM AND RESTRICTED WORDS

Dusko Bogdanic and Milan Janjić

Abstract. We give combinatorial interpretations of several sequences defined

recurrently in terms of restricted words over a finite alphabet. One of the main
tools for such investigations is the notion of invert transform which allows us
to enlarge the alphabet by one letter. The initial sequence f0 is defined via a
linear homogeneous recurrence of the second order. Then, we define, for each

integer n > 1, the sequence fn as the invert transform of fn−1. For a number
of such recurrences we find an explicit formula for its solutions as well as
their interpretations in terms of restricted words. Explicit bijections between
different sets of restricted words counted by the same Fibonacci number are

constructed.

1. Introduction

Linear homogenous recurrences of the second order have been studied exten-
sively and there is a vast amount of literature containing various formulas involving
sequences defined recurrently (as an introduction to the topic, we recommend [14],
[12], [1], [13], and [6]). Some well-known integer sequences are given by a lin-
ear homogeneous recurrence of the second order, for instance, Fibonacci numbers,
Fibonacci polynomials, and Jacobsthal numbers.

In this paper, we continue our investigation of combinatorial interpretations of
sequences defined recurrently in terms of restricted words ([9], [10], [11], [4]). The
main tool in our investigation is that of invert transform which allows us to enlarge
the alphabet by one letter.
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28 D. BOGDANIC AND M. JANJIĆ

Let f0 = (f0(1), f0(2), . . .) be an arithmetic function. The invert transform f1
of f0 is defined as follows

(1.1) f1(n) =

n∑
i=1

f0(i) · f1(n− i), n > 1,

where f1(0) = 1.
Inductively, for m > 1, we define pairs (fm−1, fm) of arithmetic functions such

that fm is the invert transform of fm−1.
For m > 1 and 0 6 k 6 n, we define a function gm(n, k) by the expansion

(1.2)

( ∞∑
i=1

fm−1(i) · xi

)k

=
∞∑

n=k

gm(n, k)xn.

It is easy to see that this formula is equivalent to the following

(1.3) gm(n, k) =
∑

i1+i2+···+ik=n

fm−1(i1) · · · fm−1(ik),

where the sum is over strictly positive it, (t = 1, 2, . . . , k). It is a well-known fact
(see, for example, [2], [5], or Identity (1) and Identity (2) in [10]) that gm(n, k) is
related to the Bell partial polynomials in the following way:

gm(n, k) =
k!

n!
·Bn,k(1! · fm−1(1), 2! · fm−1(2), . . .).

It is obvious that the following recurrence holds

(1.4) gm(n, k) =

n−k+1∑
i=1

fm−1(i) · gm(n− i, k − 1), (1 6 k 6 n),

with gm(0, 0) = 1, gm(n, 0) = 0, n ̸= 0.
The next result from Proposition 6 in [10], associates gm with gm−1 in the

following way:

(1.5) gm(n, k) =
n∑

i=k

(
i− 1

k − 1

)
· gm−1(n, i).

By applying the same formula to the right-hand side of this equation several times,
we can express gm as a function of g1, i.e. we obtain

(1.6) gm(n, i1) =

n∑
i2=i1

· · ·
n∑

im−1=im−2

(
i2 − i1
i1 − 1

)
· · ·
(

im − im−1

im−1 − im−2

)
· g1(n, im−1).

We investigate finite sequences over a finite alphabet α = {0, 1, . . . , a}, (a > 1).
The following theorem allows us to enlarge our alphabet by an additional letter

(cf. Proposition 10 in [10]). As in Proposition 10 in [10], we assume that gm(n, k)
counts the number of words satisfying some property that is preserved under the
replacement of some of the instances of the letter a by a new symbol x.
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Theorem 1.1. Assume that gm−1(n, k) equals the number of some words of
length n − 1 over a finite alphabet α that contain k − 1 letters a. Then gm(n, k)
equals the number of words of length n− 1 over α ∪ {x} containing k− 1 letters a.

Proof. The number gm−1(n, i), (k 6 i 6 n), equals the number of words of
length n − 1 having i − 1 letters equal to a. We replace i − k of these a’s by the
letter x and obtain a word of length n − 1 having k − 1 letters equal to a. These
i − k letters may be chosen in

(
i−1
k−1

)
different ways. Summing over i from k to n,

we obtain the number of words of length n − 1 over α ∪ {x}, having k − 1 letters
equal to a. By (1.5), this sum is equal to gm(n, k). �

The following equation, given in Corollary 2 in [10], connects fm to gm:

(1.7) fm(n) =
n∑

k=1

gm(n, k).

