BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN *Bull. Int. Math. Virtual Inst.*, **12**(1)(2022), 195-204 DOI: 10.7251/BIMVI2201195A

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

NEW APPLICATIONS ON FOURTH-ORDER DIFFERENTIAL SUBORDINATION FOR MEROMORPHIC UNIVALENT FUNCTIONS

Waggas Galib Atshan, Azhar Haider Saeed, and Sibel Yalçın

ABSTRACT. In the present paper, we introduce new applications on fourthorder differential subordination associated with differential linear operator $I_{s,r,1}(n,\lambda)$ in the punctured open unit disk \mathbb{U}^* . Also, we obtain some new results.

1. Introduction, definitions, and preliminaries

Denote by \mathbb{C} be a complex plane $\mathbb{H} = \mathbb{H}(\mathbb{U})$ be the class of functions which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C}, |z| < 1\}$, for $a \in \mathbb{C}$ and $n \in \mathbb{N}$, \mathbb{N} being the set of positive integers, let

 $\mathbb{H}[a,n] = \left\{ f \in \mathbb{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \right\}, \text{ and } \mathbb{H}_1 = \mathbb{H}[1,1].$

Let Σ denote the class of functions f(z) of the form:

(1.1)
$$f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k,$$

which are analytic and meromorphic univalent in the punctured open unit disk

$$\mathbb{U}^* = \{ z \in \mathbb{C}, \ 0 < |z| < 1 \} = \mathbb{U} \setminus \{ 0 \}.$$

Ali et al. [2] introduced and investigated the linear operator

$$J_1(n,\lambda): \Sigma \longrightarrow \Sigma,$$

²⁰¹⁰ Mathematics Subject Classification. 30C45.

 $Key \ words \ and \ phrases.$ Meromorphic Univalent Function, Differential Subordination, Admissible Function, Fourth-Order.

Communicated by Daniel A. Romano.

that is obtained as follows:

(1.2)
$$J_1(n,\lambda)f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \left(\frac{k+\lambda}{\lambda-1}\right)^n a_k z^k, \quad (z \in \mathbb{U}^*, \, \lambda > 1).$$

The general Hurwitz-Lerch Zeta function

$$\Phi(z,s,r) = \sum_{k=0}^{\infty} \frac{z^k}{(r+k)^s}, r \in \mathbb{C} \setminus \mathbb{Z}_0^-, s \in \mathbb{C} \text{ when } 0 < |z| < 1.$$

A linear operator $I_{s,r,1}(n,\lambda): \Sigma \longrightarrow \Sigma$ (see [9]) is defined (1.3)

$$I_{s,r,1}(n,\lambda)f(z) = \frac{\Phi(z,s,r)}{zr^{-s}} * J_1(n,\lambda)f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \left(\frac{r}{1+k+r}\right)^s \left(\frac{k+\lambda}{\lambda-1}\right)^n a_k z^k.$$

It is easily verified from (1.3) that

(1.4)
$$z (I_{s,r,1}(n,\lambda)f(z))' = (\lambda - 1)I_{s,r,1}(n+1,\lambda)f(z) - \lambda I_{s,r,1}(n,\lambda)f(z).$$
$$I_{0,r,1}(n,\lambda)f(z) = J_1(n,\lambda)f(z) \text{ and } I_{0,r,1}(0,\lambda)f(z) = f(z).$$

In 2011, Antonino and Miller [3] presented basic concepts and extended the theory of the second-order differential subordination in the open unit disk introduced by Miller and Mocanu [13] to the third-order case. Many scholar have discussed and dealt with second-order differential subordination and superordination theory in recent years, like [1, 8, 9, 10, 11, 12, 14]. There are many authors who discussed the theory of the third-order differential subordination for example [4, 5, 15, 16, 17, 18, 19], few authors introduced the theory of fourth-order differential subordination for example ([6, 7]). In this paper, using methods of fourth-order differential subordination, sufficient conditions obtained.

To prove our main results, we need the basic concepts in theory of the fourthorder.

