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EXISTENCE RESULTS FOR SECOND-ORDER

MULTI-POINT IMPULSIVE TIME SCALE BOUNDARY

VALUE PROBLEMS ON INFINITE INTERVALS

İsmail Yaslan and Esma Tozak

Abstract. In this paper, we consider nonlinear second order m-point impul-

sive time scale boundary value problems on infinite intervals. We establish
criteria for the existence of positive solutions to the nonlinear impulsive time
scale boundary value problems on infinite intervals by using a result from the
theory of fixed point index.

1. Introduction

Impulsive problems describe processes which experience a sudden change in
their states at certain moments. Impulsive differential equations have been de-
veloped in modeling impulsive problems in physics, chemical technology, popu-
lation dynamics, ecology, biological systems, biotechnology, industrial robotics,
optimal control, economics, and so forth. For the introduction of the theory
of impulsive differential equations, we refer to the books [4, 14, 17]. Espe-
cially, the study of impulsive dynamic equations on time scales has also attracted
much attention since it provides an unifying structure for differential equations
in the continuous cases and finite difference equations in the discrete cases, see
[1, 2, 3, 22, 21, 8, 10, 11, 12, 13, 16, 18, 19, 20, 24, 25] and references
therein. Some basic definitions and theorems on time scales can be found in the
books [5, 6]. In recent years, there are a few authors studied the existence of
positive solutions for time scale boundary value problems on infinite intervals.
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528 YASLAN AND TOZAK

Zhao, Ge [27] studied the existence of at least three positive solutions for the
nonlinear time scale boundary value problems{

(φp(u
∆(t)))∇ + q(t)f

(
u(t), u∆(t)

)
= 0, t ∈ [0,∞)T

u(0) = βu∆(η), lim
t→∞

u∆(t) = 0

by using Leggett-Williams fixed point theorem, where φp(s) = |s|p−2s, p > 1.
Zhao, Ge [28] considered the following m-point boundary value problem on

time scale 
(φp(u

∆(t)))∇ + h(t)f
(
t, u(t), u∆(t)

)
= 0, t ∈ [0,∞)T

u(0) =
m−2∑
i=1

αiu(ηi), u∆(∞) =
m−2∑
i=1

βiu
∆(ηi),

where u∆(∞) = lim
t→∞

u∆(t),φp(s) = |s|p−2s, p > 1, η1, η2, . . . , ηm−2 ∈ T, σ(0) <

η1 < η2 < . . . < ηm−2 < ∞, αi > 0, βi > 0 for i = 1, 2, . . . ,m − 2. They obtained
the criteria for the existence of positive solutions by using Avery-Peterson theorem.

Karaca, Tokmak [9] discussed the nonlinear multi-point impulsive time scale
boundary value problems

(φ(x∆(t)))∇ + ϕ(t)f
(
t, x(t), x∆(t)

)
= 0, t ∈ (0,∞)T

x(0) =
m−2∑
i=1

αix
∆(ηi), lim

t→∞
x∆(t) = 0,

where f ∈ C ([0,∞)T × [0,∞)× [0,∞), [0,∞)). αi > 0 (1 6 i 6 m − 2) 0 <
η1 < η2 < . . . < ηm−2 < ∞, φ : R → R is an increasing homeomorphism and
positive homomorphism with φ(0) = 0. They established the sufficient conditions
for the existence of three positive solutions for m-point time scale boundary value
problems on infinite intervals by using the Leggett-Williams fixed point theorem
and five functionals fixed point theorem.

Yaslan, Haznedar [23] obtained the criteria for the existence of at least one,
two and three positive solutions to the nonlinear impulsive multi-point time scale
boundary value problems

(φ(y∆(t))∇ + h(t)f
(
t, y(t), y∆(t)

)
= 0, t ∈ [a,∞)T, t ̸= tk, k = 1, 2, ..., n

y(t+k )− y(t−k ) = Ik(y(tk)), k = 1, 2, ..., n

y(a)− βy∆(a) =
m−2∑
i=1

αiy
∆(ηi), lim

t→∞
y∆(t) = 0, m > 3

by using Leray-Schauder fixed point theorem, Avery-Henderson fixed point the-
orem and the five functionals fixed point theorem, respectively, where αi > 0
(1 6 i 6 m− 2), β > 0, η1, η2, . . . , ηm−2 ∈ T, 0 6 a < η1 < η2 < . . . < ηm−2 < ∞,
f ∈ C ([a,∞)T × [0,∞)× [0,∞), [0,∞)) and φ : R → R is an increasing homeo-
morphism and positive homomorphism with φ(0) = 0.
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Karaca, Sinanoglu [26] investigated the criteria for the existence of at least one
positive solution to the m-point time scale boundary value problems

