BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., **12**(1)(2022), 169-173 DOI: 10.7251/BIMVI2201169J

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

AN APPLICATION OF A MOMENT PROBLEM TO COMPLETELY MONOTONIC FUNCTIONS

Vladimir Jovanović¹ and Milanka Treml¹

ABSTRACT. We consider the following question: if a function of the form $\int_0^\infty \varphi(t) e^{-xt} dt$ is completely monotonic, is it then $\varphi \ge 0$? It turns out that the question is related to a moment problem. In the end we apply those results to answer some questions concerning complete monotonicity of certain functions raised in [4].

1. Introduction

At the beginning we review basic notions and facts related to completely monotonic functions. An infinitely differentiable function $f: (0, \infty) \to \mathbb{R}$ is called completely monotonic, if

$$(-1)^n f^{(n)} \ge 0, \quad n = 0, 1, 2, \dots$$

The crucial fact concerning this class of functions is *Bernstein theorem*: a function f is completely monotonic is and only if there exists a positive Borel measure μ on $[0, \infty)$, such that

(1.1)
$$f(x) = \int_{[0,\infty)} e^{-xt} d\mu(t),$$

for all x > 0. Furthermore, the measure μ is uniquely determined (see [1], p. 61). In many applications one comes up to the situation that a function of the form $\int_0^\infty \varphi(t) e^{-xt} dt$ is completely monotonic. Usually, in view of Bernstein theorem, it is tacitly assumed that the function φ is then necessarily non-negative. Our aim here is to clarify this question: we give a sufficient condition on φ which guarantees the claim and provide a complete proof. It turns out that our question has to

169

²⁰¹⁰ Mathematics Subject Classification. Primary 26A48; Secondary 30E20.

Key words and phrases. Complete monotonicity, digamma function, moment problem.

Communicated by Dusko Bogdanic.

do with uniqueness of measures in a moment problem which we consider in the next section. In the sequel we apply those results in order to answer the question (in a slightly more general form) raised in [4] on page 34 whether the functions $\psi'(x+1) - \sinh \frac{1}{x+1}$ and $\frac{1}{2} \sinh \frac{2}{x} - \psi'(x+1)$ are completely monotonic, where ψ is digamma function.

2. A moment problem

As we previously mentioned, our considerations are tightly related to the uniqueness question for measures in a moment problem, which we state in Theorem 2.1 (see below). It resembles the *Stieltjes moment problem*: if two non-negative measures μ and ν with support on $[0, \infty)$ have the same moments, that is, if $\int_0^\infty t^n d\mu(t) = \int_0^\infty t^n d\nu(t)$, for all $n = 0, 1, \ldots$, is it then $\mu = \nu$? In our case, we use a substitution and reduce it to the *Hausdorff moment problem*, where the support of measures is [0, 1]. Now, we turn to our moment problem.

THEOREM 2.1. Assume μ and ν are complex Borel measures on $[0, \infty)$ with the property

$$\int_{[0,\infty)} e^{-nt} d\mu(t) = \int_{[0,\infty)} e^{-nt} d\mu(t), \ n = 0, 1, 2 \dots$$

Then, $\mu = \nu$.

We need the following change of variables formula.

PROPOSITION 2.1. Let (X, \mathcal{M}, μ) be a measure space, (Y, \mathcal{N}) a measurable space and $F: X \to Y$ a measurable map. Then for every measurable function $f: Y \to \mathbb{C}$ and every $E \in \mathcal{N}$ we have

$$\int_E f(y) \, dF_* \mu(y) = \int_{F^{-1}(E)} f(F(x)) \, d\mu(x),$$

in the case either of two sides is defined. Here $F_*\mu = \mu \circ F^{-1}$ is a measure on (Y, \mathcal{N}) , the so-called push-forward of μ .

For the proof, see [3, p. 30-31].

REMARK 2.1. We notice that the change of variable formula also holds for complex Borel measures.

Proof of Theorem 2.1.

Recall that the complex measures μ and ν are of bounded variation, $M_{\mu} := |\mu|([0,\infty)) < \infty$ and $M_{\nu} := |\nu|([0,\infty)) < \infty$ (see [5]). Let us define a homeomorphism $F : [0,\infty) \to (0,1], F(t) = e^{-t}$. Applying Proposition 2.1 (more precisely Remark 2.1), we obtain

$$\int_{[0,\infty)} e^{-nt} d\mu(t) = \int_{(0,1]} s^n \, dF_*\mu(s), \quad \int_{[0,\infty)} e^{-nt} d\nu(t) = \int_{(0,1]} s^n \, dF_*\nu(s).$$