As a consequence, we obtain the following proposition.

Proposition 1.1. If fm−1(n) is the number of words of length n− 1 over an
alphabet α, and if x /∈ α, then fm(n) equals the number of words of length n − 1
over the alphabet α ∪ {x}.

Next, in Proposition 7 in [10] it was proved that (see also [3])

(1.8) fm(n) =
n∑

i=1

mi−1 · g1(n, i).

In the following statement, fm is expressed in terms of f0.

Proposition 1.2 ([8], Corollary 9). Let f0 be defined as follows

f0(n+ 2) = x0 · f0(n+ 1) + y0 · f0(n),

where x0, y0, f0(1), f0(2) are given numbers.
Then fm(1) = f0(1), fm(2) = m · f0(1)2 + f0(2), and

fm(n+ 2) = xm · fm(n+ 1) + ym · fm(n),

where

xm = x0 +m · f0(1), ym = y0 −m · x0 · f0(1) +m · f0(2).

In the following sections, for the cases we consider, we proceed as follows. First,
we use Proposition 1.2 to get a recursion for fm, and by using this recursion we give
a combinatorial interpretation of fm in terms of restricted words. The next step is
to use (1.2), (7.1), or (1.4) to compute g1(n, k) and to give a combinatorial descrip-
tion of g1(n, k). Once we know g1(n, k), we use Theorem 1.1 and a combinatorial
description of g1(n, k) to give a combinatorial description of gm(n, k). Finally, we
use (1.8) to compute fm.
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2. Case f0(1) = 1, f0(2) = 1, x0 = 0, y0 = 0

We start with the following proposition (cf. Example 16 in [10]).

Proposition 2.1. The following is valid:

(i) The following recurrence holds

fm(1) = 1, fm(2) = m+ 1,

fm(n+ 2) = m · fm(n+ 1) +m · fm(n), (n > 1).

(ii) The number fm(n) equals the number of words of length n − 1 over the
alphabet {0, 1, . . . ,m} with no adjacent zeros.

Proof. (i) This part follows from Proposition 1.2.

(ii) For n = 1, the statement holds because fm(1) = 1 and the empty word
has no adjacent zeros. Also, since fm(2) = m + 1 and words of length 1 have no
adjacent zeros, the statement holds for n = 2. If a word of length n > 1 begins
with a non-zero letter, then we obviously have m · fm(n− 1) such words. If a word
begins by zero, then the next letter also must be different from zero. Hence, there
are mfm(n− 2) such words and the recursion holds. �

We next derive an explicit formula for g1(n, k) and give a combinatorial inter-
pretation (cf. Corollary 17 in [10]).

Proposition 2.2. The following holds:

(i) The following formula holds

g1(n, k) =

(
k

n− k

)
.

(ii) The number g1(n, k) equals the number of binary words of length n − 1
having k − 1 ones and no adjacent zeros.

Proof. (i) Formula follows easily from (1.2) which, in this case, has the form

(x+ x2)k =

∞∑
n=k

g1(n, k)x
n.

(ii) In this case, the recurrence (1.4) has the form

g1(n, k) = g1(n− 1, k − 1) + g1(n− 2, k − 1), 1 6 k 6 n.

If a word counted by g1(n, k) begins by 1, then the next letter can be arbitrary. So
there are g1(n − 1, k − 1) such words. If a word begins by 0, then the next letter
must be 1. Hence, there are g1(n− 2, k − 1) such words. �

As an immediate consequence of the previous proposition and Theorem 1.1, we
obtain the following result.

Proposition 2.3. The number gm(n, k) equals the number of words of length
n− 1 over {0, 1, . . . ,m} having k− 1 letters equal to m and no two adjacent zeros.
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Finally, from (1.8) we obtain the following explicit formula

fm(n) =
n∑

i=1

mi−1 ·
(

i

n− i

)
.

Also, by using (1.6), we can obtain a formula for gm(n, k) as a convolution of
binomial coefficients.

It is easy to see that f1(n) = Fn+1, (n = 1, 2, . . .), where Fn is the nth Fibonacci
number. We thus obtain a well-known formula

Fn+1 =

n∑
k=1

(
k

n− k

)
.

and a well-known property of Fibonacci numbers.

Corollary 2.1. The number Fn+1 equals the number of binary words of length
n− 1 with no two adjacent zeros.

