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RIEČAN AND BOSBACH STATE OPERATORS ON
SHEFFER STROKE MTL-ALGEBRAS

Ibrahim Senturk

Abstract. In this paper, we present Riečan and Bosbach states notions on

Sheffer stroke MTL-algebras. We obtain some fundamental results on these
operators. We put forward a connection between each other. Also, we give

substantial relations among these state operators and very true operator. Be-

sides, we acquire some constant conclusions by using these state operators and
very true operator and handle some characteristic feature of these mentioned

operators on Sheffer stroke MTL-algebras.

1. Introduction

The concept of monoidal t-norm-based logic (or shortly MTL) was firstly de-
fined by Godo and Esteva [14]. Montogna and Jenei proved that MTL can be used
for the logic of all left continuous t-norms and their residua [18]. In concordance
with these works, MTL-algebras are identified as a counterpart of this logical sys-
tem [14]. Recently, there are many important works, which have been published
on the structure of MTL-algebras, such as [20, 29]. These studies take a con-
structional influence on its algebraic counterparts of monoidal t-norm-based logic.
For example, Vetterlein indicated that MTL-algebras correspond to the positive
cone of a partially ordered group [29]. Furthermore, he verified that this algebra
is a bounded, integral, commutative and pre-linear residuated lattice [29]. Also,
MTL-algebras are the basis residuated structures having all algebras induced by
their residua and continuous t-norms. Therefore, MTL-algebras get an important
location in different structures which are linked with fuzzy logic [31].
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Oner and Senturk described Sheffer stroke basic algebras at the first time in
the literature [21]. Sheffer stroke basic algebras have an important role in many
numbers of logics as many-valued  Lukasiewicz logics, non-classical logics, fuzzy
logics and etc. In parallel with this logical efforts, Senturk put forward a reduction
for MTL-algebras via only Sheffer stroke operation which is called as Sheffer stroke
MTL-algebras [25]. Senturk and Oner defined very true operator on Sheffer stroke
MTL-algebras [27].

Munduci described the notion states on MV-algebras [19]. These states used
to explain averaging processes for formulas in  Lukasiewicz logics. They are not
only a generalization of the usual probability measures on Boolean algebras, but
also they are used for a semantical interpretation of the probability of fuzzy events.
For a different perspective, Riečan put forward states on BL-algebras as functions
described on these algebras with interval [0, 1] [23]. Georgescu gave Bosbach and
Riečan states consisting of a domain as a pseudo BL-algebra and a codomain as
the real closed interval [0, 1] [15]. Senturk examined state operators on sheffer
stroke basic algebras [26]. As a consequences of the works, the concept of states is
implemented to other logical algebraic structures such as equality algebras, pseudo
equality algebras, psuedo-BCK algebras, BL-algebras, semi-divisible residuated lat-
tice, residuated lattices, morphism algebras and etc. [9, 10, 12, 11, 13, 24, 28, 4].

The concept of “very true” was described by Hájek getting an answer to the
demand ”whether any natural axiomatization is possible and how far can even
this sort of fuzzy logic be captured by standard methods of mathematical logic?”
[16]. In other words, the concept very true operator is implemented to reduce
the number of possible logical values in many-valued logic. In addition to these,
this operator is not only effectively used in particular tasks in various fields of
mathematics [17, 7, 1, 32] but also has been integreted to other logical algebras
such as commutative basic algebras [3], effect algebras [8], R`-monoids [22], equality
algebras [30], etc.

In this work, we introduce Riečan and Bosbach states notions on Sheffer stroke
MTL-algebras. We get some fundamental results on these operators. We put
forward a connection between each other. The substantial contributions of this
paper are to give important relations among these state operators and very true
operator. Also, we support these relations with examples. In Section 2, we recall
some fundamental concepts about Sheffer stroke MTL-algebras. In Section 3, we
present the notions of Riečan and Bosbach state operators on Sheffer stroke MTL-
algebras. We attain some fundamental conclusions about them and we explain
that Riečan state is also a Bosbach state or vice versa. In Section 4, we obtain
some constant conclusions by using these state operators and very true operator
and handle some characteristic feature of the mentioned operators on Sheffer stroke
MTL-algebras.

