DISTANCE MATRIX AND ENERGY OF SEMIGRAPH

Surajit Kr. Nath, Ivan Gutman, and Ardhendu Kumar Nandi

Abstract

Let S be a semigraph. A definition of distance between the vertices of S is offered, for which the distance matrix of S is symmetric. The distance energy of S is defined as the sum of absolute values of the eigenvalues of the distance matrix. A few results on distance energy and distance-spectral radius of semigraphs of diameter 2 are established.

1. Introduction

Semigraphs are a kind of compromise between of the concept of hypergraphs [2] and graphs [8], or a kind of generalization of graphs. A semigraph S is defined [15] as an ordered pair (\mathbf{V}, \mathbf{E}), where $\mathbf{V}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a non-empty (usually finite) set of elements called vertices of S, whereas $\mathbf{E}=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is a set of ordered k-tuples of distinct vertices, called the edges of S. Each edge consists of a k-tuple of vertices, for various values of $k \geqslant 2$, satisfying the following conditions:
(a) Two edges have at most one vertex in common.
(b) Two edges $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{q}\right)$ are considered to be sam if and only if $p=q$ and either $x_{i}=y_{i}$ for $1 \leqslant i \leqslant p$ or $x_{i}=y_{p+1-i}$ for $1 \leqslant i \leqslant p$.

Definition 1.1. Two vertices of a semigraph are adjacent if they belong to the same edge. The distance of such two vertices is equal to 1 .

Definition 1.2. Two edges of a semigraph are incident if they they have a common vertex.

Definition 1.3. Let $e_{1}, e_{2}, \ldots, e_{t}, t \geqslant 2$, be distinct (mutually different) edges of a semigraph S, such that for $i=1,2, \ldots, t-1$, the edges e_{i} and e_{i+} are incident.

[^0]Then these edges form a path in S, connecting the edges e_{1} and e_{t}, whose length is t.

Definition 1.4. A semigraph is said to be connected if for any two of its edges there is a path connecting any them.

Definition 1.5. Let $e_{1}, e_{2}, \ldots, e_{t}, t \geqslant 2$, be a shortest path of the semigraph S, connecting the edges e_{1} and e_{t}. Then the distance between the vertices belonging to e_{1}, but not to e_{2}, and the vertices belonging to e_{t}, but not to e_{t-1}, is t. If S is a connected semigraph, then the distance is well defined between any pair of its vertices.

The distance between the vertices u and v of the semigraph S will be denoted by $d_{S}(u, v)$.

At this point it should be noted that Definitions 1.1-1.5 are just one of the several possibilities that exist within the theory of semigraphs (for details see [15]). Based on the presently chosen distance between vertices (cf. Definitions 1.1 and 1.5), the distance matrix considered below will be symmetric, and its eigenvalues real-valued.

2. Matrix representations of semigraphs

The adjacency matrix of a semigraph S of order n is the square matrix $\mathbf{A}(S)=$ [$a_{i j}$] of order n whose elements are determined as follows [5]:

Definition 2.1. Let the vertex set of S be $\mathbf{X}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $e_{i}=$ $\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right), \quad i=1,2, \ldots, m$, be the edges of S, and recall that the value of k differs for different i. Then for $i=1,2, \ldots, m$, for $\ell=1,2, \ldots, k, a_{1, \ell}=\ell-1$ and $a_{k, \ell}=k-\ell$. All other elements of $\mathbf{A}(S)$ are equal to zero.

Definition 2.1 was proposed by Deshpande et al. in 2017 [5] (see also an earlier work on this matter [4]). By means of it, the matrix $\mathbf{A}(S)$ is in a one-to-one correspondence with the semigraph S, i.e., reproduces all its structural details. Unfortunately, such a matrix is non-symmetric, having complex-valued eigenvalues. As a consequence, the energy of a semigraph cannot be defined in the usual manner, i.e., as the sum of absolute values of the eigenvalues of $\mathbf{A}(S)$ [7, 12]. Instead, in $[\mathbf{6}]$ the singular values of $\mathbf{A}(S)$ had to be employed. This creates a major shortcoming of the theory of semigraph energy, and significantly hinders its elaboration [6].

In order to avoid difficulties of this kind, we propose the following definition of the distance matrix $\mathbf{D}(S)=\left[d_{i j}\right]$ of a semigraph S.

Definition 2.2. Let S be a connected semigraph with vertex set $\mathbf{X}=\left\{v_{1}, v_{2}\right.$, $\left.\ldots, v_{n}\right\}$. Then the distance matrix of S is the square matrix $\mathbf{D}(S)=\left[d_{i j}\right]$ of order n, whose (i, j)-element is equal to $d_{S}\left(v_{i}, v_{j}\right)$, where the distance between vertices v_{i} and v_{j} is determined via Definitions 1.1-1.5. In addition, $d_{i i}=0$ for all $i=1,2, \ldots, n$.