DEFINITION 1.1. ([13]) Let f(z) and F(z) be members of the analytic function class \mathbb{H} . The function f(z) is said to be subordinate to F(z), or F(z) is superordinate to f(z), if there exists a Schwarz function w(z) analytic in \mathbb{U} with w(0) = 0 and |w(z)| < 1, such that f(z) = F(w(z)) ($z \in \mathbb{U}$). In this case, we write $f \prec F$ or $f(z) \prec F(z)$. If the function F(z) is univalent in \mathbb{U} , then

$$f(z) \prec F(z) \ (z \in \mathbb{U}) \iff f(0) = F(0), \text{ and } f(\mathbb{U}) \subset F(\mathbb{U}).$$

DEFINITION 1.2. ([3])Let \mathbb{Q} be the set of analytic and univalent functions q on the set $\overline{\mathbb{U}} \setminus E(q)$, where

$$E(q) = \left\{ \zeta \in \partial \mathbb{U} : \lim_{z \longrightarrow \zeta} q(z) = \infty \right\},\$$

and are such that $\min |q'(\zeta)| = \rho > 0$ for $\zeta \in \partial \mathbb{U} \setminus E(q)$. Further, let the subclass of \mathbb{Q} for which q(0) = a be denoted by $\mathbb{Q}(a)$ with $\mathbb{Q}(0) = \mathbb{Q}_0$ and $\mathbb{Q}(1) = \mathbb{Q}_1$, $\mathbb{Q}_1 = \{q \in \mathbb{Q} : q(0) = 1\}$.

DEFINITION 1.3. ([6]) Let $\varphi : \mathbb{C}^5 \times \mathbb{U} \longrightarrow \mathbb{C}$ and suppose that h(z) be univalent function in \mathbb{U} . If p(z) is analytic function in \mathbb{U} and satisfies the following fourth-order differential subordination:

(1.5)
$$\varphi\left(p(z), \ zp'(z), \ z^2p''(z), \ z^3p^{(3)}(z), \ z^4p^{(4)}(z); \ z\right) \prec h(z),$$

then p(z) is called a solution of the differential subordination (1.5). A univalent function q(z) is called a dominant of the solution of (1.5), or, more simply, a dominant if $p(z) \prec q(z)$ for all p(z) satisfying (1.5). A dominant $\tilde{q}(z)$ which satisfies $\tilde{q}(z) \prec q(z)$ for all dominants q(z) of (1.5) is said to be the best dominant.

LEMMA 1.1. ([6]) Let $z_0 \in \mathbb{U}$ with $r_0 = |z_0|$. For $n \ge 3$. Let

$$f(z) = a_n z^n + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \dots$$

be continuous on $\overline{\mathbb{U}_{r_0}}$ and analytic in $\mathbb{U}_{r_0} \cup \{z_0\}$, with $f(z) \neq 0.$ If

(1.6)
$$|f(z_0)| = \max\left\{|f(z)| : z \in \overline{\mathbb{U}_{r_0}}\right\},$$

then there exists $m \ge n$ such that

(1.7)
$$\frac{z_0 f'(z_0)}{f(z_0)} = m,$$

(1.8)
$$Re\left\{\frac{z_0f''(z_0)}{f'(z_0)}+1\right\} \ge m,$$

and

(1.9)
$$Re\left\{\frac{z_0f'(z_0) + 3z_0^2f''(z_0) + z_0^3f^{(3)}(z_0)}{z_0f'(z_0)}\right\} \ge m^2.$$

Then

(1.10)
$$Re\left\{\frac{z_0f'(z_0) + 7z_0^2f''(z_0) + 6z_0^3f^{(3)}(z_0) + z_0^4f^{(4)}(z_0)}{z_0f'(z_0)}\right\} \ge m^3.$$

LEMMA 1.2. ([6]) Let $p \in \mathbb{H}[a,n]$ and $q \in \mathbb{Q}$ with q(0) = a for $z \in \overline{\mathbb{U}_{r_0}}$. Let (1.11) $s = q^{-1}[p(z)] = f(z).$

If there exists points $z_0 = r_0 e^{i\phi_0} \in \mathbb{U}$ and $s_0 \in \partial \mathbb{U} \setminus E(q)$ such that $p(z_0) = q(s_0)$ and $p(\overline{\mathbb{U}_{r_0}}) \subset q(\mathbb{U})$,

