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COMPLETE MONOTONICITY OF SOME
EXPONENTIAL AND TRIGAMMA RELATED

FUNCTIONS

Vladimir Jovanović 1 and Milanka Treml 1

Abstract. Induced by the inequalities in [4], we show that the functions
θ(x,m) − ψ′(x+ 1) and ψ′(x+ 1) − θ(x,m) are not completely monotonic for

any m > 0, where θ(x,m) = 1
2m

(
e

m
x+1 − e

−m
x

)
and ψ is digamma function.

1. Introduction

Recall that completely monotonic function (shortly CM) is an infinitely differ-
entiable function f : (0,∞)→ R with the property

(−1)nf (n) > 0, n = 0, 1, 2, . . . .

Fundamental for CM functions is Bernstein theorem: a function f is completely
monotonic if and only if

(1.1) f(x) =

∫
[0,∞)

e−xtdµ(t), x > 0

for a non-negative Borel measure µ on [0,∞). The measure µ is unique (see [2], p.
61). Principle motivation for our paper are the inequalities

(1.2) θ(x, p) < ψ′(x+ 1) < θ(x, q), x > 0,

where θ(x,m) = 1
2m

(
e

m
x+1 − e−m

x

)
and ψ is digamma function. It is proved in [4]

that p = 1 and q = 2 are the best possible constants in (1.2) among all p, q ∈ (0,∞).
Now, one is tempted to ask whether θ(x,m)−ψ′(x+ 1) and ψ′(x+ 1)− θ(x,m) are
CM functions for some m > 0. We show that, however, it is never the case. In order
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to accomplish the proof, we represent both functions in the form
∫∞

0
ϕ(t) e−xt dt

and show that ϕ may be negative in both cases. Our considerations rely on the
results in [3].

2. Formulations and proofs

The main ingredient in the proofs of our assertions is the following Proposition.

Proposition 2.1. Let ϕ : [0,∞) → R be a continuous function such that∫∞
0
|ϕ(t)| e−εt dt < ∞ for some ε > 0. If f(x) =

∫∞
0
ϕ(t) e−xt dt is CM, then

ϕ > 0.

Proof. Then f(x + ε) =
∫∞

0
ϕ(t)e−εt e−xt dt is also CM and according to

Proposition 2.2 in [3], we have ϕ(t) e−εt > 0. Hence, ϕ > 0. �

Next, we need

Lemma 2.1. If g(x) =

∞∑
n=0

xn

n!(n+ 1)!
, then for all x > 0

(2.1) g(x) =
2

π
√
x

∫ 1

0

t sinh(2t
√
x)√

1− t2
dt,

(2.2) g(−x) =
2

π
√
x

∫ 1

0

t sin(2t
√
x)√

1− t2
dt.

Proof. Thanks to Cauchy integral formula for derivatives of exp, one obtains

1
n! =

1

2πi

∫
Γ

ez

zn+1
dz, where Γ is the positively oriented circle |z| = R. Conse-

quently, for all x 6= 0

g(x) =

∞∑
n=0

xn

n!(n+ 1)!
=

1

2πix

∫
Γ

ez

( ∞∑
n=0

(x/z)n+1

(n+ 1)!

)
dz

=
1

2πix

∫
Γ

ez
(
e

x
z − 1

)
dz

=
1

2πix

∫
Γ

exp
(
z +

x

z

)
dz.

Let x > 0 and Γx be the positively oriented circle |z| =
√
x. Note that for all

z ∈ Γx the numbers z and x
z are complex-conjugate and therefore z + x

z = 2<(z).

If we use the parametrization γ(t) =
√
x(t± i

√
1− t2), t ∈ [−1, 1] of Γx, we have∫

Γx

exp
(
z +

x

z

)
dz =

√
x

∫ 1

−1

e2t
√
x

(
1 + i

t√
1− t2

)
dt

−
√
x

∫ 1

−1

e2t
√
x

(
1− i t√

1− t2

)
dt

= 2i
√
x

∫ 1

−1

e2t
√
x t√

1− t2
dt = 4i

√
x

∫ 1

0

t sinh(2t
√
x)√

1− t2
dt,
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whence (2.1) for x > 0. Since g is an entire function, then owing to the uniqueness
theorem

(2.3) g(z) =
2

π
√
z

∫ 1

0

t sinh(2t
√
z)√

1− t2
dt

for all z ∈ C. Note that the right-hand side in (2.3) is even in
√
z, so it is in-

dependent on the branch we use for
√
z. Now, from

√
−x = i

√
x for x > 0 and

sinh(iz) = i sin z, one obtains (2.2). �

Our first assertion concerning complete monotonicity is

Proposition 2.2. The function f(x) = θ(x,m) − ψ′(x + 1) is not completely
monotonic for any m > 0, where

θ(x,m) =
1

2m

(
e

m
x+1 − e−m

x

)
and ψ(x) = Γ′(x)/Γ(x) is digamma function.

Proof. From 1
xn+1 = 1

n!

∫∞
0
tn e−xt dt for all x > 0 and n = 0, 1, 2, . . . , we

have

θ(x,m) =
1

2m

(
e

m
x+1 − e−m

x

)
=

1

2

∞∑
n=0

mn

(n+ 1)!

(
1

(x+ 1)n+1
+

(−1)n

xn+1

)

=
1

2

∫ ∞
0

∞∑
n=0

(mt)n

n!(n+ 1)!

