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DIFFERENTIAL SUBORDINATION FOR

MEROMORPHIC UNIVALENT FUNCTIONS
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Abstract. In the present paper, we introduce new applications on fourth-
order differential subordination associated with differential linear operator

Is,r,1(n, λ) in the punctured open unit disk U∗. Also, we obtain some new

results.

1. Introduction, definitions, and preliminaries

Denote by C be a complex plane H = H(U) be the class of functions which are
analytic in the open unit disk U = {z : z ∈ C, |z| < 1}, for a ∈ C and n ∈ N, N
being the set of positive integers, let

H [a, n] =
{
f ∈ H : f(z) = a+ anz

n + an+1z
n+1 + ...

}
, and H1 = H [1, 1].

Let Σ denote the class of functions f(z) of the form:

(1.1) f(z) =
1

z
+

∞∑
k=0

akz
k,

which are analytic and meromorphic univalent in the punctured open unit disk

U∗ = {z ∈ C, 0 < |z| < 1} = U\{0}.

Ali et al. [2] introduced and investigated the linear operator

J1(n, λ) : Σ −→ Σ,
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that is obtained as follows:

(1.2) J1(n, λ)f(z) =
1

z
+

∞∑
k=0

(
k + λ

λ− 1

)n
akz

k, (z ∈ U∗, λ > 1).

The general Hurwitz-Lerch Zeta function

Φ(z, s, r) =

∞∑
k=0

zk

(r + k)s
, r ∈ C\Z−0 , s ∈ C when 0 < |z| < 1.

A linear operator Is,r,1(n, λ) : Σ −→ Σ (see [9]) is defined
(1.3)

Is,r,1(n, λ)f(z) =
Φ(z, s, r)

zr−s
∗J1(n, λ)f(z) =

1

z
+

∞∑
k=0

(
r

1 + k + r

)s(
k + λ

λ− 1

)n
akz

k.

It is easily verified from (1.3) that

(1.4) z (Is,r,1(n, λ)f(z))
′

= (λ− 1)Is,r,1(n+ 1, λ)f(z)− λIs,r,1(n, λ)f(z).

I0,r,1(n, λ)f(z) = J1(n, λ)f(z) and I0,r,1(0, λ)f(z) = f(z).

In 2011, Antonino and Miller [3] presented basic concepts and extended the the-
ory of the second-order differential subordination in the open unit disk introduced
by Miller and Mocanu [13] to the third-order case. Many scholar have discussed
and dealt with second-order differential subordination and superordination the-
ory in recent years, like [1, 8, 9, 10, 11, 12, 14]. There are many authors
who discussed the theory of the third-order differential subordination for exam-
ple [4, 5, 15, 16, 17, 18, 19], few authors introduced the theory of fourth-order
differential subordination for example ([6, 7]). In this paper, using methods of
fourth-order differential subordination, sufficient conditions obtained.

To prove our main results, we need the basic concepts in theory of the fourth-
order.

Definition 1.1. ([13]) Let f(z) and F (z) be members of the analytic function
class H. The function f(z) is said to be subordinate to F (z), or F (z) is superordinate
to f(z), if there exists a Schwarz function w(z) analytic in U with w(0) = 0 and
|w(z)| < 1, such that f(z) = F (w(z)) (z ∈ U). In this case, we write f ≺ F or
f(z) ≺ F (z). If the function F (z) is univalent in U, then

f(z) ≺ F (z) (z ∈ U)⇐⇒ f(0) = F (0), and f(U) ⊂ F (U).

Definition 1.2. ([3])Let Q be the set of analytic and univalent functions q on
the set U \ E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z−→ζ
q(z) =∞

}
,

and are such that min |q′(ζ)| = ρ > 0 for ζ ∈ ∂U \ E(q). Further, let the subclass
of Q for which q(0) = a be denoted by Q(a) with Q(0) = Q0 and Q(1) = Q1, Q1 =
{q ∈ Q : q(0) = 1}.
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Definition 1.3. ( [6]) Let ϕ : C5×U −→ C and suppose that h(z) be univalent
function in U. If p(z) is analytic function in U and satisfies the following fourth-order
differential subordination:

(1.5) ϕ
(
p(z), zp′(z), z2p′′(z), z3p(3)(z), z4p(4)(z); z

)
≺ h(z),

then p(z) is called a solution of the differential subordination (1.5 ). A univalent
function q(z) is called a dominant of the solution of (1.5), or, more simply, a
dominant if p(z) ≺ q(z) for all p(z) satisfying (1.5). A dominant q̃(z) which satisfies
q̃(z) ≺ q(z) for all dominants q(z) of (1.5) is said to be the best dominant.

