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ON A (k,u)-PARACONTACT MANIFOLDS
SATISFYING CERTAIN CONDITIONS ON
QUASI-CONFORMAL CURVATURE TENSOR

Pakize Uygun and Mehmet Atceken

ABSTRACT. In the present paper, we have studied the curvature tensors of
(k,p1)-Paracontact manifold satisfying the conditions C(X,Y)-P = 0, C(X,Y)-
R =0, 6(X, Y)- Z =0 and 5()(, Y) .S = 0. According these cases, (k, u)-
Paracontact manifolds have been characterized.

1. Introduction

After being introduced by Kaneyuki and Williams [7], a systematic study of
paracontact metric manifolds and their subclasses was carried out by Zamkovoy
[13]. Subsequently, many geometers have studied paracontact metric manifolds
and obtained various important properties of these manifolds. Paracontact metric
manifols have been studied from different points of view. The geometry of paracon-
tact metric manifolds can be related to the theory of Legendre foliations. In [5], the
author introduced the class of paracontact metric manifolds for which the charac-
teristic vektor field £ belongs to the (k, 1)—nullity condition for some real constant
k and p. Such manifolds are known as (k, u)—paracontact metric manifolds. The
class of (k, u)—paracontact metric manifolds contains para-Sasakian manifolds.

C. Ogzgiir and U.C. De researced some certain curvature conditions satisfy-
ing quasi-conformal curvature tensor in Kenmotsu manifolds [8]. K. Yano and S.
Sawaki introduced the notion of quasi-conformal curvature tensor which is general-
ization of conformal curvature tensor [11]. It plays an important role in differential
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geometry as well as in theory of relativity. M. Atgeken studied generalized Sasakian
space form satisfying certain conditions on the concircular curvature tensor [2].
U.C. De, J.B. Jun and A.K. Gazi searched Sasakian manifolds with quasi-conformal
curvature tensor [6]. A. Hosseinzadeh and A. Taleshian produced conformal and

quasi-conformal curvature tensors of an N(k)—quasi Einstein manifold [9].
Motivated by the studies of the above authors, in this paper we classify (k, u)-

paracontact manifolds, which satify the curvature conditions C(X,Y) - P = 0,

C(X,Y)-R=0,C(X,Y)-Z=0and C(X,Y)-S =0, where C, P, R, Z and S
denote the quasi conformal, projective, Riemannian, concircular and Ricci tensors
of manifold, respectively.

2. Preliminaries

A contact manifold is a C° — (2n + 1) dimensional manifold M?"*! equipped
with a global 1-form 7 such that n A (dn)® # 0 everywhere on M?"*1. Given
such a form 7, it is well known that there exists a unique vector field &, called the
characteristic vector field, such that n(§) = 1 and dn(X,£) = 0 for every vector
field X on M?"*!. A Riemannian metric g is said to be associated metric if there
exists a tensor field ¢ of type (1,1) such that

(2.1) $’X =X —n(X)§, =1, no¢p=0, P =0,

(2.2) 9(dX,0Y) = —g(X,Y) +n(X)n(Y), g(X,§) =n(X)

for all vector fields X,Y on M. Then the structure (¢,£,7,g) on M is called a
paracontact metric structure and the manifold equipped with such a structure is
called a almost paracontact metric manifold [13].

We now define a (1,1) tensor field h by h = %quﬁ, where L denotes the Lie
derivative. Then A is symmetric and satisfies the conditions

(2.3) h¢ = —oh, h& =0, Tr.h =Tr.¢gh = 0.
If V denotes the Levi-Civita connection of g, then we have the following relation
(2.4) Vx€ = —¢X + ¢hX

for any X € y(M)[13]. For a para-contact metric manifold M?"T1(¢,&,n,g), if
¢ is a killing vector field or equivalently, h = 0, then it is called a K-paracontact
manifold.

A para-contact metric structure (¢,£,n, g) is normal, that is, satisfies
(¢, ¢] +2dn® § =0,
which is equivalent to
(Vx@)Y = —g(X, V) +n(YV)X

for all X,Y € x(M) [13]. If an almost paracontact metric manifold is normal,
then it called paracontact metric manifold. Any para-Sasakian manifold is K-
paracontact, and the converse is true when n = 1, that is, for 3-dimensional spaces.
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Any para-Sasakian manifold satisfies
(2.5) R(X,Y)§ = -(n(Y)X —n(X)Y)

forall X, Y € x(M), but this is not a sufficient condition for a para-contact manifold
to be para-Sasakian. It is clear that every para-Sasakian manifold is K-paracontact.
But the converse is not always true [4].

