COMPLETE MONOTONICITY OF SOME EXPONENTIAL AND TRIGAMMA RELATED FUNCTIONS

Vladimir Jovanović ${ }^{1}$ and Milanka Treml ${ }^{1}$

Abstract

Induced by the inequalities in [4], we show that the functions $\theta(x, m)-\psi^{\prime}(x+1)$ and $\psi^{\prime}(x+1)-\theta(x, m)$ are not completely monotonic for any $m>0$, where $\theta(x, m)=\frac{1}{2 m}\left(e^{\frac{m}{x+1}}-e^{\frac{-m}{x}}\right)$ and ψ is digamma function.

1. Introduction

Recall that completely monotonic function (shortly CM) is an infinitely differentiable function $f:(0, \infty) \rightarrow \mathbb{R}$ with the property

$$
(-1)^{n} f^{(n)} \geqslant 0, \quad n=0,1,2, \ldots
$$

Fundamental for CM functions is Bernstein theorem: a function f is completely monotonic if and only if

$$
\begin{equation*}
f(x)=\int_{[0, \infty)} e^{-x t} d \mu(t), x>0 \tag{1.1}
\end{equation*}
$$

for a non-negative Borel measure μ on $[0, \infty$). The measure μ is unique (see $[\mathbf{2}], \mathrm{p}$. 61). Principle motivation for our paper are the inequalities

$$
\begin{equation*}
\theta(x, p)<\psi^{\prime}(x+1)<\theta(x, q), \quad x>0 \tag{1.2}
\end{equation*}
$$

where $\theta(x, m)=\frac{1}{2 m}\left(e^{\frac{m}{x+1}}-e^{-\frac{m}{x}}\right)$ and ψ is digamma function. It is proved in [4] that $p=1$ and $q=2$ are the best possible constants in (1.2) among all $p, q \in(0, \infty)$. Now, one is tempted to ask whether $\theta(x, m)-\psi^{\prime}(x+1)$ and $\psi^{\prime}(x+1)-\theta(x, m)$ are CM functions for some $m>0$. We show that, however, it is never the case. In order

[^0]to accomplish the proof, we represent both functions in the form $\int_{0}^{\infty} \varphi(t) e^{-x t} d t$ and show that φ may be negative in both cases. Our considerations rely on the results in [3].

2. Formulations and proofs

The main ingredient in the proofs of our assertions is the following Proposition.
Proposition 2.1. Let $\varphi:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $\int_{0}^{\infty}|\varphi(t)| e^{-\varepsilon t} d t<\infty$ for some $\varepsilon>0$. If $f(x)=\int_{0}^{\infty} \varphi(t) e^{-x t} d t$ is $C M$, then $\varphi \geqslant 0$.

Proof. Then $f(x+\varepsilon)=\int_{0}^{\infty} \varphi(t) e^{-\varepsilon t} e^{-x t} d t$ is also CM and according to Proposition 2.2 in [3], we have $\varphi(t) e^{-\varepsilon t} \geqslant 0$. Hence, $\varphi \geqslant 0$.

Next, we need
Lemma 2.1. If $g(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!(n+1)!}$, then for all $x>0$

$$
\begin{align*}
& g(x)=\frac{2}{\pi \sqrt{x}} \int_{0}^{1} \frac{t \sinh (2 t \sqrt{x})}{\sqrt{1-t^{2}}} d t, \tag{2.1}\\
& g(-x)=\frac{2}{\pi \sqrt{x}} \int_{0}^{1} \frac{t \sin (2 t \sqrt{x})}{\sqrt{1-t^{2}}} d t . \tag{2.2}
\end{align*}
$$

Proof. Thanks to Cauchy integral formula for derivatives of exp, one obtains $\frac{1}{n!}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{z}}{z^{n+1}} d z$, where Γ is the positively oriented circle $|z|=R$. Consequently, for all $x \neq 0$

$$
\begin{aligned}
g(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!(n+1)!} & =\frac{1}{2 \pi i x} \int_{\Gamma} e^{z}\left(\sum_{n=0}^{\infty} \frac{(x / z)^{n+1}}{(n+1)!}\right) d z \\
& =\frac{1}{2 \pi i x} \int_{\Gamma} e^{z}\left(e^{\frac{x}{z}}-1\right) d z \\
& =\frac{1}{2 \pi i x} \int_{\Gamma} \exp \left(z+\frac{x}{z}\right) d z
\end{aligned}
$$