(1.12)
$$Re\left\{\frac{s_0q''(s_0)}{q'(s_0)}\right\} \ge 0, \qquad \left|\frac{zp'(z)}{q'(s)}\right| \le k,$$

and

(1.13)
$$Re\left\{\frac{s_0^2q^{(3)}(s_0)}{q'(s_0)}\right\} \ge 0, \qquad \left|\frac{z^2p''(z)}{q'(s)}\right| \le k^2,$$

where $r_0 = |z_0|$. Then there exists $m \ge n \ge 3$ such that

(1.14)
$$z_0 p'(z_0) = m s_0 q'(s_0),$$

(1.15)
$$Re\left\{\frac{z_0p''(z_0)}{p'(z_0)} + 1\right\} \ge mRe\left\{\frac{s_0q''(s_0)}{q'(s_0)} + 1\right\},$$

and

$$(1.16) \quad Re\left\{\frac{z_0p'(z_0)+3z_0^2p''(z_0)+z_0^3p^{(3)}(z_0)}{z_0p'(z_0)}\right\} \geqslant m^2 Re\left\{\frac{s_0q'(s_0)+3s_0^2q''(s_0)+s_0^3q^{(3)}(s_0)}{s_0q'(s_0)}\right\}.$$

Then

(1.17)
$$Re\left\{\frac{z_0p'(z_0)+7z_0^2p''(z_0)+6z_0^3p^{(3)}(z_0)+z_0^4p^{(4)}(z_0)}{z_0p'(z_0)}\right\} \\ \geqslant m^3 Re\left\{\frac{s_0q'(s_0)+7s_0^2q''(s_0)+6s_0^3q^{(3)}(s_0)+s_0^4q^{(4)}(s_0)}{s_0q'(s_0)}\right\},$$

or

(1.18)
$$Re\left\{\frac{z_0^3 p^{(4)}(z_0)}{p'(z_0)}\right\} \ge k^3 Re\left\{\frac{s_0^3 q^{(4)}(s_0)}{q'(s_0)}\right\}$$

DEFINITION 1.4. ([6]) Let Ω be a set in \mathbb{C} , $q \in \mathbb{Q}$ and $n \in \mathbb{N} \setminus \{2\}$. The class $\Psi_n[\Omega, q]$ of admissible functions consists of those functions $\varphi : \mathbb{C}^5 \times \mathbb{U} \longrightarrow \mathbb{C}$ that satisfy the following admissibility condition:

$$\varphi(r, s, t, u, v; z) \notin \Omega,$$

whenever

$$r = q(\zeta), \ s = k\zeta q'(\zeta), \ Re\left\{\frac{t}{s} + 1\right\} \ge kRe\left\{\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1\right\},$$

and

$$Re\left\{\frac{u}{s}\right\} \geqslant k^2 Re\left\{\frac{\zeta^2 q^{(3)}(\zeta)}{q'(\zeta)}\right\}, \quad Re\left\{\frac{v}{s}\right\} \geqslant k^3 Re\left\{\frac{\zeta^3 q^{(4)}(\zeta)}{q'(\zeta)}\right\},$$

where $z \in \mathbb{U}, \zeta \in \partial \mathbb{U} \setminus E(q)$ and $k \ge n$.

The next theorem is the foundation result in the theory of fourth-order differential subordinations.

THEOREM 1.1. (See [6]) Let $p \in \mathbb{H}[a, n]$ with $n \in \mathbb{N} \setminus \{2\}$. Also, let $q \in \mathbb{Q}(a)$ and satisfy the following admissibility conditions:

(1.19)
$$Re\left\{\frac{\zeta^2 q^{(3)}(\zeta)}{q'(\zeta)}\right\} \ge 0, \quad and \quad \left|\frac{z^2 p''(z)}{q'(\zeta)}\right| \le k^2,$$

where $z \in \mathbb{U}, \ \zeta \in \partial \mathbb{U} \ \setminus \ E(q)$ and $k \ge n$. If Ω is a set in $\mathbb{C}, \ \varphi \in \Psi_n[\Omega, q]$ and

(1.20)
$$\varphi\left(p(z), \ zp'(z), \ z^2p''(z), \ z^3p^{(3)}(z), \ z^4p^{(4)}(z); \ z\right) \in \Omega,$$

then

$$p(z) \prec q(z) \quad (z \in \mathbb{U}).$$

2. Fourth-order differential subordination with $I_{s,r,1}(n,\lambda)f(z)$

We first define the following class of admissible function, which are required in proving the differential subordination theorem involving the operator $I_{s,r,1}(n,\lambda)f(z)$ defined by (1.3).

