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AN APPLICATION OF A MOMENT PROBLEM TO
COMPLETELY MONOTONIC FUNCTIONS

Vladimir Jovanovié¢ ! and Milanka Treml !

ABSTRACT. We consider the following question: if a function of the form
fooo o(t) e~Ttdt is completely monotonic, is it then ¢ > 07 It turns out that
the question is related to a moment problem. In the end we apply those re-
sults to answer some questions concerning complete monotonicity of certain
functions raised in [4].

1. Introduction

At the beginning we review basic notions and facts related to completely mono-
tonic functions. An infinitely differentiable function f : (0,00) — R is called com-
pletely monotonic, if

(=" f™ >0, n=0,1,2,....
The crucial fact concerning this class of functions is Bernstein theorem: a function
f is completely monotonic is and only if there exists a positive Borel measure p on
[0, 00), such that

(L1) f(z) = /[ ),

for all z > 0. Furthermore, the measure  is uniquely determined (see [1], p. 61).
In many applications one comes up to the situation that a function of the form
fooc o(t) e~®tdt is completely monotonic. Usually, in view of Bernstein theorem, it
is tacitly assumed that the function ¢ is then necessarily non-negative. Our aim
here is to clarify this question: we give a sufficient condition on ¢ which guarantees
the claim and provide a complete proof. It turns out that our question has to
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170 JOVANOVIC AND TREML

do with uniqueness of measures in a moment problem which we consider in the
next section. In the sequel we apply those results in order to answer the question
(in a slightly more general form) raised in [4] on page 34 whether the functions
Y'(z + 1) — sinh %4—1 and %sinh% —'(z 4+ 1) are completely monotonic, where v
is digamma function.

2. A moment problem

As we previously mentioned, our considerations are tightly related to the
uniqueness question for measures in a moment problem, which we state in The-
orem 2.1 (see below). It resembles the Stieltjes moment problem: if two non-
negative measures p and v with support on [0,00) have the same moments, that
is, if [§5 ¢ dp(t) =[5 t"dv(t), for all n = 0,1,..., is it then = v? In our case,
we use a substitution and reduce it to the Hausdorff moment problem, where the
support of measures is [0,1]. Now, we turn to our moment problem.

THEOREM 2.1. Assume p and v are complex Borel measures on [0, 00) with the

property
/ e~ " du(t) = / e " du(t), n=0,1,2....
[0,00) [0,00)

We need the following change of variables formula.

Then, = v.

PROPOSITION 2.1. Let (X, M, 1) be a measure space, (Y,N') a measurable space
and F : X —'Y a measurable map. Then for every measurable function f:Y — C
and every E € N we have

[ fwarnw) = [ ) duto),

E F-1(E)

in the case either of two sides is defined. Here Fyu = 1o F~! is a measure on
(Y,N), the so-called push-forward of .

For the proof, see [3, p. 30-31].

REMARK 2.1. We notice that the change of variable formula also holds for
complex Borel measures.

Proof of Theorem 2.1.

Recall that the complex measures u and v are of bounded variation, M, :=
|| ([0,00)) < o0 and M, := |v|(]0,00)) < oo (see [5]). Let us define a homeomor-
phism F : [0,00) — (0,1], F(t) = e~t. Applying Proposition 2.1 (more precisely
Remark 2.1), we obtain

/ e "du(t) = / s" dFp(s), / e "du(t) = / s"dF,.v(s).
[0,00) (0,1] [0,00) (0,1]

From the assumptions of Theorem 2.1, we have

/ s"dF.u(s) = / s"dF,v(s),
(0,1] (0,1]
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for allm=0,1,2.... Hence

(2.1) P(s)dF.u(s) = P(s)dF.v(s),
(0,1] (0,1]

for all polynomials P. Notice

[ Fep]((0,1]) = Fuful (0, 1)) = [u[([0,00)) = M,
and similarly |F.v|((0,1]) = M,. Therefore, each bounded and measurable (in
Borel sense) function on (0, 1] is integrable with respect to the both measures Fipu
and F,v. In view of

< My [|9llco

[ ss)arn(s)] < M, gl ‘ [ sdrue
(0,1] (0,1]

for all bounded measurable functions g : (0,1] — R, where ||g]lc = sup{|g(z)
x € (0,1]}, we conclude from Stone - Weierstrass theorem that

(2.2) /( | S aEts) = | stsape)

(0,1]

for all g € C[0, 1]. For small 6 > 0 introduce a continuous, piecewise linear function
Is: (0,1] = R,

