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AMICABLE SETS OF GENERALIZED

ALMOST DISTRIBUTIVE FUZZY LATTICES

Yohannes Gedamu Wondifraw and Berhanu Assaye Alaba

Abstract. In this paper we introduce the concept of a compatible set, maxi-
mal set and amicable set of a Generalized Almost Distributive Fuzzy Lattices

(GADFLs) and we study their properties in a GADFL. We also show any two
amicable sets are isomorphic in an associative GADFL.

1. Introduction

The concept of Generalized almost distributive lattices (GADLs) was intro-
duced by Rao, Bandaru and Rafi [6] as a generalization of Almost distributive
lattices (ADLs) [8] which was a common abstraction of almost all the existing ring
theoretic generalization of a Boolean algebra on one hand and Distributive lattice
on the other. The concept of amicable set was first introduced by Subrahmanyam
[7] in the class of triple systems. Later studied by Swamy and Rao [8] in the class
of ADLs. Bandaru [2] also studied about a compatible set, maximal set and ami-
cable set and their properties in a GADL. On the other hand, L. A. Zadeh [9] in
1965 introduced the notion of fuzzy set. Again in 1971, Zadeh [10] defined a fuzzy
ordering as a generalization of the concept of ordering, that is, a fuzzy ordering
is a fuzzy relation that is transitive. In particular, a fuzzy partial ordering is a
fuzzy ordering that is reflexive and antisymmetric. In 1994, Ajmal and Thomas [1]
defined a fuzzy lattice as a fuzzy algebra and characterized fuzzy sublattices. In
2009, Chon [5], considering the notion of fuzzy order of Zadeh [10], introduced a
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new notion of fuzzy lattice and studied the level sets of fuzzy lattices. He also intro-
duced the notions of distributive and modular fuzzy lattices and considered some
basic properties of fuzzy lattices. In 2017, Berhanu et al. [3] introduce the concept
of Almost distributive fuzzy lattices (ADFLs) as a generalization of Distributive
fuzzy lattices and characterized some properties of an ADL using the fuzzy par-
tial order relations and fuzzy lattices defined by I. Chon. Later on Berhanu and
Yohannes [4] introduce the concept of Generalized almost distributive fuzzy lattices
(GADFLs) as a generalization of Almost distributive fuzzy lattices (ADFLs). As
a continuation in this paper we introduce the concept of compatible set, maximal
set and amicable set of a Generalized almost distributive fuzzy lattices.

2. Preliminaries

First we recall certain definitions and properties of a Generalized almost dis-
tributive lattices.

Definition 2.1. ([2]) An algebra (L, ∨, ∧) of type (2, 2) is called a Generalized
almost distributive lattice if it satisfies the following axioms:

(As ∧) (x ∧ y) ∧ z = x ∧ (y ∧ z),
(LD ∧) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(LD ∨) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

(A1) x ∧ (x ∨ y) = x,
(A2) (x ∨ y) ∧ x = x,
(A3) (x ∧ y) ∨ y = y

for all x, y, z ∈ L.

Lemma 2.1 ([2]). For any a ∈ L,

(1) a ∨ a = a
(2) a ∧ a = a.

In addition to the 3 absorption laws A1, A2, A3 given in Definition 2.1, we also
get the following:

Lemma 2.2 ([2]). For any a, b ∈ L,

(A4) a ∨ (a ∧ b) = a,
(A5) a ∨ (b ∧ a) = a.

Definition 2.2 ([2]). For any a, b ∈ L we say that a is less than or equal to b
and write a 6 b, if a ∧ b = a or equivalently, a ∨ b = b.

Lemma 2.3 ([2]). For any a, b, c ∈ R, a ∧ b ∧ c = b ∧ a ∧ c

Definition 2.3. ([5]) Let X be a set. A function A : X × X −→ [0, 1] is
called a fuzzy relation in X. The fuzzy relation A in X is reflexive iff A(x, x) = 1
for all x ∈ X, A is transitive iff A(x, z) > supy∈X min(A(x, y), A(y, z)), and A is
antisymmetric iff A(x, y) > 0 and A(y, x) > 0 imply x = y. A fuzzy relation A is a
fuzzy partial order relation if A is reflexive, antisymmetric and transitive. A fuzzy
partial order relation A is a fuzzy total order relation iff A(x, y) > 0 or A(y, x) >
0 for all x, y ∈ X. If A is a fuzzy partial order relation in a set X, then (X,A)
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is called a fuzzy partially ordered set or a fuzzy poset. If B is a fuzzy total order
relation in a set X, then (X,B) is called a fuzzy totally ordered set or a fuzzy chain.

