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THE MINIMUM NONSPLIT DOMINATION ENERGY

OF A GRAPH

GIRISH V. R. AND USHA P.

Abstract. For a graph G, a subset D of V (G) is called a nonsplit dominating

set if the induced graph ⟨V −D⟩ is connected. The nonsplit domination number
γns(G) is the minimum cardinality of a nonsplit domination set. In this paper,
we introduce the minimum nonsplit dominating energy Ens(G) of a graph G and
computed minimum nonsplit dominating energies of some standard graphs. Upper

and lower bounds for Ens(G) are established.

1. Introduction

In this paper, by a graph G(V,E) we mean a simple connected graph, that is
nonempty, finite, having no loops, no multiple and directed edges. Let n and m be
the number of vertices and edges, respectively, of G. The degree of a vertex v in a
graph G, denoted by deg(v), is the number of vertices adjacent to v. For any vertex v
of a graph G, the open neighborhood of v is the set N(v) = {u ∈ V/uv ∈ E(G)}. For
graph theoretic terminology we refer to [6].

Let Wn denote a wheel graph with n + 1 vertices (n > 3), which is formed by
connecting a single vertex to all vertices of a cycle of length n and Fn be the friendship
graph with 2n+1 vertices and 3n edges. Let Cn and Pn be the cycle and path with n
vertices.

A set of vertices S is said to dominate the graph G, if for each v /∈ S, there is a
vertex u ∈ S with v adjacent to u. The minimum cardinality of any dominating set is
called the domination number of G and is denoted by γ(G).

The concept of nonsplit domination was introduced by V. R. Kulli and B. Janakiram
[7]. A dominating set D of a graph G = (V,E) is a nonsplit dominating set if the
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induced graph ⟨V −D⟩ is connected. The nonsplit domination number γns(G) is the
minimum cardinality of a nonsplit domination set.

The concept, energy of a graph introduced by I. Gutman [4] in the year 1978. It
originates from chemistry to estimate the total π electron energy of a molecule. In
chemistry, the conjugated hydrocarbons can be represented by a graph called molecu-
lar graph. Here every carbon atom is represented by a vertex and every carbon-carbon
bond by an edge and hydrogen atoms are ignored. The eigenvalues of the molecular
graph represent the energy level of the electron in the molecule. An interesting quan-
tity in Huckel theory is the sum of the energies of all the electrons in a molecule, the
so called π electron energy of a molecule. The concept of dominating energy has been
studied by [13].

Let A(G) = (aij) be the adjacency matrix of G. The eigenvalues λ1, λ2, . . . , λn

of a matrix A(G), assumed in non-increasing order, are the eigenvalues of the graph
G. Let λ1, λ2, . . . , λr for r 6 n be the distinct eigenvalues of G with multiplicity
m1,m2, . . . ,mr, respectively, the multiset of eigenvalues of A(G) is called the spectrum
of G and denoted by

Spec(G) =

(
λ1 λ2 . . . λn

m1 m2 . . . mn

)
The energy E(G) of G is defined to be the sum of the absolute values of the eigen-
values of G, i.e. E(G) =

∑
i=1 |λi|. For more details on the mathematical aspects

of the theory of graph energy we refer to [5, 9, 10]. Recently C. Adiga et al.[1] de-
fined the minimum covering energy, EC(G) of a graph which depends on its particular
minimum cover C. Motivated by this paper, we introduce minimum nonsplit domi-
nating energy, denoted by Ens(G), of a graph G, and computed minimum nonsplit
dominating energies of some standard graphs. Upper and lower bounds for Ens(G)
are established.

2. The Minimum Nonsplit Dominating Energy of Graphs

Let G be a graph of order n with vertex set V (G) = {v1, v2, . . . vn} and edge set E.
A subset D of V (G) is called a nonsplit dominating set if the induced graph ⟨V −D⟩ is
connected. The nonsplit domination number γns(G) of G is the minimum cardinality
of a nonsplit dominating set. Any nonsplit dominating set with minimum cardinality
is called a MNS set. Let D be a MNS set of a graph G. The MNS matrix of G is the
n× n matrix defined by Ans(G) = aij where

aij =

 1 if (vi, vj) ∈ E(G)
1 i = j, vi ∈ D.
0 otherwise.