DEFINITION 2.1. Let Ω be a set in \mathbb{C} , and $q \in \mathbb{Q}_1$. The class $\mathbb{A}_l[\Omega, q]$ of admissible functions consists of those functions $\phi : \mathbb{C}^5 \times \mathbb{U} \longrightarrow \mathbb{C}$ which satisfy the following admissibility condition:

$$\phi(a, b, c, d, e; z) \notin \Omega,$$

whenever

$$a = q(\zeta), \ b = \frac{k\zeta q'(\zeta) + \lambda q(\zeta)}{\lambda - 1},$$

$$\begin{aligned} ℜ\left\{\frac{(\lambda-1)(\lambda-2)c-\lambda(\lambda-1)a}{(\lambda-1)b-\lambda a}-(2\lambda-1)\right\} \geqslant kRe\left\{\frac{\zeta q''(\zeta)}{q'(\zeta)}+1\right\},\\ ℜ\left\{\frac{(\lambda-1)(\lambda-2)(\lambda-3)d-3\lambda(\lambda-1)(\lambda-2)c+2\lambda(\lambda^2-1)a}{(\lambda-1)b-\lambda a}+3\lambda(\lambda+1)\right\} \geqslant k^2Re\left\{\frac{\zeta^2 q^{(3)}(\zeta)}{q'(\zeta)}\right\},\\ &\text{and} \end{aligned}$$

$$Re\left\{\frac{(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)e-4\lambda(\lambda-1)(\lambda-2)(\lambda-3)d+6\lambda(\lambda^2-1)(\lambda-2)c-3\lambda(\lambda^3+2\lambda^2-\lambda+2)a}{(\lambda-1)b-\lambda a} -4\lambda(\lambda^2+9\lambda+2)\right\} \geqslant k^3Re\left\{\frac{\zeta^3q^{(4)}(\zeta)}{q'(\zeta)}\right\},$$

where $z \in \mathbb{U}, \zeta \in \partial \mathbb{U} \setminus E(q)$ and $k \ge 3$.

THEOREM 2.1. Let $\phi \in \mathbb{A}_l[\Omega, q]$. If the function $f \in \Sigma$ and $q \in \mathbb{Q}_1$ satisfy the following conditions:

(2.1)
$$Re\left\{\frac{\zeta^2 q^{(3)}(\zeta)}{q'(\zeta)}\right\} \ge 0, \ \left|\frac{I_{s,r,1}(n+2,\lambda)f(z)}{q'(\zeta)}\right| \le k^2,$$

and

(2.2)
$$\begin{cases} \phi(I_{s,r,1}(n,\lambda)f(z), \ I_{s,r,1}(n+1,\lambda)f(z), \ I_{s,r,1}(n+2,\lambda)f(z), \\ I_{s,r,1}(n+3,\lambda)f(z), I_{s,r,1}(n+4,\lambda)f(z); z) : z \in \mathbb{U} \end{cases} \subset \Omega,$$

then

$$I_{s,r,1}(n,\lambda)f(z) \prec q(z) \quad (z \in \mathbb{U}).$$

PROOF. Define the analytic function F(z) in \mathbb{U} by

(2.3)
$$F(z) = I_{s,r,1}(n,\lambda)f(z)$$

By differentiating (1.3) with respect to z with using (2.3), we deduce that

(2.4)
$$I_{s,r,1}(n+1,\lambda)f(z) = \frac{zF'(z) + \lambda F(z)}{\lambda - 1}.$$

By a similar argument, we get

(2.5)
$$I_{s,r,1}(n+2,\lambda)f(z) = \frac{z^2 F''(z) + 2\lambda z F'(z) + \lambda(\lambda-1)F(z)}{(\lambda-1)(\lambda-2)},$$

(2.6)
$$I_{s,r,1}(n+3,\lambda)f(z) = \frac{z^3 F^{(3)}(z) + 3\lambda z^2 F''(z) + 3\lambda(\lambda-1)zF'(z) + \lambda(\lambda^2 - 3\lambda + 2)F(z)}{(\lambda-1)(\lambda-2)(\lambda-3)},$$