Definition 2.4. ([5]) Let (X,A) be a fuzzy poset and let B ⊆ X. An element
u ∈ X is said to be an upper bound for a subset B iff A(b, u) > 0 for all b ∈ B.
An upper bound u0 for B is the least upper bound of B iff A(u0, u) > 0 for every
upper bound u for B. An element v ∈ X is said to be a lower bound for a subset
B iff A(v, b) > 0 for all b ∈ B. A lower bound v0 for B is the greatest lower bound
of B iff A(v, v0) > 0 for every lower bound v for B.

We denote the least upper bound of the set {x, y} by x ∨ y and denote the
greatest lower bound of the set {x, y} by x ∧ y.

Definition 2.5. ([5]) Let (X,A) be a fuzzy poset. (X,A) is a fuzzy lattice iff
x ∨ y and x ∧ y exist for all x, y ∈ X.

Definition 2.6. ([5]) Let (X,A) be a fuzzy lattice. (X,A) is distributive if
and only if x ∧ (y ∨ z)= (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z).

We define a Generalized Almost Distributive Fuzzy Lattice (GADFL) as fol-
lows:

Definition 2.7. ([4]) Let (R, ∨, ∧) be an algebra of type (2, 2) and (R,A)
be a fuzzy poset. Then we call (R,A) is a Generalized almost distributive fuzzy
lattice if it satisfies the following axioms:

(1) A((a ∧ b) ∧ c, a ∧ (b ∧ c)) = A(a ∧ (b ∧ c), (a ∧ b) ∧ c) = 1;
(2) A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∧ c)) = A((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) = 1;
(3) A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) = A((a ∨ b) ∧ (a ∨ c), a ∨ (b ∧ c)) = 1;
(4) A(a ∧ (a ∨ b), a) = A(a, a ∧ (a ∨ b)) = 1;
(5) A((a ∨ b) ∧ a, a) = A(a, (a ∨ b) ∧ a) = 1;
(6) A((a ∧ b) ∨ b, b) = A(b, (a ∧ b) ∨ b) = 1

for all a, b, c ∈ R.

Now, we give some elementary properties of a GADFL.

Theorem 2.1 ([4]). Let (R,A) be a fuzzy poset . Then R is a GADL iff (R,A)
is a GADFL.

Theorem 2.2 ([4]). Let (R,A) be a GADFL . Then a = b ⇔ A(a, b) =
A(b, a) = 1.

Definition 2.8. ([4]) Let (R,A) be a GADFL . Then for any a, b ∈ R, a 6 b
if and only if A(a, b) > 0 .

In view of the above definition, we have the following theorem.

Theorem 2.3 ([4]). If (R,A) is a GADFL then a ∧ b = a if and only if
A(a, b) > 0.

Lemma 2.4 ([4]). Let (R,A) be a GADFL and a, b ∈ Rsuch that a ̸= b. If
A(a, b) > 0 then A(b, a) = 0.
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Lemma 2.5 ([4]). Let (R,A) be a GADFL. Then for each a and b in R

(i) A(a ∧ b, b) > 0 and A(b ∧ a, a) > 0.
(ii) A(a, a ∨ b) > 0 and A(b, b ∨ a) > 0.

Definition 2.9. ([4]) The fuzzy poset (R,A) is directed above if and only if
the poset (R,6) is directed above.

Now, we give the following conditions for a GADFL to become a distributive
fuzzy lattice.

Theorem 2.4 ([4]). Let (R,A) be a GADFL. Then the following are equivalent.

(1) (R,A) is distributive fuzzy lattice;
(2) The fuzzy poset (R,A) is directed above;
(3) A(a ∧ (b ∨ a), a) > 0 and A(a, a ∧ (b ∨ a)) > 0;
(4) A(a ∨ b, b ∨ a) > 0 and A(b ∨ a, a ∨ b) > 0;
(5) A(a ∧ b, b ∧ a) > 0 and A(b ∧ a, a ∧ b) > 0;
(6) The relation θ = {(a, b) ∈ R×R | A(b, a ∧ b) > 0 } is antisymmetric.

3. Amicable Sets of a GADFL

In this section we define compatible set, maximal set and amicable set in a
Generalized Almost Distributive Fuzzy Lattices and we study their properties.