3. Case f0(1) = 1, f0(2) = 2, x0 = 0, y0 = 0

We start with a recursion for fm and its combinatorial interpretation.

Proposition 3.1 (i). The following recurrence holds

fm(1) = 1, fm(2) = m+ 2,

fm(n+ 2) = m · fm(n+ 1) + 2 ·m · fm(n), n > 1.

(ii) The number fm(n) equals the number of words of length n − 1 over the
alphabet {0, 1, . . . ,m+ 1} avoiding subwords 00, 11, 01, and 10.

Proof. (i) This part of the statement follows from Proposition 1.2.

(ii) Since fm(1) = 1 and the empty word satisfies the condition, the statement
is true for n = 1. Also, it is true for n = 2 as fm(2) = m + 2 and each word of
length 1 satisfies the condition.

Assume that n > 2. If a word of length n − 1 begins with a letter from
{2, 3, . . . ,m+1}, then the remaining part of that word can be an arbitrary word of
length n− 2, and the number of such words is m · fm(n− 1). If a word begins with
either 0 or 1, then the next letter must be from {2, 3, . . . ,m+1}. Hence, there are
2 ·m · fm(n− 2) such words. Hence, the recurrence from (i) holds. �

We next derive an explicit formula for g1(n, k) and give its combinatorial in-
terpretation.

Proposition 3.2 (i). The following formula holds

g1(n, k) = 2n−k ·
(

k

n− k

)
.

(ii) The number g1(n, k) equals the number of ternary words of length n − 1
having k − 1 letters equal to 2 and no subwords of the form 00, 11, 01, 10.
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Proof. (i) Formula follows easily from (1.2) which, in this case, has the form

(x+ 2x2)k =
∞∑

n=k

g1(n, k)x
n.

(ii) In this case, the recurrence (1.4) has the form

g1(n, k) = g1(n− 1, k − 1) + 2 · g1(n− 2, k − 1), 1 6 k 6 n.

If a word counted by g1(n, k) begins by the letter 2, then the next letter can be
arbitrary. So, there are g1(n− 1, k− 1) such words. If a word begins by one of the
letters 0 or 1, then the next letter must be 2. Hence, there are g1(n− 2, k− 1) such
words. �

As an immediate consequence of the previous proposition and Theorem 1.1, we
obtain the following proposition.

Proposition 3.3. The number gm(n, k) equals the number of words of length
n − 1 over {0, 1, . . . ,m + 1} having k − 1 letters equal to m + 1 and no subwords
00, 11, 01, and 10.

Finally, from (1.8) we obtain the following explicit formula

fm(n) =

n∑
i=1

mi−1 · 2n−i ·
(

i

n− i

)
.

We finally note that, from (1.6), we can obtain a formula for gm(n, k) as a convo-
lution of binomial coefficients.

In the case m = 1, we obtain the well-known formula for Jacobsthal numbers
Jn

Jn+1 =
n∑

k=1

2n−k ·
(

k

n− k

)
.

Also, we have the following well-known result.

Corollary 3.1. The number Jn+1 equals the number of ternary words of
length n− 1 with no subwords 00, 11, 10, and 01.

4. Case f0(n) = 1 if n is odd, and f0(n) = 0 if n is even

In this case, we have f0(1) = 1, f0(2) = 0, x0 = 0, y0 = 1. As in the previous
cases, we start with the recursive formula for fm and its combinatorial interpreta-
tion (cf., Corollary 28 in [8]).

Proposition 4.1. (1) For m > 0, the following recurrence holds

fm(1) = 1, fm(2) = m,

fm(n+ 2) = m · fm(n+ 1) + fm(n).

(2) The number fm(n) equals the number of words of length n − 1 over the
alphabet {0, 1, . . . ,m} in which 0 avoids a run of odd length.
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Proof. (1) The first part follows from Proposition 1.2.
(2) The statement holds for n = 1 since the empty word satisfies the condition.

It also holds for n = 2 because fm(2) = m and words 1, 2, . . . ,m are of length
1, and obviously satisfy the condition. If a word of length n > 2 begins with a
non-zero letter, then the remaining part of the word can be an arbitrary word of
length n− 1. So, there are mfm(n− 1) such words. If a word begins with 0, then
the next letter is also equal to 0, and so, we have fm(n− 2) such words. �

We next calculate g1(n, k). In this case, each term in the sum on the right-
hand side of (1.4) is equal either to 1 or to 0, so that g1(n, k) equals the number of
solutions of the Diophantine equation

2(j1 + j2 + · · ·+ jk) = n− k, jt > 0, t = 1, 2, . . . , k.