(
e−t + (−1)n

)
e−xt dt,

so we obtain

(2.4) θ(x,m) =

∫ ∞
0

ϕm(t) e−xt dt, x > 0,

where ϕm(t) = g(mt)e−t+g(−mt)
2 . We will use Proposition 2.1 to show that θ(x,m)

is not CM for any m > 0. In order to achieve that task, we prove that for any
m > 0 there exists t > 0 such that ϕm(t) < 0. By using (2.1), (2.2) and introducing
the substitution s =

√
mt, we get

2ϕm(t) = g(s2)e−s
2/m + g(−s2) =

2

πs

(∫ 1

0

t sinh(2ts)√
1− t2

e−
s2

m +

∫ 1

0

t sin(2ts)√
1− t2

)
dt

=
2

πs
I1(s) +

2

πs
I2(s).

Applying sinhx 6 ex for x > 0 and

∫ 1

0

t√
1− t2

dt = 1, we have

I1(s) =

∫ 1

0

t sinh(2ts)√
1− t2

e−
s2

m dt 6 e2s− s2

m .
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Let s = nπ for n ∈ N. Then, it is

I2(s) =

∫ 1

0

t sin(2tnπ)√
1− t2

dt =

n−1∑
k=0

(∫ 2k+1
2n

2k
2n

t sin(2tnπ)√
1− t2

dt+

∫ 2k+2
2n

2k+1
2n

t sin(2tnπ)√
1− t2

dt

)
.

If we apply substitution t = y + 1
2n in the second integral above, then, thanks to

sin(2tnπ) = sin(2(y + 1
2n )nπ) = − sin(2ynπ), one obtains

I2(s) =

n−1∑
k=0

∫ 2k+1
2n

2k
2n

 t√
1− t2

−
t+ 1

2n√
1−

(
t+ 1

2n

)2
 sin(2tnπ) dt.

For t ∈ ( 2k
2n ,

2k+1
2n ) it is 2tnπ ∈ (2kπ, (2k+1)π) and therefore sin(2tnπ) > 0. On the

other hand, if we apply Lagrange theorem, it follows that for certain η ∈ (t, t+ 1
2n )

it is
t√

1− t2
−

t+ 1
2n√

1−
(
t+ 1

2n

)2 = − 1

2n

1√
(1− η2)3

6 − 1

2n
.

Consequently,

I2(s) 6
n−1∑
k=0

−1

2n

∫ 2k+1
2n

2k
2n

sin(2ntπ) dt =

n−1∑
k=0

−1

2n2π
= − 1

2nπ
= − 1

2s

and for s = nπ, where n ∈ N, we finally deduce

2ϕm(t) =
2

πs
(I1(s) + I2(s)) 6

2

πs

(
e2s−s2/m − 1

2s

)
< 0,

for n large enough. It is certainly
∫∞

0
|ϕm(t)| e−εt dt <∞ for all ε > 0. Therefore,

from Proposition 2.1 and (2.4) we conclude that θ(x,m) is not CM. On the other
hand, we know that ψ′(x + 1) is completely monotonic. This follows from the
representation ψ′(x) =

∫∞
0

t
1−e−t e

−xt dt, which is due to S. Ramanujan (see [1, p.

260]). If f(x) = θ(x,m) − ψ′(x + 1) were CM, then θ(x,m) = f(x) + ψ′(x + 1)
would also be CM (as a sum of two CM functions), which is not. �

Our last assertion is

Proposition 2.3. The function f(x) = ψ′(x+ 1)− θ(x,m) is not CM for any
m > 0, where the functions θ and ψ are as in the previous proposition.

Proof. Following procedure from the proof of the preceding proposition, we
see that in this case f(x) =

∫∞
0
ϕm(t) e−xt dt, where

ϕm(t) =
te−t

1− e−t
− g(mt)e−t + g(−mt)

2

and ϕm obeys the condition
∫∞

0
|ϕm(t)| e−εt dt <∞ for all ε > 0. Again, we prove

that for any m > 0 it is ϕm(t) < 0 for certain t > 0. Since g(mt) > 0, it follows
2ϕm(t) 6 2t

et−1 − g(−mt) and the substitution s =
√
mt together with (2.2) yields

(2.5) 2ϕm(t) 6 h(s) =
2s2

m(e
s2

m − 1)
− g(−s2) =

2s2

m(e
s2

m − 1)
− 2

πs

∫ 1

0

t sin(2ts)√
1− t2

dt.
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Now, if we set s = nπ + π
2 for n ∈ N and carry out similar steps as in the proof of

the previous proposition, we obtain∫ 1

0

t sin(2ts)√
1− t2

dt =

∫ 1

0

t sin((2n+ 1)πt)√
1− t2

dt

=

∫ 1
2n+1

0

t sin((2n+ 1)πt)√
1− t2

dt+

n∑
k=1

∫ 2k
2n+1

2k−1
2n+1

t sin((2n+ 1)πt)√
1− t2

dt

+

n∑
k=1

∫ 2k+1
2n+1

2k
2n+1

t sin((2n+ 1)πt)√
1− t2

dt

>
n∑
k=1

∫ 2k
2n+1

2k−1
2n+1

t sin((2n+ 1)πt)√
1− t2

dt+

∫ 2k+1
2n+1

2k
2n+1

t sin((2n+ 1)πt)√
1− t2

dt

=

n∑
k=1

∫ 2k+1
2n+1

2k
2n+1

 t√
1− t2

−
t− 1

2n+1√
1− (t− 1

2n+1 )2

 sin((2n+ 1)πt) dt

>
1

2n+ 1

n∑
k=1

∫ 2k+1
2n+1

2k
2n+1

sin((2n+ 1)πt) dt

=
2n

(2n+ 1)2π
=

2s− π
4s2

.

Therefore, if s = nπ + π
2 for n ∈ N, then owing to (2.5), we have

2ϕm(t) 6 h(s) 6
2s2

m(e
s2

m − 1)
− 2s− π

2s3π
< 0,

for large n, and again, Proposition 2.1 concludes the proof. �
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