(φp(u
∆(t))∇ + h(t)f

(
t, u(t), u∆(t)

)
= 0, t ∈ (0,∞)T, t ̸= tk, k = 1, 2, ..., n

u(0) =
m−2∑
i=1

αiu
∆(ηi), u∆(∞) =

m−2∑
i=1

βiu(ηi),

u(t+k )− u(t−k ) = Ik(u(tk)), φp(u
∆(t+k ))− φp(u

∆(t−k )) = −Ik(u(tk)), k ∈ N

by using the four functionals fixed point theorem, where η1, . . . , ηm−2 ∈ T, σ(0) <
η1 < η2 < . . . < ηm−2 < ∞, u∆(∞) = lim

t→∞
u∆(t), φp(s) = |s|p−2s, p > 1,

Ik ∈ C([0,∞), [0,∞)) and Ik ∈ C([0,∞), [0,∞)).
We consider the following boundary value problem (BVP)

(1.1)


y∆∇(t) + h(t)f

(
t, y(t), y∆(t)

)
= 0, t ∈ [a,∞)T, t ̸= tk, k = 1, 2, ..., n

y(t+k )− y(t−k ) = Ik(y(tk)), k = 1, 2, ..., n

y(a)− γy∆(a) =
m−2∑
i=1

αiy
∆(ηi), lim

t→∞
y∆(t) =

m−2∑
i=1

βiy(ηi), m > 3

where T is a time scale, αi > 0, βi > 0 (1 6 i 6 m− 2), γ > 0, 0 6 a < η1 < . . . <
ηm−2 < ∞ and f ∈ C ([a,∞)T × [0,∞)× [0,∞), [0,∞)).

We will assume that the following conditions are satisfied:

(H1) h ∈ C ([a,∞)T, [0,∞)),
∞∫
a

h(s)∇s < ∞;

(H2) f(t, (1+ t)u, v) 6 ω (max{|u|, |v|}) with ω ∈ C ([0,∞), [0,∞)) nondecreasing;
(H3)

∑
a<tk<∞

Ik(y(tk)) < ∞, Ik ∈ C (R,R+), tk ∈ [a,∞)T and y(t+k ) = lim
h→0

y(tk +

h), y(t−k ) = lim
h→0

y(tk − h) represent the right and left limits of y(t) at t = tk,

k = 1, ..., n.

2. Preliminaries

To state and prove the main results of this paper, we will need the following
lemmas.

Lemma 2.1. Assume (H3) holds. If x ∈ C ([a,∞)T, [0,∞)) and
∞∫
a

x(t)∇t < ∞,

then the boundary value problem
y∆∇(t) + x(t) = 0, t ∈ [a,∞)T, t ̸= tk, k = 1, 2, ..., n

y(t+k )− y(t−k ) = Ik(y(tk)), k = 1, 2, ..., n

y(a)− γy∆(a) =
m−2∑
i=1

αiy
∆(ηi), lim

t→∞
y∆(t) =

m−2∑
i=1

βiy(ηi), m > 3
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has a unique solution

y(t) = (γ − a)

∞∫
a

x(s)∇s+ t

∞∫
t

x(s)∇s+

t∫
a

sx(s)∇s+ (γ + t− a)
m−2∑
i=1

βiy(ηi)

+
m−2∑
i=1

αi

[m−2∑
j=1

βjy(ηj) +

∞∫
ηi

x(s)∇s

]
+

∑
a<tk<t

Ik(y(tk)).(2.1)

Proof. Since we have y∆∇(t) = −x(t) for t ∈ [a,∞)T, we get

(2.2) y∆(t) = lim
t→∞

y∆(t) +

∞∫
t

x(ξ)∇ξ

By using the second boundary condition we obtain

y∆(t) =
m−2∑
i=1

βiy(ηi) +

∞∫
t

x(ξ)∇ξ.

Integrating the above equality from a to t, we have

y(t)− y(a)−
∑

a<tk<t

Ik (y(tk)) = (t− a)
m−2∑
i=1

βiy(ηi) +

t∫
a

∞∫
ξ

x(s)∇s∆ξ.

By using the first boundary condition we obtain

y(t) = γy∆(a) +
m−2∑
i=1

αiy
∆(ηi) + (t− a)

m−2∑
i=1

βiy(ηi) +

t∫
a

(s− a)x(s)∇s

+ (t− a)

∞∫
t

x(s)∇s+
∑

a<tk<t

Ik (y(tk)) .