Lemma 1.1. ([6]) Let z0 ∈ U with r0 = |z0|. For n > 3. Let

f(z) = anz
n + an+1z

n+1 + an+2z
n+2 + ...

be continuous on Ur0 and analytic in Ur0 ∪ {z0}, with f(z) 6= 0.If

(1.6) |f(z0)| = max
{
|f(z)| : z ∈ Ur0

}
,

then there exists m > n such that

(1.7)
z0f
′(z0)

f(z0)
= m,

(1.8) Re

{
z0f
′′(z0)

f ′(z0)
+ 1

}
> m,

and

(1.9) Re

{
z0f
′(z0) + 3z2

0f
′′(z0) + z3

0f
(3)(z0)

z0f ′(z0)

}
> m2.

Then

(1.10) Re

{
z0f
′(z0) + 7z2

0f
′′(z0) + 6z3

0f
(3)(z0) + z4

0f
(4)(z0)

z0f ′(z0)

}
> m3.

Lemma 1.2. ([6]) Let p ∈ H [a, n] and q ∈ Q with q(0) = a for z ∈ Ur0 . Let

(1.11) s = q−1[p(z)] = f(z).

If there exists points z0 = r0e
iφ0 ∈ U and s0 ∈ ∂U \ E(q) such that p(z0) = q(s0)

and p(Ur0) ⊂ q(U),

(1.12) Re

{
s0q
′′(s0)

q′(s0)

}
> 0,

∣∣∣∣zp′(z)q′(s)

∣∣∣∣ 6 k,
and

(1.13) Re

{
s2

0q
(3)(s0)

q′(s0)

}
> 0,

∣∣∣∣z2p′′(z)

q′(s)

∣∣∣∣ 6 k2,

where r0 = |z0|. Then there exists m > n > 3 such that

(1.14) z0p
′(z0) = ms0q

′(s0),

(1.15) Re

{
z0p
′′(z0)

p′(z0)
+ 1

}
> mRe

{
s0q
′′(s0)

q′(s0)
+ 1

}
,
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and

(1.16) Re
{
z0p

′(z0)+3z20p
′′(z0)+z30p

(3)(z0)
z0p′(z0)

}
> m2Re

{
s0q

′(s0)+3s20q
′′(s0)+s30q

(3)(s0)
s0q′(s0)

}
.

Then

(1.17)
Re
{
z0p

′(z0)+7z20p
′′(z0)+6z30p

(3)(z0)+z40p
(4)(z0)

z0p′(z0)

}
> m3Re

{
s0q

′(s0)+7s20q
′′(s0)+6s30q

(3)(s0)+s40q
(4)(s0)

s0q′(s0)

}
,

or

(1.18) Re

{
z3

0p
(4)(z0)

p′(z0)

}
> k3Re

{
s3

0q
(4)(s0)

q′(s0)

}
.

Definition 1.4. ([6]) Let Ω be a set in C, q ∈ Q and n ∈ N\{2}. The class
Ψn[Ω, q] of admissible functions consists of those functions ϕ : C5 × U −→ C that
satisfy the following admissibility condition:

ϕ(r, s, t, u, v; z) /∈ Ω,

whenever

r = q(ζ), s = kζq′(ζ), Re

{
t

s
+ 1

}
> kRe

{
ζq′′(ζ)

q′(ζ)
+ 1

}
,

and

Re
{u
s

}
> k2Re

{
ζ2q(3)(ζ)

q′(ζ)

}
, Re

{v
s

}
> k3Re

{
ζ3q(4)(ζ)

q′(ζ)

}
,

where z ∈ U, ζ ∈ ∂U \ E(q) and k > n.

The next theorem is the foundation result in the theory of fourth-order differ-
ential subordinations.