According to Definition 2.2, the distance matrix is symmetric, and therefore its eigenvalues are real-valued numbers.

Example 2.1. Consider the 10 -vertex semigraph S whose four edges are $\left(v_{1}, v_{2}, v_{3}, v_{4}\right),\left(v_{2}, v_{5}, v_{6}\right),\left(v_{3}, v_{6}, v_{7}, v_{8}\right),\left(v_{8}, v_{9}, v_{10}\right)$. Then its distance matrix is:

$$
\mathbf{D}(S)=\left[\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 \\
1 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 \\
1 & 1 & 0 & 1 & 2 & 1 & 1 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 2 & 2 & 2 & 2 & 3 & 3 \\
2 & 1 & 2 & 2 & 0 & 1 & 2 & 2 & 3 & 3 \\
2 & 1 & 1 & 2 & 1 & 0 & 1 & 1 & 2 & 2 \\
2 & 2 & 1 & 2 & 2 & 1 & 0 & 1 & 2 & 2 \\
2 & 2 & 1 & 2 & 2 & 1 & 1 & 0 & 1 & 1 \\
3 & 3 & 2 & 3 & 3 & 2 & 2 & 1 & 0 & 1 \\
3 & 3 & 2 & 3 & 3 & 2 & 2 & 1 & 1 & 0
\end{array}\right]
$$

3. Distance spectrum and distance energy of semigraphs

The spectrum of the distance matrix of graphs has been extensively studied, see the survey $[\mathbf{1}]$ and the references cited therein. The distance energy of a graph, defined as the sum of absolute values of the eigenvalues of the distance matrix, was introduced in 2008 by Indulal et al. [9] and extensively studied since then, see the survey $[\mathbf{1 4}]$, the recent papers $[\mathbf{3}, \mathbf{1 0}, \mathbf{1 6}, \mathbf{1 7}]$, and the references cited therein.

Using the above defined distance matrix of a semigraph (Definition 2.2), the distance spectrum and distance energy of semigraphs can be conceived straightforwardly.

Let S be a connected semigraph, and $\mathbf{D}(S)$ its distance matrix. Denote by $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ its eigenvalues. These form the distance spectrum of S. Because $\mathbf{D}(S)$ is symmetric, the distance spectrum consists of real-valued numbers. Because the diagonal of $\mathbf{D}(S)$ is zero,

$$
\sum_{i=1}^{n} \mu_{i}=0
$$

In full analogy with the distance energy of a graph, the distance energy of a semigrah can now be defined as

$$
\begin{equation*}
E_{D}(S)=\sum_{i=1}^{n}\left|\mu_{i}\right| \tag{3.1}
\end{equation*}
$$

In what follows, we determine a few properties of $E_{D}(S)$ of semigraphs whose diameter is 2 .

4. Distance energy of diameter 2 semigraphs

Lemma 4.1. Let S be a connected semigraph of order n and diameter 2. Let $e_{1}, e_{2}, \ldots, e_{m}$ be the edges of S, and $\left|e_{i}\right|$ the number of vertices in e_{i}. Then

$$
\begin{equation*}
\sum_{i-1}^{n} \mu_{i}^{2}=4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2} . \tag{4.1}
\end{equation*}
$$

Proof. Since S has diameter 2, in its distance matrix there are $2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}$ elements equal to $1, n$ elements equal to 0 , and $n^{2}-n-2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}$ elements equal to 2. Therefore,

$$
\begin{aligned}
\sum_{i-1}^{n} \mu_{i}^{2} & =\sum_{i=1}^{n}\left(\mathbf{D}(S)^{2}\right)_{i i}=\sum_{i=1}^{n} \sum_{\ell=1}^{n} d(i, \ell) d(\ell, i)=\sum_{i=1}^{n} \sum_{\ell=1}^{n} d(i, \ell)^{2} \\
& =1^{2}\left[2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]+2^{2}\left[n^{2}-n-2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]
\end{aligned}
$$

resulting in Eq. (4.1).
Based on Lemma 4.1, applying a technique analogous to what McClelland used for estimating graph energy [13], we arrive at the following two theorems.

Theorem 4.1. Let S be a connected semigraph of order n and diameter 2. Using the notation from Lemma 4.1,

$$
\begin{equation*}
E D(S) \geqslant \sqrt{4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}+n(n-1)|\operatorname{det} \mathbf{D}(S)|^{2 / n}} \tag{4.2}
\end{equation*}
$$

with equality if and only if for all $1 \leqslant i<j \leqslant n, \quad\left|\mu_{i} \mu_{j}\right|=c$ for some fixed real number c.