2. Preliminaries

In this section of the paper, we demonstrate fundamental concepts which are
needed throughout the paper. They are taken from [5] and [2].
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Definition 2.1. Let L be a non-empty set. The structure L = (L;∧,∨) is
called a lattice if the binary operations ∨ and ∧ satisfy the following statements
for all u1, u2, u3 ∈ L:
(L1) u1 ∧ u2 = u2 ∧ u1 and u1 ∨ u2 = u2 ∨ u1,
(L2) u1 ∧ (u2 ∧ u3) = (u1 ∧ u2) ∧ u3 and u1 ∨ (u2 ∨ u3) = (u1 ∨ u2) ∨ u3,
(L3) u1 ∧ u1 = u1 and u1 ∨ u1 = u1,
(L4) u1 ∧ (u1 ∨ u2) = u1 and u1 ∨ (u1 ∧ u2) = u1.

Definition 2.2. The structure L = (L;∨,∧, 0, 1) is called bounded lattice if
it verifies the following properties for each u1 ∈ L:

(i) u1 ∧ 1 = u1 and u1 ∨ 1 = 1,
(ii) u1 ∧ 0 = 0 and u1 ∨ 0 = u1.

Also, the elements 0 and 1 are called the least element and the greatest element of
the lattice, respectively.

Definition 2.3. Let the structure L = (L;∨,∧) be a lattice. A mapping
u1 7→ u⊥1 is said to be an antitone involution if it satisfies the following statements:

(i) u⊥⊥
1 = u1 (involution),

(ii) u1 6 u2 implies u⊥2 6 u
⊥
1 (antitone).

Definition 2.4. Let L be a bounded lattice with an antitone involution. If
the following statements are verified, then u⊥1 is called the complement of u1 and
the lattice L = (L;∨,∧,⊥ , 0, 1) is also called an ortholattice.

u1 ∨ u⊥1 = 1 and u1 ∧ u⊥1 = 0,

Lemma 2.1. Let L = (L;∨,∧,⊥ ) be a lattice with antitone involution. Then,
the De Morgan laws are verified on this structure as follows:

u⊥1 ∧ u⊥2 = (u1 ∨ u2)⊥ and u⊥1 ∨ u⊥2 = (u1 ∧ u2)⊥.

Definition 2.5. [6] Let G = (G, |) be a groupoid. If the following statements
are verified, then the operation | : G×G→ G is called a Sheffer stroke operation.
(S1) %1|%2 = %2|%1,
(S2) (%1|%1)|(%1|%2) = %1,
(S3) %1|((%2|%3)|(%2|%3)) = ((%1|%2)|(%1|%2))|%3,
(S4) (%1|((%1|%1)|(%1|%1)))|(%1|((%1|%1)|(%2|%2))) = %1.
If also the following identity
(S5) %2|(%1|(%1|%1)) = %2|%2,
is satisfied, then it is said to be an ortho-Sheffer stroke operation.

Lemma 2.2. [6] Let G = (G, |) be a groupoid with Sheffer stroke operation.
Then, the following statements are satisfied for each %1, %2, %3 ∈ G:
(i) (%1|%2)|(%1|(%2|%3)) = %1,
(ii) (%1|%1)|%2 = %2|(%1|%2),
(iii) %1|((%2|%2)|%1) = %1|%2.

Lemma 2.3. [6] Let G = (G, |) be a groupoid. The binary relation 6 is given
on G as
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%1 6 %2 if and only if %1|(%2|%2) = 1.

Then, the relation 6 is a partial order on G.

Lemma 2.4. [6] Let | be a Sheffer stroke operation on G and 6 order relation
of G. Then, the following statements are verified.

(i) %1 6 %2 if and only if %2|%2 6 %1|%1,
(ii) %1|(%2|(%1|%1)) = %1|%1 is the identity of G,
(iii) %1 6 %2 implies %2|%3 6 %1|%3, for all %3 ∈ G,
(iv) %3 6 %1 and %3 6 %2 imply %1|%2 6 %3|%3.