The characteristic polynomial of Ans(G) is denoted by

fn(G,λ) = det(λI −Ans(G)).

The MNS eigenvalues of the graph G are the eigenvalues of Ans(G). Since Ans(G)
is real and symmetric, its eigenvalues are real numbers and we label them in non-
increasing order λ1 > λ2 >, . . . ,> λn. The MNS energy of G is defined as Ens(G) =∑

i=1 |λi|.
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Let G be the graph in fig:1 with V (G) = {v1, v2, v3, v4, v5, v6} and let its MNS set
be D1 = {v1, v4}

                                             v2                 e2                  v3                                                 

                     e1                 e7                                                 e3              e4                           

       v1                                                                                                                       v4                                       

                             e8                 v6                    e6                v5       e5           

                                                                     G 

Figure 1. Example for the nonsplit domination energy of a graph

Ans(G) =


1 1 0 0 0 1
1 0 1 0 0 1
0 1 0 1 1 0
0 0 1 1 1 0
0 0 1 1 0 1
1 1 0 0 1 0


The characteristic equation fn(G,λ) = λ6− 2λ5− 7λ4+8λ3+12λ2. The Spectrum of

Ans(G) =

(
3 2 0 −1 −2
1 1 2 1 1

)
Hence the MNS eigen values are λ1 = 3, λ2 = 2, λ3 = 0, λ4 = 0, λ5 = −1, λ6 = −2.

Therefore the MSN energy of G is Ens(G) = 8. Suppose if we take the MNS set of G
as D2 = {v5, v6}. Then

Ans(G) =


0 1 0 0 0 1
1 0 1 0 0 1
0 1 0 1 1 0
0 0 1 0 1 0
0 0 1 1 1 1
1 1 0 0 1 1


The characteristic equation fn(G,λ) = λ6−2λ5−7λ4+8λ3+13λ2−3. The Spectrum
of

Ans(G) =

(
−1 −1.732 −0.675 0.461 1.732 3.214
1 1 1 1 1 1

)
Hence the MNS eigen values are

λ1 = −1, λ2 = −1.732, λ3 = −0.675, λ4 = 0.461, λ5 = 1.732, λ6 = 3.214.

Therefore the MSN energy of G is Ens(G) ≃ 8.814. This illustrates the fact that the
MNS energy of the graph G depends on the choice of the MNS set.

3. Properties of minimum nonsplit dominating eigenvalues

Theorem 3.1. Let G be the graph of order n. Let fn(G,λ) = λn + c1λ
n−1 + . . .+ cn

be the characteristic polynomial of MNS matrix of a graph G and D be the minimum
nonsplit dominating set of G Then

(i) c1 = −|D|.



586 GIRISH V. R. AND USHA P.

(ii) c2 =

(
|D|
2

)
-|E(G)|.

Proof. (i) Since the sum of diagonal elements of Ans(G) is equal to |D|, the sum of
determinants of all 1×1 principal submatrices of Ans(G) is the trace of Ans(G), which
evidently is equal to |D|. Thus, (−1)1c1 = |D|.

(ii) c2 is equal to the sum of determinants of all 2 × 2 principal submatrices of
Ans(G), that is

c2 =
∑

16i<j6n

∣∣∣∣aii aij
aji ajj

∣∣∣∣
=

∑
16i<j6n

(aiiajj − aijaji)

=
∑

16i<j6n

aiiajj −
∑

16i<j6n

a2ij

=

(
|D|
2

)
-|E(G)| �

Theorem 3.2. Let λ1, λ2, . . . , λn be the eigen values of Ans(G) and D be the minimum
nonsplit dominating set of G. Then

(i)
i=n∑
i=1

λi = |D|.