Definition 3.1. Let (R,A) be a GADFL. For any a, b ∈ R, we say that a is
compatible with b (written a ∼A b) if A(a ∧b , b∧ a) > 0 and A(b∧ a, a∧ b) > 0 or
equivalently A(a∨ b, b∨ a) > 0 and A(b∨ a, a∨ b)> 0. A subset SA of R is said to
be compatible if a ∼A b for all a, b ∈ SA. By a maximal set, we mean a maximal
compatible set where maximal in the usual sense.

Definition 3.2. Let MA be a maximal set in a GADFL (R,A). Then an
element x ∈ R is said to be MA− amicable if there exists d ∈ MA such that

A(x, d ∧ x) > 0.

Now we give the definition of an amicable set in a GADFL

Definition 3.3. A maximal set MA is said to be an amicable set in a GADFL
(R,A) if every element of R is MA− amicable.

Example 3.1. Let R = {a, b, c} andMA = {a, b}. Define two binary operations
∨ and ∧ on R as follows:

∨ a b c
a a a a
b a b b
c c c c

and

∧ a b c
a a b c
b b b c
c b b c

Define a fuzzy relation A : R × R −→ [0, 1] as follows: A(a, a) = A(b, b) = A(c, c) =
1, A(b, a) = A(b, c) = A(c, a) = A(c, b) = 0, A(a, b) = 0.2 and A(a, c) = 0.4.
Clearly, (R,A) is a GADFL.
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Now, consider MA ⊆ R. For a, b ∈ MA, A(a∧ b, b∧ a) > 0 and A(b∧ a, a∧ b) > 0.
Hence MA is a compatible set and it is a maximal compatible set. Now, let x ∈ R,
then there exists d in MA such that A(x, d ∧ x) > 0. Hence every element of R is
MA− amicable. Therefore MA is amicable set in a GADFL (R,A).

Lemma 3.1. Let (R,A) be a GADFL. For any a, b ∈ R,

a ∧ b ∼A a ⇒ A(a ∧ b, b ∧ a) = 1.

Proof. Suppose (R,A) is a GADFL and a, b ∈ R. Assume a ∧ b ∼A a. Then
A(a∧b, a) > 0 and A(a, a∧b) > 0 by definition 3.1, hence by antisymmetry property
of A, a ∧ b = a. Now,

A(a ∧ b, b ∧ a) = A(a ∧ b, b ∧ a ∧ b) = A(a ∧ b, a ∧ b ∧ b) = A(a ∧ b, a ∧ b) = 1.

Therefore A(a ∧ b, b ∧ a) = 1. �
Now we prove the following

Lemma 3.2. Let (R, A) be a GADFL and a, b, c ∈ R. Then

a ∼A b ⇒ A((a ∨ c) ∧ b, (a ∧ b) ∨ (c ∧ b)) = 1.

Proof. Let (R,A) be a GADFL and a, b, c ∈ R. Let a ∼A b. Then A(a ∧ b,
b ∧ a) > 0 and A(b ∧ a, a ∧ b) > 0 then by antisymmetry propperty of A, a ∧ b =
b ∧ a. Now,

A((a ∨ c) ∧ b, (a ∧ b) ∨ (c ∧ b))
= A((a ∨ c) ∧ b ∧ b, (a ∧ b) ∨ (c ∧ b))
= A(b ∧ (a ∨ c) ∧ b, (a ∧ b) ∨ (c ∧ b))
= A({(b ∧ a) ∨ (b ∧ c)} ∧ b, (a ∧ b) ∨ (c ∧ b))
= A({(a ∧ b) ∨ (b ∧ c)} ∧ b, (a ∧ b) ∨ (c ∧ b))
= A({[(a ∧ b) ∨ b] ∧ [(a ∧ b) ∨ c]} ∧ b, (a ∧ b) ∨ (c ∧ b))
= A(b ∧ [(a ∧ b) ∨ c] ∧ b, (a ∧ b) ∨ (c ∧ b))
= A([(a ∧ b) ∨ c] ∧ b ∧ b, (a ∧ b) ∨ (c ∧ b))
= A({(a ∧ b) ∨ c)} ∧ b, (a ∧ b) ∨ (c ∧ b))
= A({(a ∧ b) ∨ c} ∧ {(a ∧ b) ∨ b}, (a ∧ b) ∨ (c ∧ b))
= A((a ∧ b) ∨ (c ∧ b), (a ∧ b) ∨ (c ∧ b))
= 1.