Lemma 2.5. [21] Let G = (G; |) be a Sheffer stroke basic algebra with the
constant element 1. Then, the following identities are verified.

(i) %1|(%1|%1) = 1,
(ii) %1|(1|1) = 1,
(iii) 1|(%1|%1) = %1,
(iv) ((%1|(%2|%2))|(%2|%2))|(%2|%2) = %1|(%2|%2),
(v) (%2|(%1|(%2|%2)))|(%1|(%2|%2)) = 1.

Definition 2.6. [31] Let M 6= ∅. The operations ∨, ∧, → and ~ be binary
operations on M and the elements 0 and 1 be algebraic constant of M . If the
following statements are verified for each m1,m2,m3 ∈ M , then the structure
M = (M ;∨,∧,→,~, 0, 1) is called an MTL-algebra.
(MTL1) (M ;∧,∨, 0, 1) is a bounded lattice,
(MTL2) (M ;~, 0, 1) is a commutative monoid,
(MTL3) m1 6 m2 → m3 if and only if m1 ~m2 6 m3,
(MTL4) (m1 → m2) ∨ (m2 → m1) = 1.

Definition 2.7. [31] LetM = (M ;∨,∧,→,~, 0, 1) be an MTL-algebra. Then,
the structure M is also
(i) a Gödel algebra if m1 ~m1 = m1 for each m1 ∈M ,
(ii) an MV-algebra if (m1 → m2)→ m2 = (m2 → m1)→ m1 for each m1,m2 ∈M ,
(i) a BL-algebra if m1 ∧m2 = m1 ~ (m1 → m2) for each m1,m2 ∈M .

Theorem 2.1. [25] Let M = (M ;∨,∧,→,~, 0, 1) be an MTL-algebra. If the
operations are defined for each m1,m2 ∈M as follows:
m1 ∧m2 := (((m2|m2)|m1)|m1)|(((m2|m2)|m1)|m1),
m1 ∨m2 := (m1|(m2|m2))|(m2|m2),
m1 ~m2 := (m1|m2)|(m1|m2),
m1 → m2 := m1|(m2|m2)
then, the structure M = (M ; |) is a Sheffer stroke reduction of MTL-algebra.

Definition 2.8. [27] LetM = (M ; |) be a Sheffer stroke MTL-algebra. If the
following statements are satisfied m1,m2 ∈ M , then the mapping ϑ : M → M is
said to be a Sheffer stroke very true operator.
(SVSM1) ϑ(1) = 1
(SVSM2) ϑ(m1) 6 m1

(SVSM3) ϑ(m1|(m2|m2)) 6 ϑ(m1)|(ϑ(m2)|ϑ(m2))
(SVSM4) ϑ(m1) 6 ϑ(ϑ(m1))
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(SVSM5) (ϑ(m1|(m2|m2))|(ϑ(m2|(m1|m1))|ϑ(m2|(m1|m1))))
(SVSM5)xxxxxxxxxxxxxxxxxxxxxxxxxxx|(ϑ(m2|(m1|m1))|ϑ(m2|(m1|m1))) = 1.

Proposition 2.1. [27] Let ϑ : M →M be a Sheffer stroke very true operator.
Then, the following statements are verified for each m ∈M .
(i) ϑ(0) = 0,
(ii) m = 1 if and only if ϑ(m) = 1,
(iii) ϑ is increasing,
(iv) ϑ(m|m) 6 ϑ(m)|ϑ(m).

Lemma 2.6. [27] Let ϑ : M → M be a Sheffer stroke very true operator. The
following inequalities are verified for each m1,m2 ∈M

(ϑ(m1)|ϑ(m2))|(ϑ(m1)|ϑ(m2)) 6 (m1|m2)|(m1|m2) 6 ϑ(m1|m2)|ϑ(m1|m2).

3. Riečan and Bosbach state operators on Sheffer stroke MTL-algebras

In this part of the paper, we demonstrate Riečan state and Bosbach state
operators on Sheffer stroke MTL-algebras (SMTL-algebras for short). We obtain
some fundamental results of these operators. Moreover, we construct a bridge
between Riečan state and Bosbach state on M.