A paracontact manifold M is said to be n-Einstein if its Ricci tensor S of type
(0,2) is of the from

S(X,Y) = ag(X,Y) + bn(X)n(Y),
where a,b are smooth functions on M. If b = 0, then the manifold is also called
Einstein [10].
A paracontact metric manifold is said to be a (k, u)—paracontact manifold if
the curvature tensor R satisfies

(2.6) R(X,Y)§ =k[n(Y)X —n(X)Y]+ p[n(Y)hX = n(X)hY]
for all X,Y € x(M), where k and u are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the
paracontact metric manifolds satisfying R(X,Y)¢ = 0 [14].

In particular, if 4 = 0, then the paracontact metric (k, u)—manifold is called
paracontact metric N (k)-mani- fold. Thus for a paracontact metric N (k)-manifold
the curvature tensor satisfies the following relation

(2.7) R(X,Y)§ = k(n(Y)X —n(X)Y)

for all X,Y € x(M). Though the geometric behavior of paracontact metric (k, u1)-
spaces is different according as k < —1, or k£ > —1, but there are also some common
results for k < —1 and k > —1.

LEMMA 2.1 ([5]). There does not exist any paracontact (k,u)—manifold of
dimension greater than 3 with k > —1 which is Einstein whereas there exits such
manifolds for k < —1

In a paracontact metric (k, u)—manifold (M?"*1¢,£,m,g), n > 1, the following
relation hold:

(2.8) h? = (k4 1)¢?, for k # —1,
(2.9) (Vx@)Y = —g(X — hX,Y)E+n(Y)(X - hX),
S(X,Y) = [2(1—n)+nplg(X,Y) +[2(n — 1) + plg(hX,Y)
(2.10) +[2(n = 1) + n(2k — (X )n(Y),
(2.11) S(X, &) = 2nkn(X),
QY = [2(1—n)+nuY +[2(n—1) 4 plhY

(2.12) +2(n = 1) +n(2k — w)n(Y )¢,
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(2.13) Q¢ = 2nke,
(2.14) Qo — ¢Q =2[2(n — 1) + plhe

for any vector fields X,Y on M?"+! | where Q and S denotes the Ricci operator
and Ricci tensor of (M?"*1 g), respectively [5].

The concept of quasi-conformal curvature tensor was defined by K. Yano and S.
Sawaki [11]. Quasi-conformal curvature tensor of a (2n+1)-dimensional Riemanian
manifold is defined as

C(X,Y)Z = aR(X,Y)Z+b[S(Y,2)X —S(X,2)Y
+9(Y, 2)QX — g(X, Z)QY]
T a
— 4+ 2bl[g(Y, 2)X —g(X,2)Y
o 1 1l2, T 2V, 2)X — (X, Z)Y]
where a and b are arbitrary scalars, and r is the scalar curvature of the manifold, Q,
S and r denote the Ricci operator, Ricci tensor and scalar curvature of manifold,
respectively [5].
Let (M, g) be an (2n + 1)-dimensional Riemanian manifold. Then the concir-

(2.15) -

cular curvature tensor Z and the projective tensor P are

(2.16) Z(X,Y)Z = R(X,Y)Z — m[g(}/, 2)X — g(X, 2)Y],
(2.17) P(X,Y)Z = R(X,Y)Z — %[S(Y, Z)X - 5(X, Z)Y),

for all X|Y,Z € x(M), where r is the scalar curvature of M and @ is the Ricci
operator given by ¢(QX,Y) = S(X,Y) [10].

3. An (k,u)— Paracontact Metric Manifold Satisfying Certain
Conditions On The Quasi-Conformal Curvature Tensor

In this section, we will give the main results for this paper.

Let M be a (2n+ 1)—dimensional (k, u)—paracontact metric manifold and we
denote the Riemannian curvature tensor of R, from (2.6), we have for later

(3.1) R(&Y)E = k(n(Y)E — Y) — phY.
In the same way, choosing X = ¢ in (2.15) and (2.6), we have

CE,Y)VZ = (ak+2nkb — m(% +2b)(g(Y, 2)¢ — n(2)Y)
(3.2) +ap(g(hY, Z)§ —n(Z)hY') + b(S(Y, 2)§ —n(Z)QY)

In (3.2), choosing Z = ¢ and using (2.11), we obtain

) g T WE=Y)

(3.3) —aphY + b(2nkn(Y )€ — QY).