Thus, from (2.2) we have (2.1). �

By Lemma 2.1, the solutions of the BVP (1.1) are the fixed points of the
operator A defined by

Ay(t) = (γ − a)

∞∫
a

h(s)f
(
s, y(s), y∆(s)

)
∇s+ t

∞∫
t

h(s)f
(
s, y(s), y∆(s)

)
∇s

+

t∫
a

sh(s)f
(
s, y(s), y∆(s)

)
∇s+ (γ + t− a)

m−2∑
i=1

βiy(ηi)

+
m−2∑
i=1

αi

[m−2∑
j=1

βjy(ηj) +

∞∫
ηi

h(s)f
(
s, y(s), y∆(s)

)
∇s

]
+

∑
a<tk<t

Ik(y(tk)).
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Let B be the Banach space defined by

B =

{
y ∈ C∆ ([a,∞)) : sup

t∈[a,∞)T

y(t)

1 + t
< ∞, lim

t→∞
y∆(t) =

m−2∑
i=1

βiy(ηi)

}

with the norm ∥y∥ = max

{
∥y∥1, ∥y∆∥∞

}
, where

∥y∥1 = sup
t∈[a,∞)T

|y(t)|
1 + t

, ∥y∆∥∞ = sup
t∈[a,∞)T

|y∆(t)|

and define the cone P ⊂ B by

P =

{
y ∈ B : y(a)− γy∆(a) =

m−2∑
i=1

αiy
∆(ηi), y is concave, non-decreasing and

nonnegative on [a,∞)T

}
.(2.3)

Lemma 2.2. If y ∈ P , then we have ∥y∥1 6 M∥y∆∥∞, where

(2.4) M = max

{
γ − a+

m−2∑
i=1

αi, 1

}
.

Proof. For y ∈ P and t ∈ [a,∞)T, we have

y(t)

1 + t
=

1

1 + t

 t∫
a

y∆(s)∆s+ γy∆(a) +

m−2∑
i=1

αiy
∆(ηi)

 6
t− a+ γ +

m−2∑
i=1

αi

1 + t
∥y∆∥∞

6 M∥y∆∥∞.

Hence, the proof is complete. �

Lemma 2.3. If (H1)-(H3) hold, then the operator A : P → P is completely
continuous.

Proof. First, we will show that A : P → P . For y ∈ P , we have

(Ay)(a)− γ(Ay)∆(a) =
m−2∑
i=1

αi(Ay)
∆(ηi),

(Ay)∆∇(t) = −h(t)f
(
t, y(t), y∆(t)

)
6 0,

(Ay)∆(t) =
m−2∑
i=1

βiy(ηi) +
∞∫
t

h(s)f
(
s, y(s), y∆(s)

)
∇s > 0,

(Ay)(a) = γ

( ∞∫
a

x(s)∇s+
m−2∑
i=1

βiy(ηi)

)
+

m−2∑
i=1

αi

[m−2∑
j=1

βjy(ηj) +

∞∫
ηi

x(s)∇s

]
+

∑
a<tk<t

Ik(y(tk)) > 0.

Hence, A : P → P .
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Now, we will show that A : P → P is continuous. If yn → y as n → ∞
in P , then there exists τ such that sup

n∈N
∥yn∥ < τ. From (H2), for all t ∈ [a,∞)T

we have f
(
t, yn(t), y

∆
n (t)

)
6 ω

(
max

{
|yn(t)|
1+t , |y∆n (t)|

})
6 ω (∥yn∥) < ω(τ) and

f
(
t, y(t), y∆(t)

)
6 ω (∥y∥) < ω(τ) by the continuity of norm function. Since

∞∫
t

h(s)|f
(
s, yn(s), y

∆
n (s)

)
− f

(
s, y(s), y∆(s)

)
|∇s 6 2ω(τ)

∞∫
a

h(s)∇s < ∞

by using (H1), we get∣∣(Ayn)∆(t)− (Ay)∆(t)
∣∣ 6

m−2∑
i=1

∣∣∣∣βi

(
yn(ηi)− y(ηi)

)∣∣∣∣
+

∞∫
t

h(s)

∣∣∣∣f (
s, yn(s), y

∆
n (s)

)
− f

(
s, y(s), y∆(s)

) ∣∣∣∣∇s

→ 0, n → ∞
by using the Lebesgue dominated convergence theorem. Hence, we obtain

∥(Ayn)∆ − (Ay)∆∥∞ → 0,

as n → ∞. Since

∥Ayn −Ay∥ 6 M∥(Ayn)∆ − (Ay)∆∥∞ → 0,

A : P → P is continuous.
Now we will show that the image of any bounded subset of P under A is

relatively compact in P . If Ω is any bounded subset of P , then there exists K > 0
such that ∥y∥ 6 K for ∀y ∈ Ω. By (H1) and (H2), for ∀y ∈ Ω, we have