It follows that g1(n, k) = 0 if n− k is odd. If n− k is even, then (see Proposition
24 in [9] and Example 18 in [10])

g1(n, k) =

(n−k
2 + k − 1

k − 1

)
.

From this equation one easily deduces that the number g1(n, k) equals the number
of binary words of length n− 1 having k − 1 letters equal to 1 and no runs of 0 of
odd length.

By using induction on m and Theorem 1.1, we obtain the following proposition
(see Proposition 19 and Corollary 21 in [10]).

Proposition 4.2. The number gm(n, k) equals the number of words of length
n − 1 over {0, 1, . . . ,m} having k − 1 letters equal to m and no runs of 0 of odd
length.

By using (1.5), we again get an expression for gm(n, k) as a convolution of the
binomial coefficients.

For m = 1, the recurrence from Proposition 4.1 becomes the recurrence for
Fibonacci numbers, that is f1(n) = Fn.

Corollary 4.1. The Fibonacci number Fn equals the number of binary words
of length n− 1 in which 0 avoids a run of odd length.

5. Case f0(n) = n

This is the case when f0(1) = 1, f0(2) = 2, x0 = 2, y0 = −1. As before, we first
give a recursive formula for fm(n) and its combinatorial interpretation in terms of
restricted words (see Corollary 37 in [8]).

Proposition 5.1. (1) The following recurrence holds

fm(1) = 1, fm(2) = m+ 2,

fm(n+ 2) = (m+ 2) · fm(n+ 1)− fm(n).

(2) The number fm(n) is the number of 01-avoiding words of length n−1 over
{0, 1, . . . ,m+ 1}.
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Proof. (1) The first assertion follows from Proposition 1.2.
(2) Since the empty word satisfies the condition, we conclude that the statement

holds for n = 1. Also, it holds for n = 2, because it is clear that fm(2) = m+1 and
each word of length 1 satisfies the condition. Assume the assertion holds for words
of length n − 1. By placing an arbitrary letter in front of such a word, we obtain
(m+2) · fm(n+1) words of length n. Among them are all desired words of length
n. To count all such words, we must subtract the number of words beginning by
01. The number of such words is fm(n). �

In the next proposition, we prove that g1(n, k) has the desired combinatorial
interpretation (see Corollary 24 in [11]).

Proposition 5.2. (1) The number g1(n, k) equals the number of ternary words
of length n− 1 having k − 1 letters equal to 2 and avoiding the subword 01.

(2) The following formula holds

g1(n, k) =

(
n+ k − 1

2k − 1

)
.

Proof. (1) The recurrence for g1(n, k) is given by (1.4):

g1(n, k) =
n−k+1∑
i=1

i · g1(n− i, k − 1).

We count the number of words of length n − 1 having k − 1 letters equal to 2
according to the first appearance, from left to right, of the letter 2. If 2 is the first
letter, then we have g1(n− 1, k− 1) such words. This is the first term on the right
side of the equation (1.4). If the first 2 appears at the jth place, then this word
starts by the string of length j − 1 consisting of zeros and ones. They are of the
form

(5.1) (1, . . . , 1), (1, . . . , 1, 0), (1, . . . , 1, 0, 0), . . . , (0, 0, . . . , 0).

So we have j such words, which gives the term j · gm−1(n− j, k− 1) in the formula
(1.4). Summing over all j, we obtain the desired result.

(2) It is not too difficult to prove the formula directly by induction on n. See
also [7] (Case (iii), page 123). �

By applying Theorem 1.1 and induction, we obtain the following result (see
Corollary 23 in [11]).

Proposition 5.3. The number gm(n, k) equals the number of words of length
n−1 over {0, 1, . . . ,m+1} having k−1 letters equal to 2 and avoiding the subword
01.

From Proposition 1.2, we obtain

f1(1) = 1, f1(2) = 3,

f1(n+ 2) = 3f1(n+ 1)− f1(n), n > 1.
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Clearly, this is a recurrence for the bisection of the Fibonacci numbers. Namely, it
is easy to see that the following equation holds

f1(n) = F2n, n > 1.

The following result is a combinatorial description of the bisection of Fibonacci
numbers.

Corollary 5.1. The number F2n equals the number of ternary words of length
n− 1 avoiding 01.