(ii)
i=n∑
i=1

λ2
i = |D|+ 2|E(G)|.

Proof. (i) Since the sum of the eigenvalues of Ans(G) is the trace of Ans(G), it follows
that

i=n∑
i=1

λi =
i=n∑
i=1

aii = |D|.

(ii) Similarly the sum of squares of the eigenvalues of Ans(G) is the trace of
(Ans(G))2. Then

i=n∑
i=1

λ2
i =

i=n∑
i=1

j=n∑
j=1

aijaji

=
i=n∑
i=1

a2ii +
i=n∑
i ̸=j

aijaji

=
i=n∑
i=1

a2ii + 2
i=n∑
i<j

a2ij

=|D|+ 2|E(G)|.
�

Theorem 3.3. Let G be a graph of order n and let λ1(G) be the largest eigenvalue of

Ans(G). Then λ1(G) > 2|E(G)|+D
n where D is the nonsplit domination number.
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Proof. Let G be a graph of order n and let λ1 be the largest nonspit eigenvalue of

Ans(G). Then λ1 = maxX ̸=0 = {XtAns(G)X
XtX }, where X is any nonzero vector and Xt

is its transpose and Ans(G) is a nonsplit dominating matrix. If we takeX = J =


1
1
1
.
.
1

.

Then λ1(G) > JtAns(G)J
JtJ = 2|E(G)|+k

n , whereD is the nonsplit domination number. �

For example: Consider the graph G = C4, the largest eigen value will be λ1(G) =

2.61 and 2|E(G)|+k
n = 2∗4+2

4 = 2.5.

Theorem 3.4. Let G1 and G2 be two graphs with n vertices. Let λ1, λ2, . . . , λn

are the eigen values of Ans(G1) and λ
′

1, λ
′

2, . . . , λ
′

n are the eigen values of Ans(G2).

Then
i=n∑
i=1

λiλ
′

i 6
√
(2|E(G1)|+ |D1|)(2|E(G2)|+ |D2|. Where Ans(Gi) is the mini-

mum nonsplit dominating matrix of Gi, i = 1, 2 and D1, D2 are the minimium nonsplit
dominating sets of G1 and G2 respectively.

Proof. Let λ1, λ2, . . . , λn are the eigen values of Ans(G1) and λ
′

1, λ
′

2, . . . , λn′ are the
eigen values of Ans(G2). Then by Cauchy-Schwartiz inequality

(
i=n∑
i=1

aibi)
2 6 (

i=n∑
i=1

a2i )(
i=n∑
i=1

b2i ).

If ai = λi and bi = λ
′

i, then

(
i=n∑
i=1

λiλ
′

i)
2 6 (

i=n∑
i=1

λ2
i )(

i=n∑
i=1

(λ
′

i)
2).

(
i=n∑
i=1

λiλ
′

i)
2 6 (2|E(G1)|+ |D1|)(2|E(G2)|+ |D2|).

(
i=n∑
i=1

λiλ
′

i) 6
√
(2|E(G1)|+ |D1|)(2|E(G2)|+ |D2|). �

For example: Consider the graph G1 = C4 and G2 = K4, we have eigen values of G1

are 0.38196, 0.61803,−1.61803, 2.61803 and the eigen values ofG2 are−1,−1,−0.6055, 3.30

so that
i=n∑
i=1

λiλ
′

i = 8.619 and√
(2|E(G1)|+ |D1|)(2|E(G2)|+ |D2| = 9.48.

4. Bounds for minimum nonsplit dominating energy of a graph G

Similar to Milovanović [12] sharp bounds for energy of a graph, bounds for minimum
nonsplit dominating energy of a graph is given in the following theorem.