Therefore A((a ∨ c) ∧ b, (a ∧ b) ∨ (c ∧ b)) = 1. �
Lemma 3.3. Let (R,A) be a GADFL. For any a, b ∈ R, a ∼A b if and only if

A( a ∨ x, b ∨ x) > 0 and A(b ∨ x, a ∨ x) > 0 for some x in R.

Proof. Suppose (R,A) is a GADFL and a, b ∈ R,
(⇒) Suppose a ∼A b. Then A(a∨b, b∨a) > 0 and A(b∨a, a∨b) > 0. Hence by

antisymmetry property of A, a∨b = b∨a. Put x = a∨b. Then a = a∧(a∨b) = a∧x.
Therefore a 6 x and hence a ∨ x = x. Also, b = b ∧ (b ∨ a) = b ∧ x. Therefore
b 6 x and hence b∨ x = x. Hence a∨ x = b∨ x. Therefore A(a∨ x, b∨ x) > 0 and
A(b ∨ x, a ∨ x) > 0.

(⇐) Suppose A(a ∨ x, b ∨ x) > 0 and A(b ∨ x, a ∨ x) > 0. Then a ∨ x = b ∨
x. Let a ∨ x = b ∨ x = t. Then a ∧ t = a ∧ (a ∨ x) = a and b ∧ t = b ∧ (b ∨ x) = b.
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Now, a∧ b = a∧ b∧ t = b∧ a∧ t = b∧ a. Therefore A(a∧ b, b∧ a) > 0 and A(b∧ a,
a ∧ b) > 0 and hence a ∼A b. �

Lemma 3.4. Let MA be a maximal set in a GADFL (R,A) and x ∈ R be such
that x ∼A a for all a ∈ MA. Then x ∈ MA.

Proof. Sinc a ∼A x for all a ∈ MA and MA is a compatible set, we get MA

∪ {x} is a compatible set and hence, by maximality of MA, x ∈ MA. �

Now we prove every maximal set MA in a GADFL (R,A) is distributive fuzzy
lattice.

Theorem 3.1. If MA is a maximal set in a GADFL (R,A) then (MA, A) is a
distributive fuzzy lattice under the induced operations ∨ and ∧.

Proof. Let MA be a maximal set in a GADFL (R,A) and a, b ∈ MA. Then
for any c ∈ MA, A( (a∧ b)∧ c, c∧ (a∧ b)) = A(a∧ b∧ c, c∧ (a∧ b)) = A(a∧ c∧ b,
c ∧ (a ∧ b)) = A(c ∧ a ∧ b, c ∧ (a ∧ b)) = A(c ∧ (a ∧ b), c ∧ (a ∧ b)) = 1. Hence
A((a ∧ b) ∧ c, c ∧ (a ∧ b)) > 0. Similarly, A(c ∧ (a ∧ b), (a ∧ b) ∧ c) > 0. Therefore
a ∧ b ∼A c for all c ∈ MA, and hence by Lemma 3.4, we get a ∧ b ∈ MA.

Again,

A(c ∧ (a ∨ b), (a ∨ b) ∧ c) = A((c ∧ a) ∨ (c ∧ b), (a ∨ b) ∧ c))

= A((a ∧ c) ∨ (b ∧ c), (a ∨ b) ∧ c))

= A({(a ∧ c) ∨ b} ∧ {(a ∧ c) ∨ c}, (a ∨ b) ∧ c))

= A({b ∨ (a ∧ c)} ∧ c, (a ∨ b) ∧ c))

= A({(b ∨ a) ∧ (b ∨ c)} ∧ c, (a ∨ b) ∧ c))

= A({(a ∨ b) ∧ (c ∨ b)} ∧ c, (a ∨ b) ∧ c))

= A((a ∨ b) ∧ (c ∨ b) ∧ c, (a ∨ b) ∧ c))

= A((a ∨ b) ∧ c ∧ c, (a ∨ b) ∧ c)

= A((a ∨ b) ∧ c), (a ∨ b) ∧ c))

= 1.

Hence A(c∧(a∨b), (a∨b)∧c) > 0. Similarly, A((a∨b)∧c, c∧(a∨b)) > 0. Therefore
a ∨ b ∼A c for all c ∈ MA and hence by lemma 3.4, we get a ∨ b ∈ MA. Thus
(MA, A) is a sub GADFL of (R,A). Since MA maximal, it is maximal compatible
set and hence for any a, b ∈ MA, a ∼A b. Hence A(a ∧ b, b ∧ a) > 0 and A(b ∧ a,
a ∧ b) > 0 for all a, b ∈ MA. Therefore (MA, A) is distributive fuzzy lattice. �

Proposition 3.1. Let MA be a maximal set. Then MA is an initial segment
in the fuzzy poset (R,A). That is for any x ∈ R and a ∈ MA, A(x, a) > 0 implies
x ∈ MA.