∥(Ay)∆∥∞ =
m−2∑
i=1

βiy(ηi) +

∞∫
a

h(s)f
(
s, y(s), y∆(s)

)
∇s

6 K
m−2∑
i=1

βi(1 + ηi) + ω(K)

∞∫
a

h(s)∇s < ∞

Since ∥AΩ∥ 6 M∥(AΩ)∆∥∞ < ∞, AΩ is uniformly bounded.
Now, we show that AΩ is equicontinuous on [a,∞)T. For any R > 0, t, p ∈

[a,R]T, and for all y ∈ Ω, without loss of generality we may assume that t < p. By
(H2), we have

∣∣(Ay)∆(t)− (Ay)∆(p)
∣∣ =

∣∣∣∣∣∣
p∫

t

h(s)f
(
s, y(s), y∆(s)

)
∇s

∣∣∣∣∣∣ 6 ω(K)

p∫
t

h(s)∇s → 0,

uniformly as t → p. Since ∥(Ay)∆(t) − (Ay)∆(p)∥∞ → 0, uniformly as t → p, we
obtain ∥(Ay)(t) − (Ay)(p)∥ → 0, uniformly as t → p, by Lemma 2.2. Thus, AΩ is
equicontinuous on any compact interval of [a,∞)T.
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Now, we show that AΩ is equiconvergent on [a,∞)T. For any y ∈ Ω, we have

|(Ay)∆(t)− (Ay)∆(∞)| =
∣∣∣∣

∞∫
t

h(s)f
(
s, y(s), y∆(s)

)
∇s

∣∣∣∣ → 0

as t → ∞. Then, we obtain ∥(Ay)(t) − (Ay)(∞)∥ → 0, as t → ∞, by Lemma 2.2.
Therefore AΩ is equiconvergent on [a,∞)T.

Hence, the operator A : P → P is completely continuous. �

3. Positive solutions

Definition 3.1. Remember that a subset K ̸= ∅ of X is called a retract of X
if there is a continuous map R : X → K, a retraction, such that Rx = x on K. Let
X be a Banach space, K ⊂ X retract, Ω ⊂ K open and f : Ω → K compact and
such that Fix(f) ∩ ∂Ω = ∅. Then we can define an integer iK(f,Ω) which has the
following properties.

(a) iX(f,Ω) = 1 for f(Ω) ∈ Ω.

(b) Let f : Ω → K be a continuous function and assume that Fix(f) is a
compact subset of Ω. Let Ω1 and Ω2 be disjoint open subsets of Ω such
that Fix(f) ⊂ Ω1∪Ω2. Then we obtain iK(f,Ω) = iK(f,Ω1)+ iK(f,Ω2).

(c) Let G be an open subset of K×[0, 1] and F : G → K be a continuous map.
Assume that Fix(F ) is a compact subset of G. If Gt = {x : (x, t) ∈ G}
and Ft = F (., t), then we have iK(F0, G0) = iK(F1, G1).

(d) If K0 ⊂ K is a retract of K and F (Ω) ⊂ K0, then iK(F,Ω) = iK0(F,Ω ∩
K0).

We will apply the following well-known result of the fixed point theorems to
prove the existence of positive solutions to the (1.1).

Lemma 3.1. [7, 15] Let P be a cone in a Banach space B, and let D be an
open, bounded subset of B with DP := D ∩ P ̸= ∅ and DP ̸= P . Assume that
A : DP → P is a compact map such that y ̸= Ay for y ∈ ∂DP . The following
results hold.

(i) If ∥Ay∥ 6 ∥y∥ for y ∈ ∂DP , then iP (A,DP ) = 1.

(ii) If there exists an b ∈ P r {0} such that y ̸= Ay + λb for all y ∈ ∂DP and
all λ > 0, then iP (A,DP ) = 0.

(iii) Assume U be open in P such that UP ⊂ DP . If iP (A,DP ) = 1 and
iP (A,UP ) = 0, then A has a fixed point in DP r UP . The same result
holds if iP (A,DP ) = 0 and iP (A,UP ) = 1.

For the cone P given in (2.3) and any positive real number r, define the convex
set

Pr := {y ∈ P : ∥y∥ < r}
and the set

Ωr := {y ∈ P : min
t∈[η1,∞)

y(t)

1 + t
< Mr, min

t∈[η1,∞)
y∆(t) < r}
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where M is defined in (2.4). The following results are proved in [15].