Theorem 4.1. Let G be a graph with n vertices and D be a nonsplit dominating set
of G. Let |λ1| > |λ2| > . . . > |λn| > 0 be a non-increasing order of eigen values of

Ans(G), then Ens(G) > |D|+2|E(G)|+n|λ1||λn|
(|λ1|+|λn|) .
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Proof. Let ai, bi, r, and R be real numbers satisfying rai 6 bi 6 Rai, then the follow-
ing equality holds [12].

i=n∑
i=1

b2i + rR
i=n∑
i=1

ai 6 (r +R)
i=n∑
i=1

aibi.

put bi = |λi|, ai = 1, r = |λn|, R = |λ1|, then

i=n∑
i=1

|λi|2 + |λ1||λn|
i=n∑
i=1

1 6 (|λ1|+ |λn|)
i=n∑
i=1

|λi|.

|D|+ 2|E(G)|+ n|λ1||λn| 6 (|λ1|+ |λn|)Ens(G)

Ens(G) > |D|+2|E(G)|+n|λ1||λn|
(|λ1|+|λn|) . �

For example: Consider the graph G = C4,|λ1| = 0.38 and |λ2| = 2.61, Ens(G) =

5.23. Thus 5.23 > |D|+2|E(G)|+n|λ1||λn|
(|λ1|+|λn|) = (2+2∗4+4∗0.38∗2.61)

(0.38+2.61) = 4.67

Bapat and S.Pati [2] proved that if the graph energy is a rational number then it
is an even integer, similar result for minimum nonsplit dominating energy is given in
the following theorem.

Theorem 4.2. Let G be a graph with a minimum nonsplit dominating set D. If
the minimum nonsplit dominating energy Ens(G) of G is a rational number, then
Ens(G) ≡ γns(G)|mod2|.

Proof. Let λ1, λ2, . . . , λn be the minimum nonsplit dominating eigen values of a graph
G of which λ1, λ2, . . . , λr are positive and the rest are non-positive, then

i=n∑
i=1

λi = (λ1 + λ2 + . . .+ λr)− (λr+1 + λr+2 + . . .+ λn).

i=n∑
i=1

λi = (λ1 + λ2 + . . .+ λr)− (λr+1 + λr+2 + . . .+ λn)

+(λ1 + λ2 + . . .+ λr)− (λ1 + λ2 + . . .+ λr)
i=n∑
i=1

λi = 2(λ1 + λ2 + . . .+ λr)− (λ1 + λ2 + . . .+ λr) + (λr+1 + λr+2 + . . .+ λn)

= 2(λ1 + λ2 + . . .+ λr)− (λ1 + λ2 + . . .+ λn).
= 2(λ1 + λ2 + . . .+ λr)− (|D|).
= 2|q| − |D|, where q = λ1 + λ2 + . . .+ λr.

By the result of Fiedler on additive compounds[3], the partial sum λ1+λ2+ . . .+λr

is an eigenvalue of a matrix whose characteristic polynomial has integer coefficients. If
i=n∑
i=1

|λi| is rational, then λ1 +λ2 + . . .+λr is rational and hence it must be an integer.

Therefore Ens(G) ≡ γns(G)|mod2|. �

Theorem 4.3. Let G be a connected graph of order n. Then√
2|E(G)|+ γns(G) 6 Ens(G) 6

√
n(2|E(G)|+ γns(G)).
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Proof. Consider the Cauchy-Schwartiz inequality

(

i=n∑
i=1

aibi)
2 6 (

i=n∑
i=1

a2i )(

i=n∑
i=1

b2i ).

Choose ai = 1 and bi = |λi| and by Theorem 3.2, we get

(Ens(G))2 = (
i=n∑
i=1

|λi|)2 6 (
i=n∑
i=1

1)(
i=n∑
i=1

λ2
i ).

6 n(2|E(G)|+ |D|).
6 n(2|E(G)|+ γns(G)).

Therefore, the upper bound is hold. For the lower bound, since

(

i=n∑
i=1

|λi|)2 > (

i=n∑
i=1

λ2
i )

it follows by Theorem 3.2 that

(Ens(G))2 > (
i=n∑
i=1

λ2
i ) = 2|E(G)|+ |D| = 2|E(G)|+ γns(G).