Theorem 1.1. (See [6]) Let p ∈ H [a, n] with n ∈ N\{2}. Also, let q ∈ Q(a)
and satisfy the following admissibility conditions:

(1.19) Re

{
ζ2q(3)(ζ)

q′(ζ)

}
> 0, and

∣∣∣∣z2p′′(z)

q′(ζ)

∣∣∣∣ 6 k2,

where z ∈ U, ζ ∈ ∂U \ E(q) and k > n. If Ω is a set in C, ϕ ∈ Ψn[Ω, q] and

(1.20) ϕ
(
p(z), zp′(z), z2p′′(z), z3p(3)(z), z4p(4)(z); z

)
∈ Ω,

then

p(z) ≺ q(z) (z ∈ U).

2. Fourth-order differential subordination with Is,r,1(n, λ)f(z)

We first define the following class of admissible function, which are required in
proving the differential subordination theorem involving the operator Is,r,1(n, λ)f(z)
defined by (1.3).
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Definition 2.1. Let Ω be a set in C, and q ∈ Q1. The class Al[Ω, q] of ad-
missible functions consists of those functions φ : C5 × U −→ C which satisfy the
following admissibility condition:

φ(a, b, c, d, e; z) /∈ Ω,

whenever

a = q(ζ), b =
kζq′(ζ) + λq(ζ)

λ− 1
,

Re
{

(λ−1)(λ−2)c−λ(λ−1)a
(λ−1)b−λa − (2λ− 1)

}
> kRe

{
ζq′′(ζ)

q′(ζ)
+ 1

}
,

Re
{

(λ−1)(λ−2)(λ−3)d−3λ(λ−1)(λ−2)c+2λ(λ2−1)a
(λ−1)b−λa + 3λ(λ+ 1)

}
> k2Re

{
ζ2q(3)(ζ)

q′(ζ)

}
,

and

Re
{

(λ−1)(λ−2)(λ−3)(λ−4)e−4λ(λ−1)(λ−2)(λ−3)d+6λ(λ2−1)(λ−2)c−3λ(λ3+2λ2−λ+2)a
(λ−1)b−λa

−4λ(λ2 + 9λ+ 2)
}
> k3Re

{
ζ3q(4)(ζ)
q′(ζ)

}
,

where z ∈ U, ζ ∈ ∂U \ E(q) and k > 3.

Theorem 2.1. Let φ ∈ Al[Ω, q]. If the function f ∈ Σ and q ∈ Q1 satisfy the
following conditions:

(2.1) Re

{
ζ2q(3)(ζ)

q′(ζ)

}
> 0,

∣∣∣∣Is,r,1(n+ 2, λ)f(z)

q′(ζ)

∣∣∣∣ 6 k2,

and

(2.2)
{φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),

Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z) : z ∈ U} ⊂ Ω,

then
Is,r,1(n, λ)f(z) ≺ q(z) (z ∈ U).

Proof. Define the analytic function F (z) in U by

(2.3) F (z) = Is,r,1(n, λ)f(z).

By differentiating (1.3) with respect to z with using (2.3), we deduce that

(2.4) Is,r,1(n+ 1, λ)f(z) =
zF ′(z) + λF (z)

λ− 1
.

By a similar argument, we get

(2.5) Is,r,1(n+ 2, λ)f(z) =
z2F ′′(z) + 2λzF ′(z) + λ(λ− 1)F (z)

(λ− 1)(λ− 2)
,

(2.6) Is,r,1(n+ 3, λ)f(z) = z3F (3)(z)+3λz2F ′′(z)+3λ(λ−1)zF ′(z)+λ(λ2−3λ+2)F (z)
(λ−1)(λ−2)(λ−3) ,

and

(2.7)
Is,r,1(n+ 4, λ)f(z) = z4F (4)(z)+4λz3F (3)(z)+6λ(λ−1)z2F ′′(z)

(λ−1)(λ−2)(λ−3)(λ−4)