Proof. In view of Lemma 4.1,

$$
\left(\sum_{i=1}\left|\mu_{i}\right|\right)^{2}=\sum_{i=1}^{n} \mu_{i}^{2}+\sum_{i \neq j}\left|\mu_{i}\right|\left|\mu_{j}\right|=4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}+\sum_{i \neq j}\left|\mu_{i} \mu_{j}\right| .
$$

The right-hand side summation in the above expression goes over $n(n-1)$ summands. Applying to it the geometric-arithmetic inequality, we get

$$
\begin{aligned}
& \sum_{i \neq j}\left|\mu_{i} \mu_{j}\right|=n(n-1)\left[\frac{1}{n(n-1)} \sum_{i \neq j}\left|\mu_{i} \mu_{j}\right|\right] \geqslant n(n-1) \prod_{i \neq j}\left|\mu_{i} \mu_{j}\right|^{1 / n(n-1)} \\
= & n(n-1) \prod_{i=1}^{n}\left|\mu_{i}\right|^{2 / n}=n(n-1) \operatorname{det}|\mathbf{D}(S)|^{2 / n} .
\end{aligned}
$$

This yields

$$
\left(\sum_{i=1}\left|\mu_{i}\right|\right)^{2} \geqslant 4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}+n(n-1)|\operatorname{det} \mathbf{D}(S)|^{2 / p}
$$

which by Eq. (3.1), directly implies the inequality (4.2).

Theorem 4.2. Using the same notation is in Theorem 4.1,

$$
\begin{equation*}
E_{D}(S) \leqslant \sqrt{4 n^{3}-4 n^{2}-6 n \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}} \tag{4.3}
\end{equation*}
$$

with equality if and only if for all $1 \leqslant i \leqslant n,\left|\mu_{i}\right|=c$ for some fixed real number c.
Proof. We start with the obvious relation

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\mu_{i}\right|-\left|\mu_{j}\right|\right)^{2} \geqslant 0 \tag{4.4}
\end{equation*}
$$

noting that equality holds if and only if all distance eigenvalues are mutually equal by absolute value. Expanding the left-hand side of (4.4), we get

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\mu_{i}\right|-\left|\mu_{j}\right|\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\mu_{i}^{2}+\mu_{j}^{2}-2\left|\mu_{i}\right|\left|\mu_{j}\right|\right) \\
= & n \sum_{i=1}^{n} \mu_{i}^{2}+n \sum_{j=1}^{n} \mu_{j}^{2}-2\left(\sum_{i=1}\left|\mu_{i}\right|\right)\left(\sum_{j=1}\left|\mu_{j}\right|\right)
\end{aligned}
$$

which by Eqs. (3.1) and (4.1) yields

$$
2 n\left[4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]-2 E_{D}(S)^{2} \geqslant 0
$$

from which (4.3) follows straightforwardly.
Lemma 4.2. Let the distance eigenvalues of the semigraph S be labeled as $\mu_{1} \geqslant$ $\mu_{2} \geqslant \cdots \geqslant \mu_{n}$. If S is connected of diameter 2, then

$$
\mu_{1} \geqslant \frac{2}{n}\left[n(n-1)-\sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right] .
$$

Proof. According to the Rayleigh-Ritz variational principle, if Ω is any n dimensional column vector, then

$$
\frac{\Omega^{T} \mathbf{D}(S) \Omega}{\Omega^{T} \Omega} \leqslant \mu_{1}
$$

Setting $\Omega=(1,1, \ldots, 1)^{T}$, we get

$$
\Omega^{T} \mathbf{D}(S) \Omega=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}=1 \cdot\left[2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]+2 \cdot\left[n^{2}-n-2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]
$$

since the distance matrix has $2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}$ elements equal to 1 and $n^{2}-n-$ $2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}$ elements equal to 2 . In addition, $\Omega^{T} \Omega=n$.

Lemma 4.2 follows.

Using Lemma 4.2, and following a proof technique invented by Koolen and Moulton [11] we obtain another upper bound for the distance energy of connected diameter 2 semigraphs.