Let $x>0$ and Γ_{x} be the positively oriented circle $|z|=\sqrt{x}$. Note that for all $z \in \Gamma_{x}$ the numbers z and $\frac{x}{z}$ are complex-conjugate and therefore $z+\frac{x}{z}=2 \Re(z)$. If we use the parametrization $\gamma(t)=\sqrt{x}\left(t \pm i \sqrt{1-t^{2}}\right), t \in[-1,1]$ of Γ_{x}, we have

$$
\begin{aligned}
\int_{\Gamma_{x}} \exp \left(z+\frac{x}{z}\right) d z & =\sqrt{x} \int_{-1}^{1} e^{2 t \sqrt{x}}\left(1+i \frac{t}{\sqrt{1-t^{2}}}\right) d t \\
& -\sqrt{x} \int_{-1}^{1} e^{2 t \sqrt{x}}\left(1-i \frac{t}{\sqrt{1-t^{2}}}\right) d t \\
& =2 i \sqrt{x} \int_{-1}^{1} e^{2 t \sqrt{x}} \frac{t}{\sqrt{1-t^{2}}} d t=4 i \sqrt{x} \int_{0}^{1} \frac{t \sinh (2 t \sqrt{x})}{\sqrt{1-t^{2}}} d t
\end{aligned}
$$

whence (2.1) for $x>0$. Since g is an entire function, then owing to the uniqueness theorem

$$
\begin{equation*}
g(z)=\frac{2}{\pi \sqrt{z}} \int_{0}^{1} \frac{t \sinh (2 t \sqrt{z})}{\sqrt{1-t^{2}}} d t \tag{2.3}
\end{equation*}
$$

for all $z \in \mathbb{C}$. Note that the right-hand side in (2.3) is even in \sqrt{z}, so it is independent on the branch we use for \sqrt{z}. Now, from $\sqrt{-x}=i \sqrt{x}$ for $x>0$ and $\sinh (i z)=i \sin z$, one obtains (2.2).

Our first assertion concerning complete monotonicity is
Proposition 2.2. The function $f(x)=\theta(x, m)-\psi^{\prime}(x+1)$ is not completely monotonic for any $m>0$, where

$$
\theta(x, m)=\frac{1}{2 m}\left(e^{\frac{m}{x+1}}-e^{-\frac{m}{x}}\right)
$$

and $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$ is digamma function.
Proof. From $\frac{1}{x^{n+1}}=\frac{1}{n!} \int_{0}^{\infty} t^{n} e^{-x t} d t$ for all $x>0$ and $n=0,1,2, \ldots$, we have

$$
\begin{aligned}
\theta(x, m) & =\frac{1}{2 m}\left(e^{\frac{m}{x+1}}-e^{-\frac{m}{x}}\right) \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{m^{n}}{(n+1)!}\left(\frac{1}{(x+1)^{n+1}}+\frac{(-1)^{n}}{x^{n+1}}\right) \\
& =\frac{1}{2} \int_{0}^{\infty} \sum_{n=0}^{\infty} \frac{(m t)^{n}}{n!(n+1)!}\left(e^{-t}+(-1)^{n}\right) e^{-x t} d t
\end{aligned}
$$

so we obtain

$$
\begin{equation*}
\theta(x, m)=\int_{0}^{\infty} \varphi_{m}(t) e^{-x t} d t, \quad x>0 \tag{2.4}
\end{equation*}
$$

where $\varphi_{m}(t)=\frac{g(m t) e^{-t}+g(-m t)}{2}$. We will use Proposition 2.1 to show that $\theta(x, m)$ is not CM for any $m>0$. In order to achieve that task, we prove that for any $m>0$ there exists $t>0$ such that $\varphi_{m}(t)<0$. By using (2.1), (2.2) and introducing the substitution $s=\sqrt{m t}$, we get

$$
\begin{aligned}
2 \varphi_{m}(t)=g\left(s^{2}\right) e^{-s^{2} / m}+g\left(-s^{2}\right) & =\frac{2}{\pi s}\left(\int_{0}^{1} \frac{t \sinh (2 t s)}{\sqrt{1-t^{2}}} e^{-\frac{s^{2}}{m}}+\int_{0}^{1} \frac{t \sin (2 t s)}{\sqrt{1-t^{2}}}\right) d t \\
& =\frac{2}{\pi s} I_{1}(s)+\frac{2}{\pi s} I_{2}(s)
\end{aligned}
$$

Applying $\sinh x \leqslant e^{x}$ for $x \geqslant 0$ and $\int_{0}^{1} \frac{t}{\sqrt{1-t^{2}}} d t=1$, we have

$$
I_{1}(s)=\int_{0}^{1} \frac{t \sinh (2 t s)}{\sqrt{1-t^{2}}} e^{-\frac{s^{2}}{m}} d t \leqslant e^{2 s-\frac{s^{2}}{m}}
$$