(2.7)
$$I_{s,r,1}(n+4,\lambda)f(z) = \frac{z^4 F^{(4)}(z) + 4\lambda z^3 F^{(3)}(z) + 6\lambda(\lambda-1)z^2 F''(z)}{(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)} + \frac{4\lambda(\lambda^2 - 3\lambda + 2)z F'(z) + \lambda(\lambda^3 - 6\lambda^2 + 11\lambda - 6)F(z)}{(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)}.$$

Define the transformation from \mathbb{C}^5 to \mathbb{C} by

$$a(r,s,t,u,v) = r, \ b(r,s,t,u,v) = \frac{s+\lambda r}{\lambda-1}, \ c(r,s,t,u,v) = \frac{t+2\lambda s+\lambda(\lambda-1)r}{(\lambda-1)(\lambda-2)},$$
$$d(r,s,t,u,v) = \frac{u+3\lambda t+3\lambda(\lambda-1)s+\lambda(\lambda^2-3\lambda+2)r}{(\lambda-1)(\lambda-2)(\lambda-3)},$$

and

$$e(r, s, t, u, v) = \frac{v + 4\lambda u + 6\lambda(\lambda - 1)t + 4\lambda(\lambda^2 - 3\lambda + 2)s + \lambda(\lambda^3 - 6\lambda^2 + 11\lambda - 6)r}{(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)}$$

Let

(2.8)
$$\begin{aligned} \psi(r,s,t,u,v;z) &= \phi(a,b,c,d,e;z) \\ &= \phi\left(r,\frac{s+\lambda r}{\lambda-1},\frac{t+2\lambda s+\lambda(\lambda-1)r}{(\lambda-1)(\lambda-2)},\frac{u+3\lambda t+3\lambda(\lambda-1)s+\lambda(\lambda^2-3\lambda+2)r}{(\lambda-1)(\lambda-2)(\lambda-3)},\frac{v+4\lambda u+6\lambda(\lambda-1)t+4\lambda(\lambda^2-3\lambda+2)s+\lambda(\lambda^3-6\lambda^2+11\lambda-6)r}{(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)};z\right). \end{aligned}$$

The proof will make use of Lemma 1.1. Using (2.3) to (2.7) and from (2.8), we have

(2.9)
$$\begin{aligned} \psi\left(F(z), \ zF'(z), \ z^2F''(z), \ z^3F^{(3)}(z), \ z^4F^{(4)}(z); \ z\right) \\ &= \phi\left(I_{s,r,1}(n,\lambda)f(z), \ I_{s,r,1}(n+1,\lambda)f(z), \ I_{s,r,1}(n+2,\lambda)f(z), \\ I_{s,r,1}(n+3,\lambda)f(z), I_{s,r,1}(n+4,\lambda)f(z); z\right). \end{aligned}$$

Hence (2.2) becomes

$$\psi\left(p(z), zp'(z), z^2p''(z), z^3p^{(3)}(z), z^4p^{(4)}(z); z\right) \in \Omega.$$

Note that

$$\frac{t}{s} + 1 = \frac{(\lambda - 1)(\lambda - 2)c - \lambda(\lambda - 1)a}{(\lambda - 1)b - \lambda a} - (2\lambda - 1),$$
$$\frac{u}{s} = \frac{(\lambda - 1)(\lambda - 2)(\lambda - 3)d - 3\lambda(\lambda - 1)(\lambda - 2)c + 2\lambda(\lambda^2 - 1)a}{(\lambda - 1)b - \lambda a} + 3\lambda(\lambda + 1),$$

and

$$\frac{v}{s} = \frac{(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)e - 4\lambda(\lambda-1)(\lambda-2)(\lambda-3)d + 6\lambda(\lambda^2-1)(\lambda-2)c - 3\lambda(\lambda^3+2\lambda^2-\lambda+2)a}{(\lambda-1)b - \lambda a} - 4\lambda(\lambda^2+9\lambda+2).$$

Thus, the admissibility condition for $\phi \in \mathbb{A}_l[\Omega, q]$ in Definition 2.1 is equivalent to the admissibility condition for $\varphi \in \Psi_3[\Omega, q]$ as given in Definition 1.4 with n = 3. Therefore, by using (2.1) and Lemma 1.1, we have

$$F(z) = I_{s,r,1}(n,\lambda)f(z) \prec q(z).$$

This completes the proof of Theorem 2.1.