Definition 3.1. The mapping τRSMTL : M → [0, 1] is called Riečan state
operator on SMTL-algebra if it satisfies the following statements:
(τRSMTL1) τRSMTL(1) = 1,
(τRSMTL2) τRSMTL(m1|m2) = τRSMTL(m1|m1) + τRSMTL(m2|m2), where
(τRSMTL2) (m1|m1)|(m2|m2) = 1.

Example 3.1. Let M = {0,m1,m2,m3,m4,m5,m6, 1}, where 0 < m1 < m5 <
1, 0 < m2 < m6 < 1 and 0 < m3 < m4 < 1 but m1,m2,m3 and m4,m5,m6 are
not comparable between each other, respectively. The partial order relation on M
is described as Figure 1 and the operation | on this structure is given as the Table
1.

The structure M = (M ; |) corresponds to SMTL-algebra. The operation
τRSMTL : M → [0, 1] is given by

τRSMTL(mi) :=


0, mi ∈ {0,m1,m2},
1, mi ∈ {m4,m5, 1},
2/5, mi = m3,

3/5, mi = m6.

The statement (τRSMTL1) is easily obtained. Satisfying the statement (τRSMTL2),
we need to handle all conditions which are listed as follows:
• For each mi ∈M , we have (mi|mi)|(1|1) = (1|1)|(mi|mi) = 1,

τRSMTL(1|mi) = τRSMTL(mi|mi) = τRSMTL(0) + τRSMTL(mi|mi)

= τRSMTL(1|1) + τRSMTL(mi|mi).
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Figure 1. Diagram of M

| 0 m1 m2 m3 m4 m5 m6 1

0 1 1 1 1 1 1 1 1

m1 1 m4 1 1 1 m4 m4 m4

m2 1 1 m5 1 m1 1 m5 m5

m3 1 1 1 m6 m6 m2 1 m6

m4 1 1 m1 m6 m1 m2 m3 m1

m5 1 m4 1 m2 m2 m2 m3 m2

m6 1 m4 m5 1 m3 m3 m3 m3

1 1 m4 m5 m6 m1 m2 m3 0

Table 1. |−operation on M

• We have (m4|m4)|(m5|m5) = (m5|m5)|(m4|m4) = 1, then

τRSMTL(m4|m5) = τRSMTL(m2) = 0

= τRSMTL(m1) + τRSMTL(m2)

= τRSMTL(m4|m4) + τRSMTL(m5|m5).

• We have (m4|m4)|(m6|m6) = (m6|m6)|(m4|m4) = 1, then

τRSMTL(m4|m6) = τRSMTL(m3) = 2/5

= τRSMTL(m1) + τRSMTL(m3)

= τRSMTL(m4|m4) + τRSMTL(m6|m6).

• We have (m4|m4)|(m1|m1) = (m1|m1)|(m4|m4) = 1, then

= τRSMTL(m1) + τRSMTL(m4)

= τRSMTL(m4|m4) + τRSMTL(m1|m1).
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• We have (m5|m5)|(m6|m6) = (m6|m6)|(m5|m5) = 1, then

τRSMTL(m5|m6) = τRSMTL(m3) = 2/5

= τRSMTL(m2) + τRSMTL(m3)

= τRSMTL(m5|m5) + τRSMTL(m6|m6).

• We have (m5|m5)|(m2|m2) = (m2|m2)|(m5|m5) = 1, then

τRSMTL(m5|m2) = τRSMTL(1) = 1

= τRSMTL(m2) + τRSMTL(m5)

= τRSMTL(m5|m5) + τRSMTL(m2|m2).

• We have (m3|m3)|(m6|m6) = (m6|m6)|(m3|m3) = 1, then

τRSMTL(m3|m6) = τRSMTL(1) = 1

= τRSMTL(m6) + τRSMTL(m3)

= τRSMTL(m3|m3) + τRSMTL(m6|m6).

By using commutativity of the | and + operators, we handle one sided of the above
conditions. This operation verifies the statement (τRSMTL2). As a result, it is a
Riečan state operator on M.