CEY)E = (ak+2nkb—
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In same way from (2.6) and (2.16), we get
)(n(Y)X = n(X)Y) + p(n(Y)hX —n(X)hY),

(34) Z(X,Y)¢ = (k— @ T

from which

(3.5) 26 = (h= 5oy
From (2.6) and (2.17), we have

(3.6) P(X,Y)€ = pn(Y)hX —n(X)RY).
Choosing X = ¢ in (3.6), we obtain

(3.7) P(€,Y)¢ = —uhY.
THEOREM 3.1. Let M?*"TY(¢,&,n,9) be a (k,u)-paracontact space. Then

C(X,Y)-Z =0 if and only if M is an n-Einstein manifold.

J(n(Y)§ = Y) — uhY.

PROOF. Suppose that CN'(X7 Y)- Z = 0. This implies that

CX,Y)Z)UW)Z = CX,Y)Z(UW)Z— Z(C(X,Y)U,W)Z
(3.8) —Z(U,C(X,YYW)Z — Z(U,W)C(X,Y)Z =0,
for any X,Y,U, W, Z € x(M). Taking X = Z = £ in (3.8), making use of (3.2) and
(3.4) we have for A = [ak + 2nkb — m(ﬁ +2b)) and B=k — ererEsyiR
CEZ)UW)E = CEYNBOW)U = n@)W) + pln(W)RU — n(U)hW)
~Z(A(g(Y, U)¢ = n(U)Y) + ap(g(hY,U)& = n(U)RY)
+b(S(Y,U)E — n(U)QY, W)E — Z(U, A(g(Y, W)€
—n(W)Y) + ap(g(hY, W)§ — n(W)LY) + b(S(Y, W)§
—n(W)QY )& — Z(U,W)(A(n(Y)é = Y) — aphY
(3.9) +b(2nkn(Y )¢ — QY)) = 0.
Taking into account (3.2), (3.4), (3.5) and inner product both sides of (3.9) by
Z € x(M), we obtain
Ag(Z(U, W)Y, Z) + apg(Z(U, W)LY, Z) + bg(Z(U, W)QY, Z)
+Ap(n(W)n(2)g(Y, hU) —n(U)n(Z)g(Y,hW))
+ap®(1+ k) (n(W)n(2)g(Y,U) — n(U)n(Z)g(Y,W))
+bu(n(W)n(2)S(Y, hU) — n(U)n(Z)S(Y, hW))
+AB(g(Y,U)g(W, Z) — g(Y,W)g(U, 2))
+Ap(g(Y,U)g(hW. Z) — g(Y,W)g(hU, Z))
+auB(g(hY,U)g(W, Z) — g(hY,W)g(U, Z))
+ap*(g(hY, U)g(hW, Z) — g(hY, W)g(hU, Z))
+Bb(S(Y,U)g(W, Z) — S(Y,W)g(U, Z))
(3.10) +ub(S(Y,U)g(hW, Z) — S(Y,W)g(hU, Z)) = 0.
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Using (2.1), (2.12) and (2.16) and choosing W =Y =e;, £ in (3.10), 1 < i < n, for
orthonormal basis of x (M), we arrive
(A+0b[2(1 —n) +nu] + kb)S(U, Z) + (ap + b[2(n — 1) + 4]
—ub)S(U,hZ) + (bk[2(n — 1) + n(2k — )] — 2nkA
—kbr + ap®(1 + k))g(U, Z) + (Ak — AB + bu[2(n — 1)
+n(2k — )] — pbr + apB — 2nAu)g(U, hZ)
—(bk[2(n — 1) + n(2k — p)] — Ap*(1 + k) (2n + 1)
(3.11) —2nbu(l + k)[2(n — 1) + p))n(U)n(Z) = 0.
Setting (2.8) and replacing hZ of Z in (3.11), we get
(A4 b[2(1 —n) 4+ nu] + kb)S(U,hZ) 4+ (1 + k)(ap
+b[2(n — 1) + p] — pub)S(U, Z) — 2nk(1 + k) (ap
+b[2(n — 1) + ] — ub)n(U)n(Z) + (bk[2(n — 1)
+n(2k — p)] — 2nkA — kbr + ap®(1 + k))g(U, hZ)
+(1+ k)(Ak — AB + bu[2(n — 1) + n(2k — p)]
—pbr +apuB — 2nAp)g(U, Z) — (1 + k)(Ak — AB
+bu[2(n — 1) + n(2k — p)] — pbr + apB
(3.12) —2nAp)n(U)n(Z) = 0.
From (3.11), (3.12) and also using (2.10), for the sake of brevity we set

c = (A+0b2(1 —n)+ nu| + kb),
d = (ap+b2(n—1)+ p] — ub),
= (bk[2(n — 1) 4+ n(2k — p)] — 2nkA — kbr + ap®(1 + k),
= (Ak— AB+bu[2(n — 1) +n(2k — p)] — pbr + auB — 2nAp),
t = —(bk[2(n—1)+n(2k — p)] — Ap*(1 +k)(2n + 1)