Let $s=n \pi$ for $n \in \mathbb{N}$. Then, it is

$$
I_{2}(s)=\int_{0}^{1} \frac{t \sin (2 t n \pi)}{\sqrt{1-t^{2}}} d t=\sum_{k=0}^{n-1}\left(\int_{\frac{2 k}{2 n}}^{\frac{2 k+1}{2 n}} \frac{t \sin (2 t n \pi)}{\sqrt{1-t^{2}}} d t+\int_{\frac{2 k+1}{2 n}}^{\frac{2 k+2}{2 n}} \frac{t \sin (2 t n \pi)}{\sqrt{1-t^{2}}} d t\right)
$$

If we apply substitution $t=y+\frac{1}{2 n}$ in the second integral above, then, thanks to $\sin (2 t n \pi)=\sin \left(2\left(y+\frac{1}{2 n}\right) n \pi\right)=-\sin (2 y n \pi)$, one obtains

$$
I_{2}(s)=\sum_{k=0}^{n-1} \int_{\frac{2 k}{2 n}}^{\frac{2 k+1}{2 n}}\left(\frac{t}{\sqrt{1-t^{2}}}-\frac{t+\frac{1}{2 n}}{\sqrt{1-\left(t+\frac{1}{2 n}\right)^{2}}}\right) \sin (2 t n \pi) d t
$$

For $t \in\left(\frac{2 k}{2 n}, \frac{2 k+1}{2 n}\right)$ it is $2 t n \pi \in(2 k \pi,(2 k+1) \pi)$ and therefore $\sin (2 t n \pi) \geqslant 0$. On the other hand, if we apply Lagrange theorem, it follows that for certain $\eta \in\left(t, t+\frac{1}{2 n}\right)$ it is

$$
\frac{t}{\sqrt{1-t^{2}}}-\frac{t+\frac{1}{2 n}}{\sqrt{1-\left(t+\frac{1}{2 n}\right)^{2}}}=-\frac{1}{2 n} \frac{1}{\sqrt{\left(1-\eta^{2}\right)^{3}}} \leqslant-\frac{1}{2 n}
$$

Consequently,

$$
I_{2}(s) \leqslant \sum_{k=0}^{n-1} \frac{-1}{2 n} \int_{\frac{2 k}{2 n}}^{\frac{2 k+1}{2 n}} \sin (2 n t \pi) d t=\sum_{k=0}^{n-1} \frac{-1}{2 n^{2} \pi}=-\frac{1}{2 n \pi}=-\frac{1}{2 s}
$$

and for $s=n \pi$, where $n \in \mathbb{N}$, we finally deduce

$$
2 \varphi_{m}(t)=\frac{2}{\pi s}\left(I_{1}(s)+I_{2}(s)\right) \leqslant \frac{2}{\pi s}\left(e^{2 s-s^{2} / m}-\frac{1}{2 s}\right)<0
$$

for n large enough. It is certainly $\int_{0}^{\infty}\left|\varphi_{m}(t)\right| e^{-\varepsilon t} d t<\infty$ for all $\varepsilon>0$. Therefore, from Proposition 2.1 and (2.4) we conclude that $\theta(x, m)$ is not CM. On the other hand, we know that $\psi^{\prime}(x+1)$ is completely monotonic. This follows from the representation $\psi^{\prime}(x)=\int_{0}^{\infty} \frac{t}{1-e^{-t}} e^{-x t} d t$, which is due to S . Ramanujan (see [$\mathbf{1}, \mathrm{p}$. 260]). If $f(x)=\theta(x, m)-\psi^{\prime}(x+1)$ were CM, then $\theta(x, m)=f(x)+\psi^{\prime}(x+1)$ would also be CM (as a sum of two CM functions), which is not.

Our last assertion is
Proposition 2.3. The function $f(x)=\psi^{\prime}(x+1)-\theta(x, m)$ is not CM for any $m>0$, where the functions θ and ψ are as in the previous proposition.