Our next corollary is an extension of Theorem 2.1 to the case when the behavior of q(z) on $\partial \mathbb{U}$ is not known.

COROLLARY 2.1. Let $\Omega \subset \mathbb{C}$, and let the function q be univalent in \mathbb{U} with q(0) = 1. Let $\phi \in \mathbb{A}_l[\Omega, q_\rho]$ for some $\rho \in (0, 1)$, where $q_\rho(z) = q(\rho z)$. If the function $f \in \Sigma$ and q_ρ satisfy the following conditions: (2.10)

$$\left\{\frac{\zeta^2 q_{\rho}^{(3)}(\zeta)}{q_{\rho}'(\zeta)}\right\} \ge 0, \ \left|\frac{I_{s,r,1}(n+2,\lambda)f(z)}{q_{\rho}'(\zeta)}\right| \le k^2, \ (z \in \mathbb{U}, k \ge 3, \zeta \in \partial \mathbb{U} \setminus E(q_{\rho})),$$

and

$$\begin{array}{l} \phi \left(I_{s,r,1}(n,\lambda)f(z), \ I_{s,r,1}(n+1,\lambda)f(z), \ I_{s,r,1}(n+2,\lambda)f(z), \\ I_{s,r,1}(n+3,\lambda)f(z), I_{s,r,1}(n+4,\lambda)f(z); z \right) \in \Omega, \end{array}$$

then

$$I_{s,r,1}(n+2,\lambda)f(z) \prec q(z) \quad (z \in \mathbb{U}).$$

PROOF. By using Theorem 1.1, we get

$$I_{s,r,1}(n,\lambda)f(z) \prec q_{\rho}(z) \quad (z \in \mathbb{U}).$$

Then, we obtain the result from

$$q_{\rho}(z) \prec q(z) \quad (z \in \mathbb{U}).$$

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(\mathbb{U})$ for some conformal mapping h(z) of \mathbb{U} onto Ω . In this case, the class $\mathbb{A}_l[h(\mathbb{U}), q]$ is written as $\mathbb{A}_l[h, q]$. The following theorem is an immediate consequence of Theorem 2.1.

THEOREM 2.2. Let $\phi \in \mathbb{A}_l[h,q]$. If the function $f \in \Sigma$ and $q \in \mathbb{Q}_0$ satisfy the condition (2.1), and

(2.11)
$$\phi \left(I_{s,r,1}(n,\lambda)f(z), \ I_{s,r,1}(n+1,\lambda)f(z), \ I_{s,r,1}(n+2,\lambda)f(z), \\ I_{s,r,1}(n+3,\lambda)f(z), I_{s,r,1}(n+4,\lambda)f(z); z \right) \prec h(z),$$

then $I_{s,r,1}(n,\lambda)f(z) \prec q(z) \quad (z \in \mathbb{U}).$

The next result is an immediate consequence of Corollary 2.1.

COROLLARY 2.2. Let $\Omega \subset \mathbb{C}$, and q be univalent function in \mathbb{U} with q(0) = 1. Let $\phi \in \mathbb{A}_l[h, q_\rho]$ for some $\rho \in (0, 1)$, where $q_\rho(z) = q(\rho z)$. If the function $f \in \Sigma$ and q_ρ satisfy conditions (2.10), and (2.11), then

$$I_{s,r,1}(n,\lambda)f(z) \prec q_{\rho}(z) \quad (z \in \mathbb{U}).$$

The following theorem yield the best dominant of the differential subordination (2.11).

THEOREM 2.3. Let h be univalent function in U. Also, let $\phi : \mathbb{C}^5 \times \mathbb{U} \longrightarrow \mathbb{C}$ and suppose that the differential equation:

 $(2.12) \qquad \qquad \varphi\left(q(z), \frac{zq'(z) + \lambda q(z)}{\lambda - 1}, \frac{z^2 q''(z) + 2\lambda zq'(z) + \lambda(\lambda - 1)q(z)}{(\lambda - 1)(\lambda - 2)}, \frac{z^3 q^{(3)}(z) + 3\lambda z^2 q''(z) + 3\lambda(\lambda - 1)zq'(z) + \lambda(\lambda^2 - 3\lambda + 2)q(z)}{(\lambda - 1)(\lambda - 2)(\lambda - 3)}, \frac{z^4 q^{(4)}(z) + 4\lambda z^3 q^{(3)}(z) + 6\lambda(\lambda - 1)z^2 q''(z) + 4\lambda(\lambda^2 - 3\lambda + 2)zq'(z) + \lambda(\lambda^3 - 6\lambda^2 + 11\lambda - 6)q(z)}{(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda - 4)}; z \right) = h(z)$

has a solution q(z) with q(0) = 1, which satisfies the condition (2.1). If the function $f \in \Sigma$ that satisfies condition (2.11), and if the function

$$\phi \left(I_{s,r,1}(n,\lambda) f(z), \ I_{s,r,1}(n+1,\lambda) f(z), \ I_{s,r,1}(n+2,\lambda) f(z), \\ I_{s,r,1}(n+3,\lambda) f(z), I_{s,r,1}(n+4,\lambda) f(z); z \right)$$

is analytic in \mathbb{U} , then

$$I_{s,r,1}(n,\lambda)f(z) \prec q(z),$$

and q(z) is the best dominant.

PROOF. From Theorem 1.1, we see that q(z) is a dominant of (2.11). Since q(z) satisfies (2.12), it has also a solution of (2.11) and therefore q will be dominated by all dominants. Hence q(z) is the best dominant.

In view of Definition 2.1 and in a special case when q(z) = Mz, (M > 0), the class of admissible functions $\mathbb{A}_{l}[\Omega, q]$, denoted by $\mathbb{A}_{l}[\Omega, M]$, is described as follows.

DEFINITION 2.2. Let Ω be a set in \mathbb{C} , and M > 0. The class $\mathbb{A}_l[\Omega, M]$ of admissible functions consists of those functions $\phi : \mathbb{C}^5 \times \mathbb{U} \longrightarrow \mathbb{C}$ such that (2.13)

$$\begin{split} \phi \left(Me^{i\theta}, \frac{k+\lambda}{\lambda-1} Me^{i\theta}, \frac{L+[2\lambda k+\lambda(\lambda-1)]Me^{i\theta}}{(\lambda-1)(\lambda-2)}, \frac{N+3\lambda L+[3\lambda(\lambda-1)k+\lambda(\lambda^2-3\lambda+2)]Me^{i\theta}}{(\lambda-1)(\lambda-2)(\lambda-3)}, \frac{A+4\lambda N+6\lambda(\lambda-1)L+[4\lambda(\lambda^2-3\lambda+2)k+\lambda(\lambda^3-6\lambda^2+11\lambda-6)]Me^{i\theta}}{(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)}; z \right) \notin \Omega, \end{split}$$

whenever $z \in \mathbb{U}$, $Re(Le^{-i\theta}) \ge (k-1)kM$, $Re(Ne^{-i\theta}) \ge 0$ and $Re(Ae^{-i\theta}) \ge 0$ ($\theta \in \mathbb{R}$; $k \ge 3$).

COROLLARY 2.3. Let $\phi \in \mathbb{A}_l[\Omega, M]$. If the function $f \in \Sigma$ that satisfies

$$|I_{s,r,1}(n+2,\lambda)| \leqslant k^2 M \quad (z \in \mathbb{U}, \, k \geqslant 3, \, M > 0),$$

and

$$\begin{split} \phi \left(I_{s,r,1}(n,\lambda) f(z), \ I_{s,r,1}(n+1,\lambda) f(z), \ I_{s,r,1}(n+2,\lambda) f(z), \\ I_{s,r,1}(n+3,\lambda) f(z), I_{s,r,1}(n+4,\lambda) f(z); z) \in \Omega, \end{split}$$

then

$$|I_{s,r,1}(n,\lambda)| < M.$$

In the special case, when $\Omega = q(\mathbb{U}) = \{w : |w| < M\}$, the class $\mathbb{A}_l[\Omega, M]$ is simply denoted by $\mathbb{A}_l[M]$. Corollary 2.3 can now be written in the following form:

COROLLARY 2.4. Let $\phi \in \mathbb{A}_l[\Omega, M]$. If the function $f \in \Sigma$ that satisfies

$$|I_{s,r,1}(n+2,\lambda)f(z)| \leq k^2 M \quad (z \in \mathbb{U}, \, k \geq 3, \, M > 0).$$

and

$$\begin{aligned} &|\phi\left(I_{s,r,1}(n,\lambda)f(z), \ I_{s,r,1}(n+1,\lambda)f(z), \ I_{s,r,1}(n+2,\lambda)f(z), \\ &I_{s,r,1}(n+3,\lambda)f(z), I_{s,r,1}(n+4,\lambda)f(z); z)| < M, \end{aligned}$$

then

$$|I_{s,r,1}(n,\lambda)f(z)| < M.$$

References

- S.A. Al-Ameedee, W.G. Atshan, F.A. Al-Maamori, On sandwich results of univalent functions defined by a linear operator, Journal of Interdisciplinary Mathematics 23(4) (2020), 803–809.
- [2] R.M. Ali, V. Ravichandran, N. Seenivasagan, On Subordination and Superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc. 33 (2010), 311–324.
- [3] J.A. Antonino, S.S. Miller, Third-Order differential inequalities and subordinations in the complex plane, Complex Var. Elliptic Equ. 56 (2011), 439–454.
- [4] W.G. Atshan, A.H. Battor, A.F. Abaas, On third-order differential subordination results for univalent analytic functions involving an operator, Journal of Physics: Conference Series 1664 (2020) 012041, 1–19.
- [5] W.G. Atshan, A.H. Battor, A.F. Abaas, On third-order sandwich results for analytic functions involving by differential operator, V. International Scientific and Vocational Studies Congrass-Science and Health (BILMES SH 2020) 12-15 December 2020, Turkey.
- [6] W.G. Atshan, A.H. Battor, A.F. Abaas, G.I. Oros, New and Extended results on fourthorder differential subordination for univalent analytic functions, Al-Qadisiyah Journal of Pure Science 25(2) (2020), 1–13.
- [7] W.G. Atshan, I.A. Abbas, S. Yalcin, New concept on fourth-order differential subordination and superodination with some results for multivalent analytic functions, Journal of Al-Qadisiyah for Computer Science and Mathematics 12(1) (2020), 96–109.
- [8] W.G. Atshan, R.A. Hadi, Some differential subordination and superordination results of pvalent functions defined by differential operator, Journal of Physics: Conference Series 1664 (2020) 012043, 1–15.
- W.G. Atshan, R.A. Hiress, On differential sandwich theorems of meromorphic univalent functions, Journal of Al-Qadisiyah for Computer Science and Mathematics 10(3) (2018), 8–15.
- [10] W.G. Atshan, S.A.A. Jawad, On differential sandwich results for analytic functions, Journal of Al-Qadisiyah for Computer Science and Mathematics 11(1) (2019), 96–101.
- [11] W.G. Atshan, S.R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics 10(2) (2009), Article 53, 11 pp.
- [12] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent function, Michingan Math. J. 28(1981), 157–171.
- [13] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, in : Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker, Incorporated, New York and Basel, (2000).
- [14] S.S. Miller, P.T. Mocanu, Subordinations of differential superordinations, Complex Variables 48(10) (2003), 815–826.
- [15] S. Ponnusamy, O.P. Juneja, Third-order differential inequalities in the complex plane, in Current Topics in Analytic Function Theory, Word Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (1992).
- [16] D. Raducanu, Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions, Mediterr. J. Math. 14 (4) (2017), Article ID 167, 1–18.
- [17] H. Tang, E. Deniz, Third-order differential subordination results for analytic functions involving the generalized Bessel functions, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), 1707–1719.
- [18] H. Tang, H.M. Srivastava, E. Deniz, S. Li, Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 38 (2015), 1669–1688.
- [19] H. Tang, H.M. Srivastava, S. Li, L. Ma, Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator, Abstract Appl. Anal. Volume 2014, Article ID 792175, (2014), 11 pages.

Received by editors 6.7.2021; Revised version 13.1.2022; Available online 20.1.2022.

Department of Mathematics, College of Science, University of AL-Qadisiyah, Di-waniyah, Iraq

 $Email \ address: \ \tt waggas.galib@qu.edu.iq, waggas \ \tt hnd@yahoo.com, waggas \ \tt hnd@yahoo.co$

Department of Mathematics, College of Science, University of AL-Qadisiyah, Di-waniyah, Iraq

Email address: ma.post19@qu.edu.iq

Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey

Email address: syalcin@uludag.edu.tr