Proposition 3.1. Let τRSMTL : M → [0, 1] is called Riečan state operator on
SMTL-algebra. Then, the following conclusions are obtained:
(i) τRSMTL(0) = 0,
(ii) 1 = τRSMTL(m) + τRSMTL(m|m), for each m ∈M .

Proof. (i) Since 0|1 = 1, we get τRSMTL(0|1) = 1 from (τRSMTL1). Also, the
equality (0|0)|(1|1) = 1 is verified in SMTL-algebra. Therefore, we obtain by the
help of (τRSMTL2):

1 = τRSMTL(0|1) = τRSMTL(0|0) + τRSMTL(1|1) = τRSMTL(1) + τRSMTL(0).

So, we conclude that τRSMTL(0) = 0.
(ii) The equalities ((m|m)|(m|m))|(m|m) = m and (m|m)|m = 1 is verified for
each m ∈M . Then, we get the following conclusion

1 = τRSMTL(1) = τRSMTL((m|m)|m) = τRSMTL((m|m)|(m|m)) + τRSMTL(m|m)

= τRSMTL(m) + τRSMTL(m|m).

�

Lemma 3.1. Let τRSMTL : M → [0, 1] is called Riečan state operator on SMTL-
algebra. If m1|m1 6 m2, then τRSMTL(m1) + τRSMTL(m2) = 2− τRSMTL(m1|m2).

Proof. Assume that m1|m1 6 m2. By the help of Lemma 2.3, we have
(m1|m1)|(m2|m2) = 1. Using the statement (τRSMTL2), we get

τRSMTL(m1|m2) = τRSMTL(m1|m1) + τRSMTL(m2|m2).(3.1)

Moreover, we obtain the following equalities via Proposition 3.1 (ii):

τRSMTL(m1) + τRSMTL(m1|m1) = 1,(3.2)
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and

τRSMTL(m2) + τRSMTL(m2|m2) = 1.(3.3)

By combining the Equalities (3.1), (3.2) and (3.3), we attain

τRSMTL(m1) + τRSMTL(m2)2− τRSMTL(m1|m2).

�

In the following part of this chapter, we define Bosbach state operator on
SMTL-algebras. We put forward some fundamental conclusions. Besides, we prove
that a Bosbach state is a Riečan state or vice versa on M.

Definition 3.2. The mapping τBSMTL : M → [0, 1] is called Bosbach state
operator on a SMTL-algebra if it satisfies the following statements for all m1,m2 ∈
M :
(τBSMTL1) τBSMTL(1) = 1,
(τBSMTL2) τBSMTL(m1|m1) + τBSMTL((m1|m1)|m2) = τBSMTL(m2|m2)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx +τBSMTL((m2|m2)|m1),
(τBSMTL3) τBSMTL(m3) = 0 such that there exists any element m3 ∈M .

Example 3.2. Let M = {0,m1,m2, 1}, where 0 < m1 < 1 and 0 < m2 < 1 but
m1 but m2 are not comparable with each other. The operation | on this structure
is given as the Table 2.

| 0 m1 m2 1
0 1 1 1 1
m1 1 m2 1 m2

m2 1 1 m1 1
1 1 m2 m1 0

Table 2. |−operation on M

The structure M = (M ; |) corresponds to SMTL-algebra. The operation
τBSMTL : M → [0, 1] is given by

τBSMTL(mi) :=


0, mi = 0,

1, mi = 1,

2/5, mi = m1,

3/5, mi = m2.

The statement (τBSMTL1) and (τBSMTL3) are easily obtained. Satisfying the
statement (τBSMTL2), we need to handle all conditions which are listed as follows:
• For each mi,mj ∈ M , the following condition is verified when mi = mj because
of the symmetry:

τBSMTL(mi|mi) + τBSMTL((mi|mi)|mj) = τBSMTL(mj |mj) + τBSMTL((mj |mj)|mi).
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• Assume that mi = 0 and mj = m1. Then we obtain

τBSMTL(0|0) + τBSMTL((0|0)|m1) = τBSMTL(1) + τBSMTL(m2)

= τBSMTL(m1|m1) + τBSMTL((m1|m1)|0).