From the assumptions of Theorem 2.1, we have

$$\int_{(0,1]} s^n \, dF_* \mu(s) = \int_{(0,1]} s^n \, dF_* \nu(s),$$

for all $n = 0, 1, 2 \dots$ Hence

(2.1)
$$\int_{(0,1]} P(s) \, dF_* \mu(s) = \int_{(0,1]} P(s) \, dF_* \nu(s),$$

for all polynomials P. Notice

$$|F_*\mu|((0,1]) = F_*|\mu|((0,1]) = |\mu|([0,\infty)) = M_{\mu}$$

and similarly $|F_*\nu|((0,1]) = M_{\nu}$. Therefore, each bounded and measurable (in Borel sense) function on (0,1] is integrable with respect to the both measures $F_*\mu$ and $F_*\nu$. In view of

$$\left| \int_{(0,1]} g(s) \, dF_* \mu(s) \right| \leqslant M_\mu \, \|g\|_\infty, \quad \left| \int_{(0,1]} g(s) \, dF_* \nu(s) \right| \leqslant M_\nu \, \|g\|_\infty,$$

for all bounded measurable functions $g: (0,1] \to \mathbb{R}$, where $||g||_{\infty} = \sup\{|g(x)| : x \in (0,1]\}$, we conclude from Stone - Weierstrass theorem that

(2.2)
$$\int_{(0,1]} g(s) \, dF_* \mu(s) = \int_{(0,1]} g(s) \, dF_* \nu(s)$$

for all $g \in C[0, 1]$. For small $\delta > 0$ introduce a continuous, piecewise linear function $I_{\delta} : (0, 1] \to \mathbb{R}$,

$$I_{\delta}(t) = \begin{cases} 0, & t < a - \delta \\ \frac{t - (a - \delta)}{\delta}, & a - \delta \leqslant t \leqslant a \\ 1, & a \leqslant t \leqslant b \\ \frac{b + \delta - t}{\delta}, & b \leqslant t \leqslant b + \delta \\ 0, & b + \delta \leqslant t, \end{cases}$$

where $[a, b] \subset (0, 1]$. From (2.2), we have

(2.3)
$$\int_{(0,1]} I_{\delta}(s) \, dF_* \mu(s) = \int_{(0,1]} I_{\delta}(s) \, dF_* \nu(s).$$

Taking into account that $I_{\delta} \to \chi_{[a,b]}$ pointwise as $\delta \to 0+$ (here χ denotes characteristic function) and $0 \leq I_{\delta} \leq 1$, one infers, applying Lebesgue dominant convergence theorem to integrals in (2.3), that $\int_{(0,1]} \chi_{[a,b]}(s) dF_*\mu(s) = \int_{(0,1]} \chi_{[a,b]}(s) dF_*\nu(s)$, or equivalently $F_*\mu([a,b]) = F_*\nu([a,b])$, for all $[a,b] \subset (0,1]$. Following a similar procedure one can also deduce $F_*\mu((0,b]) = F_*\nu((0,b])$, for all $(0,b] \subset (0,1]$. Therefore $F_*\mu(E) = F_*\nu(E)$ for all Borel sets $E \subset (0,1]$, which implies $F_*\mu = F_*\nu$. Finally, we obtain $\mu = \nu$, since F is a homeomorphism. \Box

REMARK 2.2. Here we outline a more advanced proof of this theorem: if $\lambda = \mu - \nu$ and $F(z) = \int_0^\infty e^{-zt} d\lambda(t)$, then F is a bounded analytic function in the half-plane $\Re z > 0$ vanishing in $z = 0, 1, 2, \ldots$ and by H^p - theory for $p = \infty$ follows F = 0, which easily implies $\lambda = 0$.

PROPOSITION 2.2. Let $\varphi : [0, \infty) \to \mathbb{R}$ be a continuous function with the property

(2.4)
$$\int_0^\infty |\varphi(t)| \, dt < \infty.$$

If $f(x) = \int_0^\infty \varphi(t) e^{-xt} dt$ is completely monotonic, then $\varphi \ge 0$.

PROOF. Since f is completely monotonic, then according to Bernstein theorem, there exists a non-negative Borel measure μ on $[0, \infty)$ satisfying (1.1) for all x > 0. Due to (2.4), we have

$$\mu([0,\infty)) = \int_{[0,\infty)} d\mu = f(0) = \int_0^\infty \varphi(t) \, dt < \infty,$$

and consequently, μ is a finite measure. Again, thanks to (2.4), we conclude that $\nu(E) = \int_E \varphi(t) dt$ is a Borel measure of bounded variation $|\nu|([0,\infty)) = \int_0^\infty |\varphi(t)| dt < \infty$. Taking into account that

$$\int_{[0,\infty)} e^{-xt} \, d\nu(t) = \int_0^\infty \varphi(t) \, e^{-xt} \, dt = f(x) = \int_{[0,\infty)} e^{-xt} \, d\nu(t),$$

for all $x \ge 0$, we see that the assumptions of Theorem 2.1 are fulfilled. Therefore, $\mu = \nu$. This implies

$$\int_a^b \varphi(t)\,dt = \nu([a,b]) = \mu([a,b]) \geqslant 0,$$

for all $[a, b] \subset [0, \infty)$. However, φ is continuous, whence $\varphi \ge 0$.