—2nbp(1 + k)[2(n — 1) + p))

Q)

~

and

E = (fd(1+k)—ec)2(n—1)+pu]l+ (fc—ed)[2(1 —n)+npyl,

D = (E—-d*(1+k)2n—1)+pu + (fc—de),

F = (fc—de)[2(n—1)+n(2k — p)]

—(ct + 2nkd*(1 + k) + fd(1 +k))[2(n — 1) + pl,
that is,
DS(U,Z)=Eg(U,Z)+ Fn(U)n(2).

Thus, M is an n—Einstein manifold. The converse is obvious. U

THEOREM 3.2. Let Mt (¢, &,n,9) be a (k,u)-paracontact space. Then
C(X,Y)-P =0 if and only if M is an n— Einstein manifold.
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PROOF. Suppose that C(X,Y) - P = 0. Then we have

(C(X,Y)P)UW)Z = C(X,Y)P(UW)Z—P(C(X,Y)UW)Z
(3.13) —P(U,C(X,Y)W)Z — P(U,W)C(X,Y)Z =0,

for any X, Y,U W, Z € x(M). Using X = Z = ¢ in (3.13) and using (3.2), (3.6) for

= [ak + 2nkb — +1)( + 2b)], we obtain

(CEY)P)UW)E = C(EY)(uln

(U)Y)+ (U

(S(Y,U)E — n(U)QY),W)E — P(U, A(g(Y, W)§

(W)Y) + ap(g(hY, W)€ — n(W)hY)

+b(S(Y, W)€ — n(W)QY))E
—P(U,W)(A(n(Y)é = Y) — auhY’

(3.14) +b(2nkn(Y)E —QY)) =0

Taking into account that (3.2), (3.6), (3.7) and inner product both sides of (3.14)
by Z € x(M), we get

(W)h

U —n(U)hW) — P(A(g(Y, U)¢
p(g(hY,U)§ —

)hY')

_|_

(€
=
b
-
b

Ag(P(U, W)Y, Z) + apg(P(U, W)LY, Z) + bg(P(U, W)QY, Z)
+Ap(n(W)n(2)g(Y,hU) — n(U)n(Z)g(Y, hW)
+ap®(1+ k) (n(W)n(2)g(Y,U) = n(U)n(Z)g(Y, W)
+opu(nW)n(Z)S(Y,hU) = n(U)n(Z)S(Y,hW))
+Au(g(Y,U)g(hW, Z) — g(Y,W)g(hU, Z))
+ap® (14 k) (g(hY, U)g(hW, Z) — g(hY, W)g(hU, Z))

(3.15) +bu(S(Y,U)g(hY,W) — S(Y,W)g(hY,U)) =0

Using (2.1), (2.17) and choosing W =Y = ¢;, &, for orthonormal basis of x(M) in
(3.15), 1 <i<n, weget

(A+0[2(1 —n) +nul + % + %[2(1 —n) +nu])SU, Z)

+(ap +b[2(n — 1) + p] + % + ;[Z(n — 1)+ p|+op)S(U,LZ)

Hap® (1K)~ 27— (1 + B0~ 1) + ]~ (201~ ) + g
=b[2(n — 1) + uJ(1 + k))g(U, Z)
+(bp[2(n — 1) +n(2k — p)] — 2nAp — bur)g(U, hZ)

(3.16)  +(—ap*(1 +k)(2n + 1) — 2nub(1 + k)[2(n — 1) + u))n(U)n(Z) = 0.
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Replacing hZ of Z in (3.16) and making use of (2.8), we get

(A+0[2(1 —n) + nu) + A + i[2(1 —n) +nu])S(U,hZ)

2n  2n
+(1+k)(ap+b[2(n — 1) + p] + % + %[2(71 — 1)+ p]+bu)S(U, 2)
—2nk(1 + k)(ap + b2(n — 1) + p] + % + %[2(71 — 1)+ pul+ou)n(U)n(2)
+(ap*(1+ k) — % —ap(l+E)2(n—1)+p] — %[2(1 —n) + nyl

=b[2(n — 1)+ p](1 4+ k))g(U,hZ) + (1 4 k) (bp[2(n — 1) + n(2k — p)]
—2nAg — bur)g(U, Z) — (1 + k) (bul2(n — 1) + n(2k — )

(3.17) —2nAp — bur)n(U)n(Z) = 0.