Therefore, the lower bound is hold. �

For example: Consider the friendship graph F2. Ens(F2) = 4.6,√
2|E(G)|+ γns(G) = 3.74 and

√
n(2|E(G)|+ γns(G)) = 8.36.

Theorem 4.4. Let G be a graph with n vertices and let D be a minimum nonsplit
dominating set. Then√

(2|E(G)|+ |D|) + (n− 1)n|det(Ans(G))| 2
n 6 Ens(G) 6

√
n(2|E(G)|+ |D|).

Proof. This proof follows the idea of McClellands bounds [11] for graphs E(G). For
the upper bound, let λ1, λ2, . . . , λn be the eigen values of the minimum nonsplit domi-
nating matrix Ans(G). By Theorem 4.3. (Ens(G)) 6

√
n(2|E(G)|+ |D|) which is the

upper bound.

For the lower bound, by using arithmetic mean and geometric mean inequality, we
have

1
n(n−1)

i=n∑
i ̸=j

|λi||λj | > (
i=n∏
i ̸=j

|λi||λj |)
1

n(n−1) .

i=n∑
i ̸=j

|λi||λj | > n(n− 1)(
i=n∏
i=1

|λi|2(n−1))
1

n(n−1) .

i=n∑
i ̸=j

|λi||λj | > n(n− 1)(
i=n∏
i=1

|λi|)
2
n .

Consider (Ens(G))2 = (
i=n∑
i=1

|λi|)2 =
i=n∑
i=1

|λi|2 +
i=n∑
i ̸=j

|λi||λj |.

(Ens(G))2 >
i=n∑
i=1

|λi|2 + n(n− 1)(
i=n∏
i=1

|λi|)
2
n .
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> 2|E(G)|+ |D|+ n(n− 1)|det(Ans(G))| 2
n .

Ens(G) >
√
2|E(G)|+ |D|+ n(n− 1)|det(Ans(G))| 2

n

which is the lower bound. �
For example: Consider the graph wheel graph G = W5, Ens(G) = 7.12.√
(2|E(G)|+ |D|) + (n− 1)n|det(Ans(G))| 2

n = 4.24 and
√

n(2|E(G)|+ |D|) = 9.219.

Theorem 4.5. Let G ̸= Kn−1 be a connected graph of order n > 2. Then
√
n+ 1 6 Ens(G) 6 n

√
n.

Proof. Since for any graph G ̸= Kn−1, γns(G) 6 n− 2(see[7]), it follows that by using
Theorem 4.4 and using the result, 2|E(G)| 6 n2 − n, we have

Ens(G) 6
√
n(2|E(G)|+ γns(G)) 6

√
n[(n2 − n) + n− 2] 6 n

√
n.

For the lower bound, since for any connected graph, n > 2|E(G)| and γns(G) > 1
([7]), it follows by Theorem 4.4

Ens(G) >
√
2|E(G)|+ γns(G) >

√
n+ 1.

�
For example: Consider the graph G = K1,4, Ens(G) = 7.12,

√
n+ 1 = 2.44, and

n
√
n+ 1 = 11.18.

Similar to Koolen and Moulton’s [8], upper bound energy of a graph, upper bound
for Ens(G) is given in the following theorem.

Theorem 4.6. Let G be a connected graph of order n and 2|E(G)| + γns(G) > n.
Then

Ens(G) 6 2|E(G)|+ γns(G)

n
+

√
(n− 1)[2|E(G)|+ γns(G)− (

2|E(G)|+ γns(G)

n
)2].

Proof. Consider the Cauchy-Schwartiz inequality

(
i=n∑
i=2

aibi)
2 6 (

i=n∑
i=2

a2i )(
i=n∑
i=2

b2i ).

