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AN APPLICATION OF A MOMENT PROBLEM TO
COMPLETELY MONOTONIC FUNCTIONS

Vladimir Jovanović 1 and Milanka Treml 1

Abstract. We consider the following question: if a function of the form∫∞
0 ϕ(t) e−xtdt is completely monotonic, is it then ϕ > 0? It turns out that

the question is related to a moment problem. In the end we apply those re-
sults to answer some questions concerning complete monotonicity of certain

functions raised in [4].

1. Introduction

At the beginning we review basic notions and facts related to completely mono-
tonic functions. An infinitely differentiable function f : (0,∞) → R is called com-
pletely monotonic, if

(−1)nf (n) > 0, n = 0, 1, 2, . . . .

The crucial fact concerning this class of functions is Bernstein theorem: a function
f is completely monotonic is and only if there exists a positive Borel measure µ on
[0,∞), such that

(1.1) f(x) =

∫
[0,∞)

e−xtdµ(t),

for all x > 0. Furthermore, the measure µ is uniquely determined (see [1], p. 61).
In many applications one comes up to the situation that a function of the form∫∞

0
ϕ(t) e−xtdt is completely monotonic. Usually, in view of Bernstein theorem, it

is tacitly assumed that the function ϕ is then necessarily non-negative. Our aim
here is to clarify this question: we give a sufficient condition on ϕ which guarantees
the claim and provide a complete proof. It turns out that our question has to
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do with uniqueness of measures in a moment problem which we consider in the
next section. In the sequel we apply those results in order to answer the question
(in a slightly more general form) raised in [4] on page 34 whether the functions
ψ′(x + 1) − sinh 1

x+1 and 1
2 sinh 2

x − ψ
′(x + 1) are completely monotonic, where ψ

is digamma function.

2. A moment problem

As we previously mentioned, our considerations are tightly related to the
uniqueness question for measures in a moment problem, which we state in The-
orem 2.1 (see below). It resembles the Stieltjes moment problem: if two non-
negative measures µ and ν with support on [0,∞) have the same moments, that
is, if

∫∞
0
tn dµ(t) =

∫∞
0
tn dν(t), for all n = 0, 1, . . . , is it then µ = ν? In our case,

we use a substitution and reduce it to the Hausdorff moment problem, where the
support of measures is [0, 1]. Now, we turn to our moment problem.

Theorem 2.1. Assume µ and ν are complex Borel measures on [0,∞) with the
property ∫

[0,∞)

e−nt dµ(t) =

∫
[0,∞)

e−nt dµ(t), n = 0, 1, 2 . . . .

Then, µ = ν.

We need the following change of variables formula.

Proposition 2.1. Let (X,M, µ) be a measure space, (Y,N ) a measurable space
and F : X → Y a measurable map. Then for every measurable function f : Y → C
and every E ∈ N we have∫

E

f(y) dF∗µ(y) =

∫
F−1(E)

f(F (x)) dµ(x),

in the case either of two sides is defined. Here F∗µ = µ ◦ F−1 is a measure on
(Y,N ), the so-called push-forward of µ.

For the proof, see [3, p. 30-31].

Remark 2.1. We notice that the change of variable formula also holds for
complex Borel measures.

Proof of Theorem 2.1.

Recall that the complex measures µ and ν are of bounded variation, Mµ :=
|µ|([0,∞)) < ∞ and Mν := |ν|([0,∞)) < ∞ (see [5]). Let us define a homeomor-
phism F : [0,∞) → (0, 1], F (t) = e−t. Applying Proposition 2.1 (more precisely
Remark 2.1), we obtain∫

[0,∞)

e−ntdµ(t) =

∫
(0,1]

sn dF∗µ(s),

∫
[0,∞)

e−ntdν(t) =

∫
(0,1]

sn dF∗ν(s).

From the assumptions of Theorem 2.1, we have∫
(0,1]

sn dF∗µ(s) =

∫
(0,1]

sn dF∗ν(s),
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for all n = 0, 1, 2 . . . . Hence

(2.1)

∫
(0,1]

P (s) dF∗µ(s) =

∫
(0,1]

P (s) dF∗ν(s),

for all polynomials P . Notice

|F∗µ|((0, 1]) = F∗|µ|((0, 1]) = |µ|([0,∞)) = Mµ

and similarly |F∗ν|((0, 1]) = Mν . Therefore, each bounded and measurable (in
Borel sense) function on (0, 1] is integrable with respect to the both measures F∗µ
and F∗ν. In view of∣∣∣∣∣

∫
(0,1]

g(s) dF∗µ(s)

∣∣∣∣∣ 6Mµ ‖g‖∞,

∣∣∣∣∣
∫

(0,1]

g(s) dF∗ν(s)

∣∣∣∣∣ 6Mν ‖g‖∞,

for all bounded measurable functions g : (0, 1] → R, where ‖g‖∞ = sup{|g(x)| :
x ∈ (0, 1]}, we conclude from Stone - Weierstrass theorem that

(2.2)

∫
(0,1]

g(s) dF∗µ(s) =

∫
(0,1]

g(s) dF∗ν(s),

for all g ∈ C[0, 1]. For small δ > 0 introduce a continuous, piecewise linear function
Iδ : (0, 1]→ R,

Iδ(t) =


0, t < a− δ

t−(a−δ)
δ , a− δ 6 t 6 a
1, a 6 t 6 b

b+δ−t
δ , b 6 t 6 b+ δ
0, b+ δ 6 t,

where [a, b] ⊂ (0, 1]. From (2.2), we have

(2.3)

∫
(0,1]

Iδ(s) dF∗µ(s) =

∫
(0,1]

Iδ(s) dF∗ν(s).