Proof. Let x ∈ R, a ∈ MA and A(x, a) > 0. Then for any b ∈ MA, A(x ∧ b,
b ∧ x) = A(x ∧ a ∧ b, b ∧ x) [A(x, a) > 0 ⇒ x ∧ a = x] = A(x ∧ b ∧ a, b ∧ x)
= A(b ∧ x ∧ a, b ∧ x) = A(b ∧ x, b ∧ x) = 1. Hence A(x ∧ b, b ∧ x) > 0. Similarly,
A(b ∧ x, x ∧ b) > 0. Therefore x ∼A b and hence by lemma 3.4, x ∈ MA. �
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Corollary 3.1. Let MA be a maximal set in a GADFL (R,A) and a ∈ MA.
Then, for any x ∈ R, x∧ a ∈ MA.

Proof. Since (x ∧ a) ∨ a = a ⇒ x ∧ a 6 a ⇒ A(x ∧ a, a) > 0. Hence by
proposition 3.1, x ∧ a ∈ MA. �

Lemma 3.5. Let MA be a maximal set in a GADFL (R,A) and x ∈ R be MA−
amicable. Then there exists an element a ∈ MA with the following properties:

(1) A(x, a ∧ x) > 0
(2) b ∈ R, A(x, b ∧ x) > 0 ⇒ A(a, b ∧ a) > 0.

Proof. (1) Since x is MA− amicable, then there exists c ∈ MA such that A(x,
c∧x) > 0. Since A(c∧x, x) > 0, by antisymmetry property of A, we have x = c∧x.
Write a = x ∧ c. Then by Corollary 3.1 a ∈ MA and A(x, a ∧ x) = A(x, x ∧ c ∧ x)
= A(x, c ∧ x ∧ x) = A(x, c ∧ x) = A(x, x) = 1. Hence A(x, a ∧ x) > 0.

(2) If b ∈ R and A(x, b∧x) > 0. Since A(b∧x, x) > 0. Then by antisymmetry
property of A, we have x = b ∧ x. Now,

A(a, b ∧ a) = A(a, b ∧ x ∧ c) = A(a, x ∧ c) = A(a, a) = 1.

Hence A(a, b ∧ a) > 0. �

If b ∈ MA in (2) of the above lemma, since MA is a maximal set a ∼A b and
hence A(a ∧ b, b ∧ a) > 0 and A(b ∧ a, a ∧ b) > 0 which implies

a ∧ b = b ∧ a ........(⋆).
By (2) of the above lemma A(a, b∧a) > 0 and we know that A(b∧a, a) > 0. Hence

a = b ∧ a ....... (⋆⋆)
From (⋆) and (⋆⋆) a = b ∧ a = a ∧ b and hence A(a, b) > 0.

Hence we have the following corollary.

Corollary 3.2. Let MA be a maximal set in a GADFL (R,A) and x ∈ R
is MA− amicable, then there is a smallest element a of MA with the property
A(x, a ∧ x) > 0.

We denote the element a of MA in the above corollary by xM . That is if MA

is a maximal set and x ∈ R is MA− amicable, then there is a smallest element xM

of MA with the property A(x, xM ∧ x) > 0.

Lemma 3.6. Let MA be a maximal set in a GADFL (R,A), x ∈ R be MA−
amicable and a ∈ R such that A(a, x∧a) > 0. Then a is MA− amicable and A(aM ,
xM ) > 0.

Proof. Suppose x ∈ R is MA− amicable, then there exists xM ∈ MA such
that A(x, xM ∧ x) > 0. To show that a is MA− amicable.

A(a, xM ∧ a) = A(a, xM ∧ x ∧ a) = A(a, x ∧ a) = A(a, a) = 1
⇒ A(a, xM ∧ a) > 0 for xM ∈ MA.

Hence a is MA− amicable, as a is MA− amicable then there exists a smallest
element aM such that A(a, aM ∧ a) > 0 and hence A(aM , xM ) > 0 by Corollary
3.2 as aM is smaller than xM . �
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Corollary 3.3. Let MA be a maximal set in a GADFL (R,A) and x ∈ R be
MA− amicable. Then xM is the largest element of MA with the property A(xM ,
x ∧ xM ) > 0.