3. Applications

We apply the results from the previous section with the aim to answer two questions stated in [4] on page 34, which concern complete monotonicity of functions $\psi'(x+1) - \sinh \frac{1}{x+1}$ and $\frac{1}{2} \sinh \frac{2}{x} - \psi'(x+1)$. We will actually prove slightly more general assertions. Here $\psi(x) = \Gamma'(x)/\Gamma(x)$ is the digamma function.

PROPOSITION 3.1. For all m > 0 the function $f(x) = \psi'(x+1) - \frac{1}{m} \sinh \frac{m}{x+1}$ is not completely monotonic.

PROOF. We employ the following representations

(3.1)
$$\frac{1}{x^n} = \frac{1}{(n-1)!} \int_0^\infty t^{n-1} e^{-xt} dt, \quad \psi'(x) = \int_0^\infty \frac{t}{1-e^{-t}} e^{-xt} dt,$$

for all x > 0 and $n \in \mathbb{N}$. The latter one is due to S. Ramanujan (see [2, p. 374]). From

$$\frac{1}{m}\sinh\frac{m}{x+1} = \sum_{n=0}^{\infty} \frac{m^{2n}}{(2n+1)!} \frac{1}{(x+1)^{2n+1}},$$

we conclude that

$$\psi'(x+1) - \frac{1}{m}\sinh\frac{m}{x+1} = \int_0^\infty \left(\frac{t}{1-e^{-t}} - \sum_{n=0}^\infty \frac{m^{2n}t^{2n}}{(2n)!(2n+1)!}\right) e^{-(x+1)t} dt$$
$$= \int_0^\infty \varphi(t) e^{-xt} dt,$$

where $\varphi(t) = \left(\frac{t}{1-e^{-t}} - \sum_{n=0}^{\infty} \frac{m^{2n}t^{2n}}{(2n)!(2n+1)!}\right) e^{-t}$. Owing to $\frac{t}{1-e^{-t}} \sim t$ as $t \to \infty$ and $\sum_{n=0}^{\infty} \frac{m^{2n}t^{2n}}{(2n)!(2n+1)!} \ge \frac{m^2t^2}{4!5!}$, one obtains that φ is negative for large t. It is easy to see

172

that $\int_0^\infty |\varphi(t)| dt < \infty$ and using Proposition 2.2, we infer that f is not completely monotonic.

PROPOSITION 3.2. For all m > 0 function the $f(x) = \frac{1}{m} \sinh \frac{m}{x} - \psi'(x+1)$ is completely monotonic.

PROOF. Using (3.1), we have

$$\frac{1}{m}\sinh\frac{m}{x} = \sum_{n=0}^{\infty} \frac{m^{2n}}{(2n+1)! \, x^{2n+1}} = \int_0^\infty \sum_{n=0}^\infty \frac{m^{2n} t^{2n}}{(2n)! \, (2n+1)!} \, e^{-tx} \, dt,$$

and

$$\frac{1}{m}\sinh\frac{m}{x} - \psi'(x+1) = \int_0^\infty \left(\sum_{n=0}^\infty \frac{m^{2n}t^{2n}}{(2n)!(2n+1)!} - \frac{te^{-t}}{1-e^{-t}}\right)e^{-xt}\,dt,$$

for all x > 0. Hence

(3.2)
$$f(x) = \int_0^\infty \varphi(t) e^{-xt} dt,$$

where
$$\varphi(t) = \sum_{n=0}^{\infty} \frac{m^{2n}t^{2n}}{(2n)!(2n+1)!} - \frac{te^{-t}}{1-e^{-t}}$$
. Further, it is
 $\varphi(t)(e^t - 1) = (e^t - 1)\sum_{n=0}^{\infty} \frac{m^{2n}t^{2n}}{(2n)!(2n+1)!} - t \ge t \cdot 1 - t = 0,$

for all $t \ge 0$. Consequently, $\varphi \ge 0$ on $[0,\infty)$ and by (3.2) one concludes the proof.

References

- C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin Heidelberg New York, 1975.
- 2. B. C. Berndt, Ramanujan's Notebook. Part IV, Springer, New York, 1994.
- 3. R. Durrett, Probability. Theory and Examples, Cambridge University Press, 2010.
- 4. F. Qi and R. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl., (2019), 1–42.
- 5. W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987.

Received by editors 15.12.2021; Revised version 19.12.2021; Available online 30.12.2021.

 1 Faculty of Sciences and Mathematics, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Email address: vladimir.jovanovic@pmf.unibl.org

 $Email \ address: \verb"milanka.treml@pmf.unibl.org"$