From (3.16), (3.17) and using (2.10), for the sake of brevity we put

¢ = (A0 —n) b npl+ o (21— ) + ),
d = (U R)ap b2~ 1)+ + 2 X a1 4+ o),
e = (ap*(1+k)— 124—7: —ap(l1+k)2(n—1)+ 4]
o (21— m) + ] — {2 — 1)+ 1+ ),
fo= (bp[2(n — 1) +n(2k — p)] — 2nAp — bur),
s = (—ap*(1+Ek)2n+1) = 2nub(1 + k)[2(n — 1) + p))
and
E = (fd1+k)—ec)2(n—1)+pu]+ (fc—ed)[2(1 —n) + ny],
D = (—=d*1+k)2(n—1)+pu]+ (fc— de),
F = (fc—de)2(n—1)+n(2k — p)] — (cs + 2nkd*(1 + k) + fd(1 + k))[2(n — 1) + 4]
we infer

DS(U,Z) = Eg(U, Z) + Fn(U)n(Z),

So, M is an n-Einstein manifold. The converse is obvious. This completes of the
proof. O

THEOREM 3.3. Let M?*"TY(¢,&,n,9) be a (k,p)-paracontact space. Then
C(X,Y)-R=0 if and only if M is an n— Einstein manifold.

PROOF. Suppose that 5’(X, Y) - R = 0. This means that

(C(X,V)R)(UW)Z = C(X,Y)RUW)Z—R(C(X,Y)U,W)Z
(3.18) —R(U,C(X,Y)W)Z — R(UW)C(X,Y)Z =0,
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for any X,Y,U, W, Z € x(M). Setting X = Z = £ in (3.18) and making use of (2.6),
(3.2), (3.3), for A = [ak + 2nkb — + 2b)], we obtain

(2n+1)(
(CEYIR(UW)E = CEY)(k(n(W)U = n(U)W) + u(n(W)hU

=n(U)hW) — R(A(g(Y,U)§ = n(U)Y')
+ap(g(hY,U)¢ —n(U)hY +b(S(Y,U)
—n(U)QY),W)§ — R(U, A(g(Y,W)§ — n(W)Y)
+ap(g(hY, W)€ — n(W)RY) + b(S(Y, W)
—n(W)QY)§ — R(U,W)(A(n(Y)§ - Y)

(3.19) —aphY + b(2nkn(Y)€ — QY)) = 0.

Inner product both sides of (3.19) by Z € x(M) and using of (2.6), (3.1) and (3.3)
we get

Ag(R(U, W)Y, Z) + apg(R(U, W)LY, Z) + bg(R(U, W)QY, Z)
+Apu(m(W)n(2)g(Y, hU) — n(U)n(Z)g(Y,hW))
+ap? (1L + k) (n(W)n(Z)g(Y,U) = n(U)n(Z)g(Y, W)
+ou((W)n(Z2)S(Y, hU) — n(U)n(Z)S(Y, hW))
+Ak(g(Y,U)g(W, Z) — g(Y, W)g(U, Z))
+Au(g(Y,U)g (hW Z) —g(Y,W)g(hU, Z))
+bk(g(Y,U)S(W, Z) — g(Y,W)S(U, Z))
+ou(g(hW, Z)S(Y,U) — g(hU, Z)S(Y, W)
+ap?(g(hY,U)g(hW, Z) — g(hY,W)g(hU, Z))

(3.20) +apk(g(hY,U)g(W, Z) — g(hY,W)g(U, Z)) = 0.