• Assume that mi = 0 and mj = m2. Then we obtain

τBSMTL(0|0) + τBSMTL((0|0)|m2) = τBSMTL(1) + τBSMTL(m1)

= τBSMTL(m2|m2) + τBSMTL((m2|m2)|0).

• Assume that mi = 1 and mj = m1. Then we obtain

τBSMTL(1|1) + τBSMTL((1|1)|m1) = 1

= τBSMTL(m2) + τBSMTL(m1)

= τBSMTL(m1|m1) + τBSMTL((m1|m1)|1).

• Assume that mi = 1 and mj = m2. Then we obtain

τBSMTL(1|1) + τBSMTL((1|1)|m2) = 1

= τBSMTL(m1) + τBSMTL(m2)

= τBSMTL(m2|m2) + τBSMTL((m2|m2)|1).

• Assume that mi = m1 and mj = m2. Then we obtain

τBSMTL(m1|m1) + τBSMTL((m1|m1)|m2) = τBSMTL(m2) + τBSMTL(m1)

= τBSMTL(m2|m2) + τBSMTL((m2|m2)|m1).

By the using commutativity of the | and + operators, we handle one sided of the
above conditions. This operation verifies the statement (τBSMTL2). As a result, it
is a Bosbach state operator on M.

Theorem 3.1. The Riečan state operator τRSMTL corresponds to the Bosbach
state operator τBSMTL in SMTL-algebras, or vice versa.

Proof. It can be proved by using similar technique in [26]. �

Since τRSMTL and τBSMTL correspond to each other, we use τSMTL in the rest
of the paper for these two state operators.

4. Relations between very true operator and state operators

In this part of this paper, we give substantial relations among these state
operators and very true operator. Besides, we acquire some constant conclusions
by using these state operator and very true operator, and also we handle some
characteristic feature of these states and this very true operator on SMTL-algebras.

Lemma 4.1. Let ϑ be a Sheffer stroke very true operator on SMTL-algebras.
Then, the following identity is verified for each SMTL-algebra

τSMTL(ϑ(m)|ϑ(m|m)) = 1.
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Proof. By Proposition 2.1 (iv), we have ϑ(m|m) 6 ϑ(m)|ϑ(m). Using Lemma
2.3 and Definition 2.5 (S2), we get ϑ(m)|ϑ(m|m) = 1. As a result, we attain
τSMTL(ϑ(m)|ϑ(m|m)) = τSMTL(1) = 1. �

Lemma 4.2. The following identity is verified for each m ∈M
τSMTL((ϑ(m)|ϑ(m))|m) = τSMTL(ϑ(m)) + τSMTL(m|m).

Proof. From Definition 2.8 (SVSM2), we have ϑ(m) 6 m for each m ∈ M .
We achieve

((ϑ(m)|ϑ(m))|(ϑ(m)|ϑ(m)))|(m|m) = 1

via Lemma 2.3 and Definition 2.5 (S2). By Definition 3.1 (τRSMTL2), we achieve
for each m ∈M

τSMTL((ϑ(m)|ϑ(m))|m) = τSMTL(ϑ(m)) + τSMTL(m|m).

�

Corollary 4.1. Let m1 6 m2. Then the identity is verified

τSMTL((ϑ(m1)|ϑ(m1))|ϑ(m2)) = τSMTL(ϑ(m1)) + τSMTL(ϑ(m2)|ϑ(m2)).

Proof. It is clearly obtained by using Lemma 4.2 and the Proposition 2.1
(iii). �

Proposition 4.1. The following statements are verified for each m ∈M
(i) ϑ(τSMTL(m)) 6 τSMTL(m),
(ii) ϑ(τSMTL(m)|τSMTL(m)) 6 ϑ(τSMTL(m))|ϑ(τSMTL(m)),
(iii) ϑ(τSMTL(m)) = ϑ2(τSMTL(m)).

Proposition 4.2. The following identities are satisfied for each m ∈M
(i) τSMTL((m|m)|ϑ(m)) = 1,
(ii) τSMTL(m|ϑ(m|m)) = 1.