6. Case f0(1) = 0, f0(n) = 1, n > 0

In the following proposition, we give a recurrence for fm(n) and its combina-
torial interpretation (see Example 26 in [10] and Corollary 24 in [8]).

Proposition 6.1. (1) The following recurrence holds

fm(1) = 0, fm(2) = 1,

fm(n+ 2) = fm(n+ 1) +m · fm(n).

(2) For n > 1, the number fm(n+2) equals the number of words of length n−1
over {0, 1, . . . ,m} in which no two consecutive letters are nonzero.
In particular case m = 1, we have

f1(n) = Fn−1, n > 1.

Proof. The first assertion follows from Proposition 1.2.
For the second statement, note that fm(3) = fm(2) = 1. Next, fm(4) = 1 +m

is the number of required words of length 1. If n > 2, then there are fm(n + 1)
words of length n−1 beginning by 0. If a word of length n−1 begins by a non-zero
letter, then the next letter must be 0, so that we have m · fn(n) such letters.

Finally, for m = 1, we obviously obtain the recurrence for Fibonacci numbers.
�

From Proposition 13 in [9] it follows that

g1(n, k) =

(
n− k − 1

k − 1

)
.

Note that g1(n, k) = 0 for n < 2k, and subsequently that gm(n, k) = 0 when
n < 2k.

Corollary 6.1 ([8], Corollary 28). The number gm(n+3, k) equals the number
of words of length n having k − 1 ones and no adjacent nonzero letters.

From this we get a combinatorial interpretation for g1(n, k).

Corollary 6.2. The number g1(n + 3, k) equals the number of binary words
of length n having k − 1 ones which are all isolated.
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7. Case f0(1) = 1, f0(2) = r, r > 1, x0 = y0 = 0

This case generalizes the first two cases where we derived formulas for Fibonacci
and Jacobsthal numbers. In order to emphasize the importance of the two special
cases, we postponed this general case until now.

Proposition 7.1. (1) The following recurrence holds

fm(1) = 1, fm(2) = m+ r,

fm(n+ 2) = m · fm(n+ 1) + r ·m · fm(n).

(2) The number fm(n) equals the number of words of length n − 1 over the
alphabet {0, 1, . . . ,m + r − 1} such that each letter from {0, 1, . . . , r − 1} must be
followed by one of the remaining m letters.

Proof. (1) This part easily follows from Proposition 1.2.
(2) Since fm(1) = 1 and only the empty word has length 0, the claim holds

for n = 1. Also, since fm(2) = m+ r and our alphabet has m+ r letters, it holds
for n = 2. Assume that n > 2. If a word of length n − 1 begins by a letter from
{r, r + 1, . . . ,m + r − 1}, then the next letter may be arbitrary, so that we have
m · fm(n+ 1) such words. If a word begins by a letter from {0, 1, . . . , r − 1}, then
the next letter must be one of the remaining m letters. So, we have r ·m · fm(n)
such letters. �

We next derive an explicit formula for g1(n, k) and give its combinatorial in-
terpretation.

Proposition 7.2 (i). If m = 1, then

g1(n, k) = rn−k

(
k

n− k

)
.

(ii) The number g1(n, k) equals the number of words over {0, 1, . . . , r} of length
n − 1 having k − 1 letters equal to r and no subwords of the form ij where i, j ∈
{0, 1, . . . , r − 1}.

Proof. (i) From (7.1) follows that

(7.1) g1(n, k) =
∑

i1+i2+···+ik=n

f0(i1) · · · f0(ik),

where the sum is over positive ij . Since f0(n) = 0 for n > 2, it follows that we
need to find solutions of i1 + i2 + · · ·+ ik = n, where each ij is either 1 or 2. Let j
be the number of 2’s and k− j the number of 1’s appearing in this equation. Since
2j + k − j = n, it follows that j = n− k. We can choose n− k 2’s in

(
k

n−k

)
ways.

It is obvious that if n > 2k, then this equation has no solutions.
(ii) In this case, the recurrence (1.4) has the form

g1(n, k) = g1(n− 1, k − 1) + r · g1(n− 2, k − 1), 1 6 k 6 n.

If a word counted by g1(n, k) begins by the letter r, then the next letter can be
arbitrary. So, there are g1(n − 1, k − 1) such words. If a word begins by one
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of the letters 0, 1, . . . , r − 1, then the next letter must be r. Hence, there are
r · g1(n− 2, k − 1) such words. �

As an immediate consequence of the previous proposition and Theorem 1.1, we
obtain the following proposition.