Proof. Following procedure from the proof of the preceding proposition, we see that in this case $f(x)=\int_{0}^{\infty} \varphi_{m}(t) e^{-x t} d t$, where

$$
\varphi_{m}(t)=\frac{t e^{-t}}{1-e^{-t}}-\frac{g(m t) e^{-t}+g(-m t)}{2}
$$

and φ_{m} obeys the condition $\int_{0}^{\infty}\left|\varphi_{m}(t)\right| e^{-\varepsilon t} d t<\infty$ for all $\varepsilon>0$. Again, we prove that for any $m>0$ it is $\varphi_{m}(t)<0$ for certain $t>0$. Since $g(m t) \geqslant 0$, it follows $2 \varphi_{m}(t) \leqslant \frac{2 t}{e^{t}-1}-g(-m t)$ and the substitution $s=\sqrt{m t}$ together with (2.2) yields
(2.5) $2 \varphi_{m}(t) \leqslant h(s)=\frac{2 s^{2}}{m\left(e^{\frac{s^{2}}{m}}-1\right)}-g\left(-s^{2}\right)=\frac{2 s^{2}}{m\left(e^{\frac{s^{2}}{m}}-1\right)}-\frac{2}{\pi s} \int_{0}^{1} \frac{t \sin (2 t s)}{\sqrt{1-t^{2}}} d t$.

Now, if we set $s=n \pi+\frac{\pi}{2}$ for $n \in \mathbb{N}$ and carry out similar steps as in the proof of the previous proposition, we obtain

$$
\begin{aligned}
\int_{0}^{1} \frac{t \sin (2 t s)}{\sqrt{1-t^{2}}} d t & =\int_{0}^{1} \frac{t \sin ((2 n+1) \pi t)}{\sqrt{1-t^{2}}} d t \\
& =\int_{0}^{\frac{1}{2 n+1}} \frac{t \sin ((2 n+1) \pi t)}{\sqrt{1-t^{2}}} d t+\sum_{k=1}^{n} \int_{\frac{2 k-1}{2 n+1}}^{\frac{2 k}{2 n+1}} \frac{t \sin ((2 n+1) \pi t)}{\sqrt{1-t^{2}}} d t \\
& +\sum_{k=1}^{n} \int_{\frac{2 k}{2 n+1}}^{\frac{2 k+1}{2 n+1}} \frac{t \sin ((2 n+1) \pi t)}{\sqrt{1-t^{2}}} d t \\
& \geqslant \sum_{k=1}^{n} \int_{\frac{2 k-1}{2 n+1}}^{\frac{2 k}{2 n+1}} \frac{t \sin ((2 n+1) \pi t)}{\sqrt{1-t^{2}}} d t+\int_{\frac{2 k}{2 n+1}}^{\frac{2 k+1}{2 n+1}} \frac{t \sin ((2 n+1) \pi t)}{\sqrt{1-t^{2}}} d t \\
& =\sum_{k=1}^{n} \int_{\frac{2 k}{2 n+1}}^{\frac{2 k+1}{2 n+1}}\left(\frac{t}{\sqrt{1-t^{2}}}-\frac{t-\frac{1}{2 n+1}}{\sqrt{1-\left(t-\frac{1}{2 n+1}\right)^{2}}}\right) \sin ((2 n+1) \pi t) d t \\
& \geqslant \frac{1}{2 n+1} \sum_{k=1}^{n} \int_{\frac{2 k}{2 n+1}}^{\frac{2 k+1}{2 n+1}} \sin ((2 n+1) \pi t) d t \\
& =\frac{2 n}{(2 n+1)^{2} \pi}=\frac{2 s-\pi}{4 s^{2}}
\end{aligned}
$$

Therefore, if $s=n \pi+\frac{\pi}{2}$ for $n \in \mathbb{N}$, then owing to (2.5), we have

$$
2 \varphi_{m}(t) \leqslant h(s) \leqslant \frac{2 s^{2}}{m\left(e^{\frac{s^{2}}{m}}-1\right)}-\frac{2 s-\pi}{2 s^{3} \pi}<0
$$

for large n, and again, Proposition 2.1 concludes the proof.

References

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, Mineola, New York, 1965.
[2] C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin Heidelberg New York, 1975.
[3] V. Jovanović, M. Treml, An application of a moment problem to completely monotonic functions, to appear in Bull. Int. Math. Virtual Inst.
[4] Z.-H. Yang, Y.-M. Chu, X.-J. Tao, A Double Inequality for the Trigamma Function and Its Applications, Abstr. Appl. Anal. 2014 (2014), 1-9.

Received by editors 15.12.2021; Revised version 20.12.2021; Available online 30.12.2021.
${ }^{1}$ Faculty of Sciences and Mathematics, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Email address: vladimir.jovanovic@pmf.unibl.org
Email address: milanka.treml@pmf.unibl.org

[^0]: 2010 Mathematics Subject Classification. Primary 26A48; Secondary 30E20.
 Key words and phrases. Complete monotonicity, digamma function, moment problem.
 Communicated by Dusko Bogdanic.