Proof. Suppose x ∈ R is MA− amicable. There exists c ∈ MA such that A(x,
c ∧ x) > 0. Now let b = x ∧ c, since x ∧ c 6 c then b = x ∧ c ∈ MA. Hence by
Lemma 3.5(1), A(x, b∧ x) > 0. On the other hand by Corollary 3.2, we have A(x,
xM ∧ x) > 0 for xM ∈ MA. Since both xM , b ∈ MA ⇒ b ∼A xM .

Claim: A(b, xM ) > 0.

A(b ∧ xM , b) = A(xM ∧ b, b) = A(xM ∧ x ∧ c, b) = A(x ∧ c, b) = A(b, b) = 1.

Hence A(b ∧ xM , b) > 0. Similarly, A(b, b∧ xM ) > 0. Then by antisymmetry
property of A we have

b ∧ xM = b ⇒ b 6 xM ⇒ A(b, xM ) > 0 ... (⋆)
Hence xM is the largest. To show A(xM , x ∧ xM ) > 0. Since A(x, b ∧ x) > 0 and
A(x, xM ∧ x) > 0 for b, xM ∈ M . Then by Corollary 3.2, xM is the smallest.

⇒ xM 6 b ⇒ A(xM , b) > 0 ... (⋆⋆)
From (⋆), (⋆⋆) and antisymmetry property of A, we have xM = b = x ∧ c. Now,

A(xM , x ∧ xM ) = A(xM , c ∧ x ∧ xM ) = A(xM , x ∧ c ∧ xM )

= A(xM , xM ∧ xM ) = A(xM , xM ) = 1.

Hence A(xM , x ∧ xM ) > 0. �

Corollary 3.4. Let MA be a maximal set in a GADFL (R,A) and x ∈ R be
MA− amicable. Then for any a ∈ R, A(x, a ∧ x) > 0 and A(a, x ∧ a) > 0 if and
only if a is MA− amicable and A(xM , aM ) > 0 and A(aM , xM ) > 0.

Now we prove the following.

Theorem 3.2. Let MA be a maximal set in a GADFL (R,A) and x ∈ R be
MA− amicable. Then xM is the unique element of MA such that

A(xM , x∧ xM ) > 0 and A(x, xM ∧x) > 0.

Proof. Let x ∈ R be MA− amicable. Then there exists xM ∈ MA such that
A(x, xM ∧x) > 0 and A(xM , x∧ xM ) > 0 by Corollary 3.2 and Corollary 3.3. Let
b ∈ MA such that A(x, b ∧ x) > 0 and A(b, x ∧ b) > 0.

Claim: b = xM .
Now, b ∈ MA, A(x, b ∧ x) > 0 ⇒ A(xM , b) > 0 by Corollary 3.2 and b ∈ MA,
A(b, x ∧ b) > 0 implies A(b, xM ) > 0 by Corollary 3.3. Hence A(xM , b) > 0 and
A(b, xM ) > 0 implies b = xM . �

Definition 3.4. Let (R,A) be a GADFL. Then (R,A) is said to be associative
if the operation ∨ in R is associative.

If MA is a maximal set in a GADFL (R,A), then we denote the set of all MA−
amicable elements of R by MA(R).
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Theorem 3.3. Let MA be a maximal set in a GADFL (R,A). Then
(MA(R), A) is a sub GADFL of (R,A). More over, if (R,A) is associative then for
any x, y ∈ R, we have

A((x ∨ y)M , xM ∨ yM ) > 0 and A(xM ∨ yM , (x ∨ y)M ) > 0 and

A((x ∧ y)M , xM ∧ yM ) > 0 and A(xM ∧ yM , (x ∧ y)M ) > 0.

Proof. Let x, y ∈ MA(R).
WTS: x ∨ y, x ∧ y ∈ MA(R) Now, x, y ∈ MA(R) ⇒ x, y are MA− amicable

elements of R. Then there exist xM , yM ∈ M such that A(x, xM ∧x) > 0 and
A(y, yM ∧y) > 0.

Claim: (i) A(x ∨ y, (xM ∨ yM ) ∧ (x ∨ y)) > 0.

(ii) A(x ∧ y, (xM ∧ yM ) ∧ (x ∧ y)) > 0.