Theorem 4.3. Using the same notation is in Theorems 4.1 and 4.2,

$$
\begin{aligned}
& E_{D}(S) \leqslant \frac{1}{n}\left[2 n(n-1)-2 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}+\right. \\
& \sqrt{2 n^{2}(n-1)\left[2 n(n-1)-3 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]-4(n-1)\left[n(n-1)-\sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right]^{2}}
\end{aligned}
$$

Proof. Applying the Cauchy-Schwarz inequality to the vectors $(1,1, \ldots, 1)$ and $\left(\left|\mu_{2}\right|,\left|\mu_{3}\right|, \ldots,\left|\mu_{n}\right|\right)$, we obtain

$$
\left(\sum_{i=2}^{n}\left|\mu_{i}\right|\right)^{2} \leqslant(n-1) \sum_{i=2}^{n} \mu_{i}^{2}
$$

from which, recalling that $\mu_{1}>0$,

$$
\left(E_{D}(S)-\mu_{1}\right)^{2} \leqslant(n-1)\left[\sum_{i=1}^{n} \mu_{i}^{2}-\mu_{1}^{2}\right]=(n-1)\left[4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}-\mu_{1}^{2}\right]
$$

i.e.,

$$
\begin{equation*}
E_{D}(S) \leqslant \mu_{1}+\sqrt{(n-1)\left[4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}-\mu_{1}^{2}\right]} . \tag{4.5}
\end{equation*}
$$

Consider now the function

$$
\begin{equation*}
f(x)=x+\sqrt{(n-1)\left[4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}-x^{2}\right]} \tag{4.6}
\end{equation*}
$$

which is monotonically decreasing in the interval (a, b), where

$$
a=\frac{2}{n}\left[n(n-1)-\sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}\right] \quad \text { and } \quad b=\sqrt{4 n^{2}-4 n-6 \sum_{i=1}^{m}\binom{\left|e_{i}\right|}{2}} .
$$

Therefore, inequality (4.5) remains valid if on the right-hand side (4.6) the variable x is replaced by the lover bound for μ_{1} from Lemma 4.2 This results in Theorem 4.3.

References

[1] M. Aouchiche and P. Hansen. Distance spectra of graphs: A survey. Linear Algebra Appl., 458 (2014), 301-386.
[2] C. Berge. Hypergraphs, North-Holland, Amsterdam, 1989.
[3] K. C. Das and I. Gutman. Upper bounds on distance energy. MATCH Commun. Math. Comput. Chem., 86(3)(2021), 611-620.
[4] C. M. Deshpande and Y. S. Gaidhani. About adjacency matrix of semigraphs. International Journal of Applied Physics and Mathematics, 2(4)(2012), 250-252.
[5] C. M. Deshpande, Y. S. Gaidhani and B. P. Athawale. Adjacency matrix of a semigraph. Electron. Notes Discrete Math., 63 (2017), 399-406.
[6] Y.S. Gaidhani, C. M. Deshpande and S. Pirzada. Energy of a semigraph. AKCE Int. J. Graphs Comb., 16(1)(2019), 41-49.
[7] I. Gutman. The energy of a graph. Ber. Math. Statist Sekt. Forshungsz. Graz, 103 (1978), $1-22$.
[8] F. Harary. Graph Theory. Addison-Wesley, Reading, 1969.
[9] G. Indulal, I. Gutman and A. Vijayakumar. On distance energy of graphs. MATCH Commun. Math. Comput. Chem., 60(2)(2008), 461-472.
[10] Y. L. Jin, R. Gu and X. D. Zhang. The distance energy of clique trees. Linear Algebra Appl., 615 (2021), 1-10.
[11] J. Koolen and V. Moulton. Maximal energy graphs. Adv. Appl. Math., 26(1)(2001), 47-52.
[12] X. Li, X. Shi and I. Gutman. Graph Energy. Springer, New York, 2012.
[13] B. J. McClelland. Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys., 54 (1971), 640-643.
[14] H. S. Ramane. Distance energy of graphs, in: I. Gutman and X. Li (Eds.). Graph Energies - Theory and Applications (pp. 123-144). Univ. Kragujevac, Kragujevac, 2016.
[15] E. Sampathkumar (ed.), Semigraphs and Their Applications. Academy of Discrete Mathematics, Karnataka, 2019.
[16] G. Sridhara, M. R. Rajesh Kanna and H. L. Parashivamurthy. New bounds for distance energy of graphs. J. Indones. Math. Soc., 26(2)(2020), 213-223.
[17] S. Sun, K. C. Das and Y. Shang. On maximal distance energy. Σ Mathematics, 9 (2021), \#360.

Received by editors 12.07.2021; Available online 19.07.2021.
Department of Mathematical Sciences, Bodoland University, Assam, India
E-mail address: surajitnathe9@gmail.com
Faculty of Science, University of Kragujevac, Kragujevac, Serbia
E-mail address: gutman@kg.ac.rs
Department of Mathematics, Basugoan College, Assam, India
E-mail address: ardhendukumarnandi5@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 05C12; 05C65.
 Key words and phrases. semigraph, distance matrix (of semigraph), distance energy (of semingraph).

 Communicated by Daniel A. Romano.