0, t<a—9
P g -6<t<a
Is(t) = 1, a<t<h
bRt bt <0
0, b+6<t,
where [a,b] C (0,1]. From (2.2), we have
(2.3) / I5(s)dFu(s) = / I5(s) dFv(s).
(0,1] (0,1]

Taking into account that Is — x[4,5 Pointwise as & — 04 (here x denotes character-
istic function) and 0 < I5 < 1, one infers, applying Lebesgue dominant convergence
theorem to integrals in (2.3), that f(o,l] Xa,] () dF.pu(s) = f(O,l] Xlap)(8) dF\v(s),
or equivalently F,u([a,b]) = Fiv([a,b]), for all [a,b] C (0,1]. Following a simi-
lar procedure one can also deduce F,pu((0,b]) = F.v((0,5]), for all (0,b] C (0,1].
Therefore Fyu(E) = Fov(E) for all Borel sets E C (0, 1], which implies Fyp = Fyv.
Finally, we obtain u = v, since F' is a homeomorphism. [J

REMARK 2.2. Here we outline a more advanced proof of this theorem: if A =
p—v and F(z) = [ e * d\(t), then F is a bounded analytic function in the
half-plane Rz > 0 vanishing in z = 0,1,2,... and by H? - theory for p = co follows

F = 0, which easily implies A = 0.

PROPOSITION 2.2. Let ¢ : [0,00) = R be a continuous function with the prop-
erty

(2.4) /O o) dt < oo
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If f(z) = fooo p(t) e~ dt is completely monotonic, then ¢ > 0.

PROOF. Since f is completely monotonic, then according to Bernstein theorem,
there exists a non-negative Borel measure p on [0, 00) satisfying (1.1) for all > 0.
Due to (2.4), we have

(0.0 = |

[0,00)

=10 = [ plt)it <o

and consequently, u is a finite measure. Again, thanks to (2.4), we conclude
that v(E) = [, ¢(t)dt is a Borel measure of bounded variation |v|([0,00)) =
J5" lo(t)| dt < co. Taking into account that

/[( et = /O o(t) et dt = f(z) = /[Om) e~ du (1),

for all x > 0, we see that the assumptions of Theorem 2.1 are fulfilled. Therefore,
= v. This implies

b
ettt =vifa.b) = (o) >0,
a
for all [a,b] C [0,00). However, ¢ is continuous, whence ¢ > 0. O

3. Applications

We apply the results from the previous section with the aim to answer two
questions stated in [4] on page 34, which concern complete monotonicity of func-
tions ¥’ (z 4+ 1) — sinh x%rl and % sinh% —¢/(x +1). We will actually prove slightly
more general assertions. Here ¢(x) = I"(x)/T'(z) is the digamma function.

PROPOSITION 3.1. For all m > 0 the function f(x) = 1'(x + 1) — - sinh )
is not completely monotonic.

PRrROOF. We employ the following representations

1 1 o0 o0
3.1 - = th—le—2t gt / — / —xt gy
B e et W)= [ e

for all z > 0 and n € N. The latter one is due to S. Ramanujan (see [2, p. 374]).
From

1 . m = m2n 1
— sinh = )
m r+1 = (2n+ 1)! (x 4 1)2n+t
we conclude that
1 m > t > m2ng2n
! 1) - —sinh —— — _ A e C SR VI
Yie+l) | /0 (1—e—t ;(271)!(271—1—1)!)6
[ ewea,
0

m2nt2n

where (p(t) = (# - ZZO:O m) e t. Owing to L ~tast— ooand

l—e—t
ZOO 7n2nt2n > m2t2
n=0 (2n)!(2n+1)! = 4!5!>

one obtains that ¢ is negative for large t. It is easy to see
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that fo |o(t)] dt < oo and using Proposition 2.2, we infer that f is not completely
monotonic. O

PROPOSITION 3.2. For all m > 0 function the f(x) = % sinh 2 — o' (z + 1) is

completely monotonic.

Proor. Using (3.1), we have
2nt2n

1 m =
2 sinh 2 = o=t gy
m o Z (2n + 1)l g2ntl / Z (2n)! (2n + 1)! ’

and
e 2nt2n te—t

1 m °

— sinh — — ¢/ 1) = ot

mo g Yie+1) /0 Z:(271) 2n+1)! 1—et ¢ ’
for all z > 0. Hence

(3.2) f(x) = / T,

e 2nt2n te—t

where o(t nz;) T 1 T—e Further, it is
i 2nt2n
p(t)(e" —1) = t>t-1-t=0,
= 0 I(2n 4+ 1)

for all ¢ > 0. Consequently, ¢ > 0 on [O o0) and by (3.2) one concludes the

proof.
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