Choose ai = 1 and bi = |λi| and by Theorem 3.2, we get

(
i=n∑
i=2

|λi|)2 6 (
i=n∑
i=2

1)(
i=n∑
i=2

λ2
i ).

(Ens(G)− |λ1|)2 6 (n− 1)(2|E(G)|+ γns(G)− λ2
1).

Ens(G) 6 λ1 +
√
(n− 1)(2|E(G)|+ γns(G)− λ2

1).

From Theorem 3.3, we have λ1(G) > 2|E(G)|+γns(G)
n . Since

f(x) = x+
√
(n− 1)(2|E(G)|+ γns(G)− x2)

is a decreasing function. It follows

x >
√

2|E(G)|+ γns(G)

n
.
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Since 2|E(G)|+ γns(G) > n, we have
√

2|E(G)|+γns(G)
n 6 2|E(G)|+γns(G)

n 6 λ1.

f(λ1) 6 f( 2|E(G)|+γns(G)
n ).

Ens(G) 6 f(λ1) 6 f( 2|E(G)|+γns(G)
n ).

Ens(G) 6 f( 2|E(G)|+γns(G)
n ).

Ens(G) 6 2|E(G)|+γns(G)
n +

√
(n− 1)[2|E(G)|+ γns(G)− ( 2|E(G)|+γns(G)

n )2]. �

For example: Consider the graph G = K2,2, Ens(G) = 5.21,

Ens(G) 6
2|E(G)|+γns(G)

n +
√
(n− 1)[2|E(G)|+ γns(G)− ( 2|E(G)|+γns(G)

n )2] = 5.85.

5. Minimum Nonsplit Dominating Energy of Some Standard Graphs

In this section, we investigate the exact values of the MNS energy of some standard
graphs.

Theorem 5.1. For the complete graph Kn, n > 2,

Ens(Kn) = (n− 2) +
√
(n2 − 2n+ 5).

Proof. Let Kn be the complete graph with vertex set V = {v1, v2, . . . , vn}, then
γns(Kn) = 1. Hence the MNS set is D = {v1} and

Ans(Kn) =



1 1 1 . . . 1 1
1 0 1 . . . 1 1
1 1 0 . . . 1 1
. . . . . . . .
. . . . . . . .
. . . . . . . .
1 1 1 . . . 1 0


Characteristic polynomial is

fn(G,λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 −1 −1 . . . −1 −1
−1 λ −1 . . . −1 −1
−1 −1 λ . . . −1 −1
. . . . . . . .
. . . . . . . .
. . . . . . . .

−1 −1 −1 . . . −1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ+ 1)n−2 + (λ2 − (n− 1)λ− 1)

The MNS spectrum of Kn can be written as

MNSSpec(Kn) =

(
−1 (n−1)+

√
n2−2n+5
2

(n−1)−
√
n2−2n+5
2

n− 2 1 1

)
.

Hence the MNS energy of complete graph is Ens(Kn) = (n−2)+
√
(n2 − 2n+ 5). �
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Theorem 5.2. For n > 2, the minimum nonsplit dominating energy of star graph
K1,n−1 is (n− 2) +

√
4n− 3.

Proof. Consider the star graph K1,n−1 with the vertex set

V = {v1, v2, . . . , vn−1, v0}, d(v0) = n− 1.

The minimum nonsplit dominating set is D = {v1, v2, . . . , vn−1}. Then the minimum
nonspit dominating matrix is

Ans(Kn) =



0 1 1 1 . . . 1 1
1 1 0 0 . . . 0 0
1 0 1 0 . . . 0 0
1 0 0 1 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
1 0 0 0 . . . 0 1


Characteristic polynomial is

fn(G,λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 −1 . . . −1 −1
−1 λ− 1 0 0 . . . 0 0
−1 0 λ− 1 0 . . . 0 0
−1 0 0 λ− 1 . . . 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

−1 0 0 0 . . . 0 λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− 1)n−2 + (λ2 − λ− (n− 1))

The MNS spectrum of K1,n−1 can be written as

MNS Spec(K1,n−1) =

(
1

1+
√

1+4(n−1)

2

1−
√

1+4(n−1)

2
n− 2 1 1

)

Hence the MNS energy of star graph is Ens(K1,n−1) = (n− 2) +
√
4n− 3. �

Theorem 5.3. For n > 3, the minimum nonsplit domination energy of a complete
bipartite graph Kn,n is n+ 1 +

√
n2 + 2n− 3.