Proposition 7.3. The number gm(n, k) equals the number of words of length
n − 1 over {0, 1, . . . , r + m − 1} having k − 1 letters equal to r + m − 1 and no
subwords of the form ij where i, j ∈ {0, 1, . . . , r − 1}.

From (1.8) we obtain the following explicit formula

fm(n) =
n∑

i=1

mi−1 · rn−i ·
(

i

n− i

)
.

We finally note that, from (1.6), we can obtain a formula for gm(n, k) as a convo-
lution of binomial coefficients.

8. Bijections between sets of restricted words

In this section we gather the results about sets of restricted words that are
counted by the Fibonacci numbers Fn and we construct explicit bijections between
them. Before proceeding, we give another set of restricted words counted by the
Fibonacci numbers.

Proposition 8.1. The number Fn, (n > 0), equals the number of binary words
of length n+ 1 beginning by 0 in which each 0 is followed by 1.

Proof. Let fn count the number of such words of length n + 1. For n = 0,
we have F0 = 0, and since there are no words of length 1 beginning by 0 in which
each 0 is followed by 1, the statement holds for n = 0. It also holds for n = 1
because it is clear that 01 is the only binary word satisfying given conditions, thus
f1 = 1 = F1.

If n > 2, then, the last two letters of given words of length n+ 1 are either 01
or 11. By omitting 01 at the end of the words ending by 01, we obtain fn−2 words
of length n− 1, and by omitting 1 at the end of the words ending by 11, we obtain
fn−1 words of length n. Hence, fn = fn−1 + fn−2 = Fn. �

By comparing the results related to Fibonacci numbers, we obtain the following
proposition.

Proposition 8.2. Each of the following sets has Fn, where n > 2, elements:

(1) The set An−2 of binary words of length n− 2 with no two adjacent zeros.
(2) The set Bn−1 of binary words of length n− 1 in which 0 avoids a run of

odd length.
(3) The set Cn+1 of binary words of length n+1 beginning by 0 in which each

0 is followed by 1.

Furthermore, for even indices, F2n is the number of elements in the set Dn−1 of
ternary words of length n− 1 avoiding 01.
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In the following proposition we construct explicit bijections between the sets
An−2, Bn−1, Cn+1, andDn

2 −1 (when n is even) of restricted words from the previous
proposition.

Proposition 8.3. (1) A bijection between the sets Bn−1 and An−2 is
given as follows: for a given word of length n − 1 replace the leftmost
occurrence of 00 by 0, and other occurrences of 00 by 10 to obtain a word
of length n− 2 with no two adjacent zeros. If there are no zeros, remove
one instance of 1.

(2) A bijection between the sets Cn+1 and An−2 is given as follows: for a
given word of length n + 1 remove 01 from the beginning and 1 from the
end of the word to obtain a word of length n − 2 with no two adjacent
zeros.

(3) A bijection between the sets Dn−1 and A2n−2 is given as follows: for a
given ternary word, each 0 is replaced by 10, each 1 is replaced by 01, and
each 2 is replaced by 11.

Proof. (1) By construction, the resulting word is of length n − 2 and it has
no two adjacent zeros. It is obvious that the given map is injective.

(2) Note that given words of length n+1 have to end by 1. Since the subwords
of such words do not have adjacent zeros, the given map is a bijection.

(3) Since given ternary words do not have subwords of the form 01, there are
no consecutive zeros in the words that are in the image of the given map. Again,
by construction, the given map is injective. �

Example 8.1. The Fibonacci number F6 counts the number of binary words
of length 4 with no two adjacent zeros, the number of binary words of length 5
in which 0 avoids a run of odd length, the number of binary words of length 7
beginning by 0 in which each 0 is followed by 1, and the number of ternary words
of length 2 avoiding subwords 01. The bijections from the previous proposition are
given as follows:

11111 1111 0111111
00111 0111 0101111
10011 1011 0110111
11001 → 1101 ← 0111011
11100 1110 0111101
10000 1010 0110101
00001 0101 0101011
00100 0110 0101101

,

22 1111
12 0111
02 1011
21 → 1101
20 1110
00 1010
11 0101
10 0110

.
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[8] M. Janjić. On linear recurrence arising from compositions of positive integers. J. Integer
Sequences, 18 (2015), Article 15.4.7
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[10] M. Janjić. Some formulas for number of restricted words. J. Integer Sequences, 20 (2017),
Article 17.6.5
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