Proof. It is straightforward from Lemma 2.6. �

Lemma 4.3. The following identities are satisfied for each m1,m2 ∈M
(i) τSMTL(ϑ(m1|m1)|(ϑ(m1|m2)|ϑ(m1|m2))) = 1,
(ii) τSMTL((ϑ(m1|m2)|ϑ(m1|m2))|(ϑ(m1)|ϑ(m1))) = 1.

Proof. (i) Let m1 and m2 be an elements of M such that m1 6 1 and m2 6 1.
By the help of Lemma 2.4, Lemma 2.5 and Proposition 2.1, we get that ϑ(m1|m1) 6
ϑ(m1|m2). So, we attain that ϑ(m1|m1)|(ϑ(m1|m2)|ϑ(m1|m2)) = 1. As a result,
we conclude that τSMTL(ϑ(m1|m1)|(ϑ(m1|m2)|ϑ(m1|m2))) = 1.
(ii) Let m1 and m2 be an elements of M such that m1 6 1 and m2 6 1. By the
help of Lemma 2.4 and Lemma 2.5, we get that m1|m1 6 m1|m2. By means of
Lemma 4.2 and Definition 2.5, we obtain (m1|m2)|(m1|m2) 6 m1. Since the very
true operator is increasing , we conclude that ϑ((m1|m2)|(m1|m2)) 6 ϑ(m1), i.e.,
ϑ((m1|m2)|(m1|m2))|(ϑ(m1)|ϑ(m1)) = 1. Therefore, we achieve that

τSMTL((ϑ(m1|m2)|ϑ(m1|m2))|(ϑ(m1)|ϑ(m1))) = 1.

�
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Theorem 4.1. Let ϑ be a Sheffer stroke very true operator and let τSMTL be
an any state operator. Let inf and sup be the greatest lower bound and least upper
bound functions, respectively. Then the following statements are verified for each
m1,m2 ∈M

sup{ϑ(τSMTL(m1)), ϑ(τSMTL(m2))} = ϑ(sup{τSMTL(m1), τSMTL(m2)})
and

inf{ϑ(τSMTL(m1)), ϑ(τSMTL(m2))} = ϑ(inf{τSMTL(m1), τSMTL(m2)}).

Proof. It is clearly obtained by using similar technique in [27]. �

Corollary 4.2. Let ϑ be a Sheffer stroke very true operator and let τSMTL be
an any state operator. Let inf and sup be the greatest lower bound and least upper
bound functions, respectively. Then the following statements are verified for each
m1,m2 ∈M
sup{ϑ(τSMTL(m1)), ϑ(τSMTL(m2))} = ϑ(sup{ϑ(τSMTL(m1)), ϑ(τSMTL(m2))})
and

inf{ϑ(τSMTL(m1), ϑ(τSMTL(m2))} = ϑ(inf{ϑ(τSMTL(m1)), ϑ(τSMTL(m2))}).

Example 4.1. Let τSMTL be a state operator on M and let ϑ be very true
operator on τSMTL(M). The state operator is defined as in Example 3.2 and the
very true operator is defined as ϑ(mj) = mj for each mj ∈ τSMTL(M). Then, we
have

sup{ϑ(τSMTL(mi)) : mi ∈M} = sup{ϑ(τSMTL(0)), ϑ(τSMTL(1)),

= ϑ(τSMTL(m1)), ϑ(τSMTL(m2))}
= sup{ϑ(0), ϑ(1), ϑ(2/5), ϑ(3/5)}
= sup{0, 1, 2/5, 3/5}
= 1

= τSMTL(1)

= ϑ(sup{τSMTL(mi) : mi ∈M}).
By using similar technique, we obtain that

inf{ϑ(τSMTL(mi)) : mi ∈M} = 0 = ϑ(inf{τSMTL(mi) : mi ∈M}).

5. Conclusion

In this work, we presented Riečan and Bosbach states notions on SMTL-
algebras. We obtained some fundamental results on these operators. We attained a
connection between each other. Besides, we gave substantial relations among these
state operators and very true operator. We achieved some constant conclusions by
using these state operator and very true operator and handle some characteristic
feature of these mentioned operators on SMTL-algebras. After this paper, we will
examine these relations among other algebraic structures. Due to these reasons, we
will integrate this work for future papers.
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