+ 4λ(λ2−3λ+2)zF ′(z)+λ(λ3−6λ2+11λ−6)F (z)
(λ−1)(λ−2)(λ−3)(λ−4) .
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Define the transformation from C5 to C by

a(r, s, t, u, v) = r, b(r, s, t, u, v) =
s+ λr

λ− 1
, c(r, s, t, u, v) =

t+ 2λs+ λ(λ− 1)r

(λ− 1)(λ− 2)
,

d(r, s, t, u, v) =
u+ 3λt+ 3λ(λ− 1)s+ λ(λ2 − 3λ+ 2)r

(λ− 1)(λ− 2)(λ− 3)
,

and

e(r, s, t, u, v) = v+4λu+6λ(λ−1)t+4λ(λ2−3λ+2)s+λ(λ3−6λ2+11λ−6)r
(λ−1)(λ−2)(λ−3)(λ−4) .

Let

(2.8)

ψ(r, s, t, u, v; z) = φ(a, b, c, d, e; z)

= φ
(
r, s+λrλ−1 ,

t+2λs+λ(λ−1)r
(λ−1)(λ−2) , u+3λt+3λ(λ−1)s+λ(λ2−3λ+2)r

(λ−1)(λ−2)(λ−3) ,

v+4λu+6λ(λ−1)t+4λ(λ2−3λ+2)s+λ(λ3−6λ2+11λ−6)r
(λ−1)(λ−2)(λ−3)(λ−4) ; z

)
.

The proof will make use of Lemma 1.1. Using (2.3) to (2.7) and from (2.8), we have

(2.9)
ψ
(
F (z), zF ′(z), z2F ′′(z), z3F (3)(z), z4F (4)(z); z

)
= φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),

Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z) .

Hence (2.2) becomes

ψ
(
p(z), zp′(z), z2p′′(z), z3p(3)(z), z4p(4)(z); z

)
∈ Ω.

Note that
t

s
+ 1 =

(λ− 1)(λ− 2)c− λ(λ− 1)a

(λ− 1)b− λa
− (2λ− 1),

u

s
= (λ−1)(λ−2)(λ−3)d−3λ(λ−1)(λ−2)c+2λ(λ2−1)a

(λ−1)b−λa + 3λ(λ+ 1),

and

v

s
= (λ−1)(λ−2)(λ−3)(λ−4)e−4λ(λ−1)(λ−2)(λ−3)d+6λ(λ2−1)(λ−2)c−3λ(λ3+2λ2−λ+2)a

(λ−1)b−λa

−4λ(λ2 + 9λ+ 2).

Thus, the admissibility condition for φ ∈ Al[Ω, q] in Definition 2.1 is equivalent to
the admissibility condition for ϕ ∈ Ψ3[Ω, q] as given in Definition 1.4 with n = 3 .
Therefore, by using (2.1) and Lemma 1.1, we have

F (z) = Is,r,1(n, λ)f(z) ≺ q(z).

This completes the proof of Theorem 2.1. �

Our next corollary is an extension of Theorem 2.1 to the case when the behavior
of q(z) on ∂U is not known.
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Corollary 2.1. Let Ω ⊂ C, and let the function q be univalent in U with
q(0) = 1. Let φ ∈ Al[Ω, qρ] for some ρ ∈ (0, 1), where qρ(z) = q(ρz). If the
function f ∈ Σ and qρ satisfy the following conditions:
(2.10)

Re

{
ζ2q

(3)
ρ (ζ)

q′ρ(ζ)

}
> 0,

∣∣∣∣Is,r,1(n+ 2, λ)f(z)

q′ρ(ζ)

∣∣∣∣ 6 k2, (z ∈ U, k > 3, ζ ∈ ∂U \ E(qρ)) ,

and
φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),

Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z) ∈ Ω,

then
Is,r,1(n+ 2, λ)f(z) ≺ q(z) (z ∈ U).

Proof. By using Theorem 1.1, we get

Is,r,1(n, λ)f(z) ≺ qρ(z) (z ∈ U).

Then, we obtain the result from

qρ(z) ≺ q(z) (z ∈ U).

�

If Ω 6= C is a simply connected domain, then Ω = h(U) for some conformal
mapping h(z) of U onto Ω. In this case, the class Al[h(U), q] is written as Al[h, q].
The following theorem is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let φ ∈ Al[h, q]. If the function f ∈ Σ and q ∈ Q0 satisfy the
condition (2.1), and

(2.11)
φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),

Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z) ≺ h(z),

then Is,r,1(n, λ)f(z) ≺ q(z) (z ∈ U).