Making use of (2.8), (2.12) and choosing W =Y =¢;,§, 1 < i < n, for orthonormal
basis of x(M) in (3.20), we have

(A+b2(1 —n) +nu] +bk)S(U, Z) + (ap+b[2(n — 1) + p] + bu)S(U, hZ)
+(0k[2(n — 1) + n(2k — p)] — 2nkA + ap®(1 + k) — bkr)g(U, Z)
+(=bk[2(n — 1) +n(2k — p)] — ap*(1 + k)(2n + 1)

—2nbp(1+ B)[2(n — 1) + p)n(U)n(2)

(3.21) +(bp[2(n — 1) + n(2k — p)] — pbr + apk — 2nAp)g(U,hZ) =
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Replacing hZ of Z in (3.21) and taking into account (2.8), we get
(A+0b[2(1 —n) +nu]+ bk)S(U,hZ) + (1 + k) (ap + b[2(n — 1) + ]
+bp)S(U, Z) — (14 k)(ap + b[2(n — 1) + p] + bp)n(U)n(Z)
+(bk[2(n — 1) + n(2k — p)] — 2nkA + ap®(1 + k) — bkr)g(U, hZ)
+(1+ k) (bu[2(n — 1) + n(2k — p)] — pbr + apk — 2nAp)g(U, Z)

(3.22) —(1+4+k)(bu2(n —1) +n(2k — p)] — pbr + apk — 2nAp)n(U)n(Z) = 0.

From (3.21), (3.22) and by using (2.10), for the sake of brevity we set

¢ = (A+0b[2(1 —n)+ nu| + bk),

d = (ap+b2(n —1) + p] +bp),

e = (bk[2(n — 1) +n(2k — p)] — 2nkA + ap®(1 + k) — bkr),
(=bk[2(n — 1) + n(2k — )] — ap®(1 + k)(2n 4+ 1) — 2nbu(1 + k)[2(n — 1) + 4),
(bp2(n — 1) + n(2k — p)] — pbr + apk — 2nAp)

t =

and

E = (td(1+k)—ec)2(n—1)+ p]+ (tc — ed)[2(1 — n) + npyl,

D = (—-d*(1+k)[2(n—1)+ pu] + (tc — de),

F = (tc—de)[2(n — 1)+ n(2k — )] — (cf + 2nkd*(1 + k) +td(1 + k))[2(n — 1) + ]

This implies,
DS(U,V) = Eg(U, Z) + Fn(U)n(Z),
which verifies our assertion. The converse is obvious. O

THEOREM 3.4. Let M?*"TY($,&,n,9) be a (k,u)-paracontact space. Then
C(X,Y)-S =0 if and only if M is an n—Einstein manifold.

PROOF. Suppose that C(X,Y)- S = 0. This means that

(3.23) S(C(X,Y)U,W)+ SU,C(X,Y)W)=0

for any X, Y, U, W € x(M). Setting X = ¢, in (3. 23) and making use of (3.2), for
r

we obtain

S(Ag(Y,U)E = n(U)Y) + au(g(hY,U)§ — n(U)hY
Fo(S(Y,U) = n(U)QY ), W)¢§ — S(U, A(g(Y,W)§ —n(W)Y)
(3.24) +ap(g(hY, W)E —n(W)hY) + b(S(Y, W)§ — n(W)QY)E = 0
Taking U = ¢ in (3.24) and using (2.12), we reach at
(2nkb— A —b2(1 —n) +nu))S(Y,W) + (—ap — b[2(n — 1)
+u))S(Y, hW) + 2nkAg(Y, W) + 2nkaug(Y, hW)
(3.25) +(—2nkb2(n — 1) + n(2k — w))n(Y)n(W) = 0.
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Replacing hW of W in (3.25) and taking into account (2.8), we get
(2nkb— A —b[2(1 —n) + nu))S(Y,AW) + (1 + k) (—ap
=b2(n — 1)+ u)SY, W) — (1 4+ k)(—ap —b[2(n — 1)
+u))n(Y)n(W) + 2nkAg(Y, hW) + 2nkap(1 + k)g(Y, W)

(3.26) —2nkap(1 + k)n(Y)n(W) = 0.
From (3.25), (3.26) and by using (2.10), for the sake of brevity we set
¢ = (2nkb— A —0b[2(1 —n) + npul),
4 = (-ap—b2n—1)+ ),
e = (—2nkb2(n—1)+n(2k — pn)]),
and
E = [2nkapd(l+k)— Ac][2(n — 1)+ p] — 2nk(Ad — apc)2(1 — n) + nyl,
D = (A—-d*(1+k)2(n—1)+pu] —2nk(Ad — apuc),
F = —(ce+2nkd*(1+k)+ 2nkapd(1+ k))[2(n — 1) + ]

+2nk(Ad — apc) — [2(n — 1) + n(2k — p)]

then, we have
DS(Y,W) = Eg(Y,W) + Fn(Y)n(W).

This tell us, M is an n-Einstein manifold. The converse is obvious. O
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