Proof. For the complete bipartite graph Km,n with vertex set

V = {v1, v2, . . . , vm, u1, u2, . . . un}

, with γns(Km,n) = 2. Let the MNS set of Km,n is D = {v1, u1}. Then
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Ans(Km,n) =



1 0 0 0 . . . 1 1 . . . 1
0 0 0 0 . . . 1 1 . . . 1
0 0 0 0 . . . 1 1 . . . 1
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
0 0 0 0 . . . 1 1 . . . 1
1 1 1 1 . . . 1 0 . . . 0
1 1 1 1 . . . 0 0 . . . 0
1 1 1 1 . . . 0 0 . . . 0
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
1 1 1 1 . . . 0 0 . . . 0


Characteristic polynomial is

fn(G,λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 0 0 0 . . . 0 −1 −1 . . . −1
0 0 0 0 . . . 0 −1 −1 . . . −1
0 0 0 0 . . . 0 −1 −1 . . . −1
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
0 0 0 0 . . . 0 1 1 . . . 1
−1 −1 −1 −1 . . . −1 λ− 1 0 . . . 0
−1 −1 −1 −1 . . . −1 0 0 . . . 0
−1 −1 −1 −1 . . . −1 0 0 . . . 0
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .

−1 −1 −1 −1 . . . −1 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λm+n−4(λ4 − 2λ3 − (mn− 1)λ2 + (2mn−m− n)λ− (m− 1)(n− 1))

In Particular for m = n, we have

fn(G,λ) = (λ)n−2(λ)n−2(λ2 + (n− 1)λ− (n− 1))(λ2 − (n+ 1)λ+ (n− 1)).

The MNS spectrum of Km,n can be written as

MNS Spec(Kn,n) =

(
0 0

−(n−1)+
√

n2+2n−3
2

−(n−1)−
√

n2+2n−3
2

(n+1)+
√

n2−2n+5
2

(n+1)−
√

n2−2n+5
2

n− 2 n− 2 1 1 1 1

)

Hence the MNS energy of a complete bipartite graph is

Ens(Kn,n) = n+ 1 +
√
n2 + 2n− 3.

�
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Definition 5.4. The double star graph Sn,m is the graph constructed from union
K1,n−1 and K1,m−1 by joining the center vertices v0 and u0 by an edge. Let the vertex
set of Sn,m is V (Sn,m) = {v0, v1, . . . , vn−1, u0, u1, . . . , um−1} and edge set

E(Sn,m) = {v0u0, v0ui, u0uj , 1 6 i 6 n− 1, 1 6 j 6 m− 1}.

Theorem 5.5. For m > 3, the minimum nonsplit dominating energy of double star
graph Sm,m is Ens(Sm,m) = (2m− 4) + 2

√
m+ 2

√
m− 1.

Proof. For the double star graph Sm,m with vertex set

V = {v0, v1, . . . , vn−1, u0, u1, . . . , um−1}

the minimum nonsplit dominating set is

D = {v1, . . . , vm−1, u1, . . . , um−1}.

Then

Ans(Kr,s) =



0 1 1 . . . 1 1 0 0 . . . 0
1 1 0 . . . 0 0 0 0 . . . 0
1 0 1 . . . 0 0 0 0 . . . 0
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
1 0 0 . . . 1 0 0 0 . . . 0
1 0 0 . . . 0 0 1 1 . . . 1
0 0 0 . . . 0 1 1 0 . . . 0
0 0 0 . . . 0 1 0 1 . . . 0
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
0 0 0 . . . 0 1 0 0 . . . 1


Characteristic polynomial is

fn(G,λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 . . . −1 −1 0 0 . . . 0
−1 λ− 1 0 . . . 0 0 0 0 . . . 0
−1 0 λ− 1 . . . 0 0 0 0 . . . 0
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .

−1 0 0 . . . λ− 1 0 0 0 . . . 0
−1 0 0 . . . 0 λ −1 −1 . . . −1
0 0 0 . . . 0 −1 λ− 1 0 . . . 0
0 0 0 . . . 0 −1 0 λ− 1 . . . 0
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
0 0 0 . . . 0 −1 0 0 . . . λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− 1)2m−4(λ2 −m)(λ2 − 2λ+ (m− 2)).

The MNS spectrum of Sm,m will be written as
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MNS Spec(Sm,m) =

(
1

√
m −

√
m 1 +

√
m− 1 1−

√
m− 1

2m− 4 1 1 1 1

)
Hence the MNS energy of double star graph is E(Sm,m) = (2m−4)+2

√
m+2

√
m− 1.

�

Definition 5.6. The cocktail party graph, denoted by K2×n, is a graph having vertex

set V (Kn×2) =
i=n∪
i=1

(ui, vi) and edge set E(Kn×2) = {uiuj , vivj , i ̸= j}∪{uivj , viuj , 1 6
i < j 6 n}.

Theorem 5.7. The minimum nonsplit dominating energy of cocktail party graph
Kn×2, n > 3 is

(2n− 3) +
√
4n2 − 4n+ 9.

Proof. Let Kn×2 be the cocktail party graph with vertex set V (Kn×2) =
i=n∪
i=1

(ui, vi).

The minimum nonsplit dominating set is D = {u1, v1}. Then

Ans(Kn×2) =



1 0 1 1 . . . 1 1 1 1
0 1 1 1 . . . 1 1 1 1
1 1 0 0 . . . 1 1 1 1
1 1 0 0 . . . 1 1 1 1
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
1 1 1 1 . . . 0 0 1 1
1 1 1 1 . . . 0 0 1 1
1 1 1 1 . . . 1 1 0 0
1 1 1 1 . . . 1 1 0 0


Characteristic polynomial is

fn(G,λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− 1 0 −1 −1 . . . −1 −1 −1 −1
0 λ− 1 −1 −1 . . . −1 −1 −1 −1
−1 −1 λ 0 . . . −1 −1 −1 −1
−1 −1 0 λ . . . −1 −1 −1 −1
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

−1 −1 −1 −1 . . . λ 0 −1 −1
−1 −1 −1 −1 . . . 0 λ −1 −1
−1 −1 −1 −1 . . . −1 −1 λ 0
−1 −1 −1 −1 . . . −1 −1 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ)2n−1(λ− 1)(λ− 1)n+2(λ2 − (2n− 3)λ− 2n)

The MNS spectrum of Sm,m will be written as

Spec(Kn×2) =(
0 1 2 2n− 3 +

√
4n2 − 4n+ 9 2n− 3−

√
4n2 − 4n+ 9

n− 1 1 n+ 2 1 1

)
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Hence the MNS energy of E(Sm,m) = (2n− 3) +
√
4n2 − 4n+ 9. �

6. Conclusion

Formula and bounds obtained in this paper are useful for theoretical chemists, for
whom this value can take on physical significance. For mathematicians, the concept
leads to many interesting problems which are not necessarily identical to determining
the spectrum of a graph but can provide certain helpful information about the graph.
The basic properties including various upper and lower bounds for energy of a graph
have been established and it can have remarkable chemical applications in the molec-
ular orbital theory of conjugated molecules. The non split dominating energy of the
graph can give the idea for the chemists to remove some carbon atoms that have the
hydrogen bond with all the other carbon atoms and still they want the bonding has
to be with all the other remaining carbon atoms.
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