(i). A(x ∨ y, (xM ∨ yM ) ∧ (x ∨ y))
= A(x ∨ y, {(xM ∨ yM ) ∧ x} ∨ {(xM ∨ yM ) ∧ y})
= A(x ∨ y, {(xM ∨ yM ) ∧ xM ∧ x} ∨ {(xM ∨ yM ) ∧ yM ∧ y})
= A(x ∨ y, {xM ∧ x} ∨ {(xM ∨ yM )} ∧ yM ∧ y)
= A(x ∨ y, x ∨ {(xM ∨ yM )} ∧ yM ∧ y)
= A(x ∨ y, x ∨ {(yM ∨ xM )} ∧ yM ∧ y)
= A(x ∨ y, x∨ (yM ∧ y))
= A(x ∨ y, x ∨ y)
= 1.

Hence A(x ∨ y, (xM ∨ yM ) ∧ (x ∨ y)) > 0.
(ii)

A(x ∧ y, (xM ∧ yM ) ∧ (x ∧ y)) = A(x ∧ y, xM ∧ yM ∧ x ∧ y) .

= A(x ∧ y, xM ∧ x ∧ yM ∧ y)

= A(x ∧ y, x ∧ y)

= 1

Hence A(x∧ y, (xM ∧ yM ) ∧x ∧y) > 0. Therefore (MA(R), A) is a sub GADFL of
(R,A).

Suppose (R,A) is associative and x, y ∈ MA(R). Then,
A(xM ∨ yM , (x ∨ y) ∧ (xM ∨ yM ))

= A(xM ∨ yM , {(x ∨ y) ∧ xM} ∨ {(x ∨ y) ∧ yM})
= A(xM ∨ yM , {(x ∨ y) ∧ x ∧ xM} ∨ {(x ∨ y) ∧ yM})
= A(xM ∨ yM , {x ∧ xM} ∨ {(x ∨ y) ∧ yM})
= A(xM ∨ yM , xM ∨ {(x ∨ y) ∧ yM})
= A(xM ∨ yM , {xM ∨ (x ∨ y)} ∧ (xM ∨ yM ))
= A(xM ∨ yM , {(xM ∨ x) ∨ y} ∧ (xM ∨ yM ))
= A(xM ∨ yM , (xM ∨ y) ∧ (xM ∨ yM ))
= A(xM ∨ yM , xM ∨ (y ∧ yM ))
= A(xM ∨ yM , xM ∨ yM )
= 1.

Hence A(xM ∨yM , (x∨y)∧(xM ∨yM )) > 0. Also, A(x∨y, (xM ∨yM )∧(x∨y)) > 0.
Since by Theorem 3.2, (x∨y)M is the unique element of MA such that A((x∨y)M ,
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(x ∨ y) ∧ (x ∨ y)M ) > 0 and A(x ∨ y, (x ∨ y)M ∧ (x ∨ y)) > 0. Hence we have
(x ∨ y)M = xM ∨ yM . Therefore A((x ∨ y)M , xM ∨ yM ) > 0 and A(xM ∨ yM ,
(x ∨ y)M ) > 0. Similarly,

A(xM ∧ yM , (x ∧ y) ∧ (xM ∧ yM )) = A(xM ∧ yM , x ∧ y ∧ xM ∧ yM )

= A(xM ∧ yM , x ∧ xM ∧ y ∧ yM )

= A(xM ∧ yM , xM ∧ yM )

= 1

Hence A(xM ∧yM , (x∧y)∧(xM ∧yM )) > 0. Also, A(x∧y, (xM ∧yM )∧(x∧y)) > 0.
Since by Theorem 3.2, (x∧y)M is the unique element of MA such that A((x∧y)M ,
(x∧y)∧(x∧y)M ) > 0 and A(x∧y, (x∧y)M ∧(x∧y)) > 0. Hence we have (x∧y)M

= xM ∧ yM . Therefore

A((x ∧ y)M , xM ∧ yM ) > 0 and A(xM ∧ yM , (x ∧ y)M ) > 0.

�

Proposition 3.2. Let MA be a maximal set, x, y ∈ R be MA− amicable and
x ∼A y. Then A(xM , yM ) > 0 and A(yM , xM ) > 0 if and only if A(x, y) > 0 and
A(y, x) > 0.

Proof. (⇒) Suppose A(xM , yM ) > 0 and A(yM , xM ) > 0.