Taking into account that Iδ → χ[a,b] pointwise as δ → 0+ (here χ denotes character-
istic function) and 0 6 Iδ 6 1, one infers, applying Lebesgue dominant convergence
theorem to integrals in (2.3), that

∫
(0,1]

χ[a,b](s) dF∗µ(s) =
∫

(0,1]
χ[a,b](s) dF∗ν(s),

or equivalently F∗µ([a, b]) = F∗ν([a, b]), for all [a, b] ⊂ (0, 1]. Following a simi-
lar procedure one can also deduce F∗µ((0, b]) = F∗ν((0, b]), for all (0, b] ⊂ (0, 1].
Therefore F∗µ(E) = F∗ν(E) for all Borel sets E ⊂ (0, 1], which implies F∗µ = F∗ν.
Finally, we obtain µ = ν, since F is a homeomorphism. �

Remark 2.2. Here we outline a more advanced proof of this theorem: if λ =
µ − ν and F (z) =

∫∞
0
e−zt dλ(t), then F is a bounded analytic function in the

half-plane <z > 0 vanishing in z = 0, 1, 2, . . . and by Hp - theory for p =∞ follows
F = 0, which easily implies λ = 0.

Proposition 2.2. Let ϕ : [0,∞)→ R be a continuous function with the prop-
erty

(2.4)

∫ ∞
0

|ϕ(t)| dt <∞.
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If f(x) =
∫∞

0
ϕ(t) e−xt dt is completely monotonic, then ϕ > 0.

Proof. Since f is completely monotonic, then according to Bernstein theorem,
there exists a non-negative Borel measure µ on [0,∞) satisfying (1.1) for all x > 0.
Due to (2.4), we have

µ([0,∞)) =

∫
[0,∞)

dµ = f(0) =

∫ ∞
0

ϕ(t) dt <∞,

and consequently, µ is a finite measure. Again, thanks to (2.4), we conclude
that ν(E) =

∫
E
ϕ(t) dt is a Borel measure of bounded variation |ν|([0,∞)) =∫∞

0
|ϕ(t)| dt <∞. Taking into account that∫

[0,∞)

e−xt dν(t) =

∫ ∞
0

ϕ(t) e−xt dt = f(x) =

∫
[0,∞)

e−xt dν(t),

for all x > 0, we see that the assumptions of Theorem 2.1 are fulfilled. Therefore,
µ = ν. This implies ∫ b

a

ϕ(t) dt = ν([a, b]) = µ([a, b]) > 0,

for all [a, b] ⊂ [0,∞). However, ϕ is continuous, whence ϕ > 0. �

3. Applications

We apply the results from the previous section with the aim to answer two
questions stated in [4] on page 34, which concern complete monotonicity of func-
tions ψ′(x+ 1)− sinh 1

x+1 and 1
2 sinh 2

x −ψ
′(x+ 1). We will actually prove slightly

more general assertions. Here ψ(x) = Γ′(x)/Γ(x) is the digamma function.

Proposition 3.1. For all m > 0 the function f(x) = ψ′(x + 1) − 1
m sinh m

x+1

is not completely monotonic.

Proof. We employ the following representations

(3.1)
1

xn
=

1

(n− 1)!

∫ ∞
0

tn−1 e−xt dt, ψ′(x) =

∫ ∞
0

t

1− e−t
e−xt dt,

for all x > 0 and n ∈ N. The latter one is due to S. Ramanujan (see [2, p. 374]).
From

1

m
sinh

m

x+ 1
=

∞∑
n=0

m2n

(2n+ 1)!

1

(x+ 1)2n+1
,

we conclude that

ψ′(x+ 1)− 1

m
sinh

m

x+ 1
=

∫ ∞
0

(
t

1− e−t
−
∞∑
n=0

m2nt2n

(2n)!(2n+ 1)!

)
e−(x+1)t dt

=

∫ ∞
0

ϕ(t) e−xt dt,

where ϕ(t) =
(

t
1−e−t −

∑∞
n=0

m2nt2n

(2n)!(2n+1)!

)
e−t. Owing to t

1−e−t ∼ t as t→∞ and∑∞
n=0

m2nt2n

(2n)!(2n+1)! >
m2t2

4! 5! , one obtains that ϕ is negative for large t. It is easy to see
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that
∫∞

0
|ϕ(t)| dt <∞ and using Proposition 2.2, we infer that f is not completely

monotonic. �

Proposition 3.2. For all m > 0 function the f(x) = 1
m sinh m

x − ψ
′(x+ 1) is

completely monotonic.

Proof. Using (3.1), we have

1

m
sinh

m

x
=

∞∑
n=0

m2n

(2n+ 1)!x2n+1
=

∫ ∞
0

∞∑
n=0

m2nt2n

(2n)! (2n+ 1)!
e−tx dt,

and

1

m
sinh

m

x
− ψ′(x+ 1) =

∫ ∞
0

( ∞∑
n=0

m2nt2n

(2n)!(2n+ 1)!
− te−t

1− e−t

)
e−xt dt,

for all x > 0. Hence

(3.2) f(x) =

∫ ∞
0

ϕ(t) e−xt dt,

where ϕ(t) =
∞∑
n=0

m2nt2n

(2n)!(2n+ 1)!
− te−t

1− e−t
. Further, it is

ϕ(t)(et − 1) = (et − 1)

∞∑
n=0

m2nt2n

(2n)!(2n+ 1)!
− t > t · 1− t = 0,

for all t > 0. Consequently, ϕ > 0 on [0,∞) and by (3.2) one concludes the
proof. �
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