The next result is an immediate consequence of Corollary 2.1.

Corollary 2.2. Let Ω ⊂ C, and q be univalent function in U with q(0) = 1.
Let φ ∈ Al[h, qρ] for some ρ ∈ (0, 1), where qρ(z) = q(ρz). If the function f ∈ Σ
and qρ satisfy conditions (2.10), and (2.11), then

Is,r,1(n, λ)f(z) ≺ qρ(z) (z ∈ U).

The following theorem yield the best dominant of the differential subordination
(2.11).

Theorem 2.3. Let h be univalent function in U. Also, let φ : C5 × U −→ C
and suppose that the differential equation:
(2.12)

ϕ
(
q(z), zq

′(z)+λq(z)
λ−1 , z

2q′′(z)+2λzq′(z)+λ(λ−1)q(z)
(λ−1)(λ−2) ,

z3q(3)(z)+3λz2q′′(z)+3λ(λ−1)zq′(z)+λ(λ2−3λ+2)q(z)
(λ−1)(λ−2)(λ−3) ,

z4q(4)(z)+4λz3q(3)(z)+6λ(λ−1)z2q′′(z)+4λ(λ2−3λ+2)zq′(z)+λ(λ3−6λ2+11λ−6)q(z)
(λ−1)(λ−2)(λ−3)(λ−4) ; z

)
= h(z)
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has a solution q(z) with q(0) = 1, which satisfies the condition (2.1 ). If the function
f ∈ Σ that satisfies condition (2.11), and if the function

φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),
Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z)

is analytic in U, then

Is,r,1(n, λ)f(z) ≺ q(z),
and q(z) is the best dominant.

Proof. From Theorem 1.1, we see that q(z) is a dominant of (2.11). Since q(z)
satisfies (2.12), it has also a solution of (2.11) and therefore q will be dominated by
all dominants. Hence q(z) is the best dominant. �

In view of Definition 2.1 and in a special case when q(z) = Mz, (M > 0), the
class of admissible functions Al[Ω, q], denoted by Al[Ω,M ], is described as follows.

Definition 2.2. Let Ω be a set in C, and M > 0. The class Al[Ω,M ] of
admissible functions consists of those functions φ : C5 × U −→ C such that
(2.13)

φ
(
Meiθ, k+λ

λ−1Meiθ, L+[2λk+λ(λ−1)]Meiθ

(λ−1)(λ−2) , N+3λL+[3λ(λ−1)k+λ(λ2−3λ+2)]Meiθ

(λ−1)(λ−2)(λ−3) ,

A+4λN+6λ(λ−1)L+[4λ(λ2−3λ+2)k+λ(λ3−6λ2+11λ−6)]Meiθ

(λ−1)(λ−2)(λ−3)(λ−4) ; z
)
/∈ Ω,

whenever z ∈ U, Re(Le−iθ) > (k − 1)kM, Re(Ne−iθ) > 0 and Re(Ae−iθ) > 0 (θ ∈
R; k > 3).

Corollary 2.3. Let φ ∈ Al[Ω,M ]. If the function f ∈ Σ that satisfies

|Is,r,1(n+ 2, λ)| 6 k2M (z ∈ U, k > 3, M > 0),

and
φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),

Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z) ∈ Ω,

then

|Is,r,1(n, λ)| < M.

In the special case, when Ω = q(U) = {w : |w| < M}, the class Al[Ω,M ] is
simply denoted by Al[M ]. Corollary 2.3 can now be written in the following form:

Corollary 2.4. Let φ ∈ Al[Ω,M ]. If the function f ∈ Σ that satisfies

|Is,r,1(n+ 2, λ)f(z)| 6 k2M (z ∈ U, k > 3, M > 0),

and
|φ (Is,r,1(n, λ)f(z), Is,r,1(n+ 1, λ)f(z), Is,r,1(n+ 2, λ)f(z),

Is,r,1(n+ 3, λ)f(z), Is,r,1(n+ 4, λ)f(z); z)| < M,

then

|Is,r,1(n, λ)f(z)| < M.
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