Claim: A(x, y) > 0 and A(y, x) > 0. Now,

A(x, x ∧ y) = A(x, y ∧ x)

= A(x, yM ∧ y ∧ x).....⌈A(y, yM ∧ y) > 0, A(yM ∧ y, y) > 0⌋
= A(x, y ∧ yM ∧ x)

= A(x, yM ∧ x)

= A(x, xM ∧ x)

= A(x, x)

= 1.

Hence A(x, x ∧ y) > 0. Similarly A(x ∧ y, x) > 0. Hence we have x ∧ y = x and
then A(x, y) > 0. Again,

A(y, y ∧ x) = A(y, x ∧ y)

= A(y, xM ∧ x ∧ y)

= A(y, x ∧ xM ∧ y)

= A(y, xM ∧ y)

= A(y, yM ∧ y)

= A(y, y)

= 1

Hence A(y, y ∧ x) > 0. Similarly A(y ∧ x, y) > 0. Then x ∧ y = y and hence
A(y, x) > 0.
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(⇐) Suppose A(x, y) > 0 and A(y, x) > 0

A(xM , xM ∧ yM ) = A(xM , yM ∧ xM ).....⌈xM , yM ∈ MA ⇒ xM ∼A yM⌋
= A(xM , y ∧ yM ∧ xM )

= A(xM , yM ∧ y ∧ xM )

= A(xM , y ∧ xM )

= A(xM , x ∧ xM )

= A(xM , yM )

= 1.

Hence A(xM , xM ∧ yM ) > 0. Similarly A(xM ∧ yM , xM ) > 0. Then xM ∧ yM =
xM and hence A(xM , yM ) > 0. By similar approach as above we can obtain A(xM ,
yM ) > 0. �

Now we prove that there exist an isomorphism between any two amicable sets
in an associative GADFL.

Theorem 3.4. Let (R,A) be an associative GADFL. Let MA be a maximal

set and M ′
A is an amicable set in a GADFL (R,A). Then the mapping a → aM

′

is an isomorphism of the distributive fuzzy lattice (MA, A) in to the distributive
fuzzy lattice (M ′

A, A). Further if MA is also amicable then the above mapping is
surjective.

Proof. Define f : MA → M ′
A by f(a) = aM

′
for all a ∈ MA. To show f is

homomorphism. Let a, b ∈ MA, then

A(f(a ∨ b), f(a) ∨ f(b)) = A((a ∨ b)M
′
, f(a) ∨ f(b))

= A(aM
′
∨ bM

′
, f(a) ∨ f(b))......⌈by Theorem 3.3⌋

= A(f(a) ∨ f(b), f(a) ∨ f(b))

= 1

Hence A(f(a ∨ b), f(a) ∨ f(b)) > 0. Similarly, A(f(a) ∨ f(b), f(a ∨ b)) > 0.

A(f(a ∧ b), f(a) ∧ f(b)) = A((a ∧ b)M
′
, f(a) ∧ f(b))

= A(aM
′
∧ bM

′
, f(a) ∧ f(b))......⌈by Theorem 3.3⌋

= A(f(a) ∧ f(b), f(a) ∧ f(b))

= 1

Hence A(f(a ∧ b), f(a) ∧ f(b)) > 0. Similarly, A(f(a) ∧ f(b), f(a) ∧ f(b)) > 0.
Therefore f is homomorphism. To show f is one-to-one,
Let a, b ∈ MA such that A(f(a), f(b)) > 0 and A(f(b), f(a)) > 0. Then A(aM

′
,

bM
′
) > 0 and A(bM

′
, aM

′
) > 0. Hence A(a, b) > 0 and A(b, a) > 0 by proposition

3.2. Therefore f is one-to-one. Suppose MA is also amicable. Let x ∈ M
′

A. Then
x ∈ R, hence there exists xM ∈ MA such that A(x, xM ∧x) > 0 and A(xM , x∧ xM )
> 0 by theorem 3.2. On the other hand xM ∈ MA implies xM ∈ R, then there exists
(xM )M

′ ∈ M
′

A such that A(xM , (xM )M
′ ∧ xM ) > 0 and A((xM )M

′
, xM ∧ (xM )M

′
)
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> 0. Therefore A(x, (xM )M
′
) > 0 and A((xM )M

′
, x) > 0 by Theorem 3.2. That

is for xM ∈ R, there exists a unique x = (xM )M
′ ∈ M

′

A with the above property.

Hence, A(f(xM ), x) = A((xM )M
′
, x) > 0 and A(x, f(xM )) = A(x, (xM )M

′
) > 0.

Therefore f is surjective. �
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