Lemma 3.2. The set Ωr has the following properties.

(i) Ωris open relative to P .

(ii) PMr ⊂ Ωr ⊂ Pr

(iii) y ∈ ∂Ωr if and only if min
t∈[η1,∞)

y(t)

1 + t
= Mr.

(iv) If y ∈ ∂Ωr, then Mr(1 + t) 6 y(t) 6 r for t ∈ [η1,∞).

For convenience, we introduce the following notations. Let

fr
Mr := min

{
min

t∈[η1,∞)

f(t, u, v)

r
: u ∈ [0,Mr(1 + η1)], v ∈ [0, r]

}
,

fr
0 := max

{
max

t∈[a,∞)

f(t, u, v)

r
: u ∈ [0,∞), v ∈ [0, r]

}
.

In the next two lemmas, we give conditions on f guaranteeing that iP (A,Pr) =
1 or iP (A,Ωr) = 0. Define

(3.1) N =

∞∫
a

h(s)∇s

and

(3.2) L =

∞∫
η1

h(s)∇s.

Lemma 3.3. If the conditions

fr
0 6

1−M
m−2∑
i=1

βi(1 + ηi)

MN
and y ̸= Ay for y ∈ ∂Pr,

hold, then iP (A,Pr) = 1.

Proof. If y ∈ ∂Pr, then we have 0 6 y(t)
1+t 6 r and 0 6 y∆(t) 6 r.

∥Ay∥ 6 M sup
t∈[a,∞)T

|Ay∆(t)|

= M

(m−2∑
i=1

βiy(ηi) +

∞∫
a

h(s)f
(
s, y(s), y∆(s)

)
∇s

)

6 M

(
r
m−2∑
i=1

βi(1 + ηi) +

1−M
m−2∑
i=1

βi(1 + ηi)

MN
r

∞∫
a

h(s)∇s

)
= r = ∥y∥.
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It follows that ∥Ay∥ 6 ∥y∥ for y ∈ ∂Pr. By Lemma 3.1(i), we get iP (A,Pr) = 1. �

Lemma 3.4. If the conditions

fr
Mr > M

1 + η1
α1L

and y ̸= Ay for y ∈ ∂Ωr,

hold, then iP (A,Ωr) = 0.

Proof. Let b(t) ≡ 1 for t ∈ [a,∞)T, then b ∈ ∂P1. Assume there exist
y0 ∈ ∂Ωr and λ0 > 0 such that y0 = Ay0 + λ0b. Then for t ∈ [a,∞)T we have

y0(t) = Ay0(t) + λ0b(t)

> α1

∞)∫
η1

h(s)f
(
s, y(s), y∆(s)

)
∇s+ λ0

> α1rf
r
Mr

∞)∫
η1

h(s)∇s+ λ0

> α1rM
1 + η1
α1L

∞)∫
η1

h(s)∇s+ λ0

= Mr(1 + η1) + λ0.

But this implies that Mr(1 + η1) > Mr(1 + η1) + λ0, a contradiction. Hence, y0 ̸=
Ay0+λ0b for y0 ∈ ∂Ωr and λ0 > 0, so by Lemma 3.1(ii), we get iP (A,Ωr) = 0. �

Theorem 3.1. Assume (H1)-(H3) hold. Let M,N and L be as in (2.4), (3.1),
and (3.2), respectively. Suppose that one of the following conditions holds.

(C1) There exist constants c1, c2, c3 ∈ R with 0 < c1 < c2 < ec3 such that

f c1
Mc1

, f c3
Mc3

> M
1 + η1
α1L

, f c2
0 6

1−M
m−2∑
i=1

βi(1 + ηi)

MN
, and y ̸= Ay for y ∈ ∂Pc2 .

(C2) There exist constants c1, c2, c3 ∈ R with 0 < c1 < ec2 and c2 < c3 such
that

f c1
0 , f c3

0 6
1−M

m−2∑
i=1

βi(1 + ηi)

MN
, f c2

Mc2
> M

1 + η1
α1L

, and y ̸= Ay for y ∈ ∂Ωc2 .

Then (1.1) has two positive solutions. Additionally, if in (C2) the condition

f c1
0 6

1−M
m−2∑
i=1

βi(1 + ηi)

MN
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is replaced by

f c1
0 <

1−M
m−2∑
i=1

βi(1 + ηi)

MN
,

then (1.1) has a third positive solution in Pc1 .

Proof. Assume that (C1) holds. We show that either A has a fixed point
in ∂Ωc1 or in Pc2 r Ωc1 . If y ̸= Ay for y ∈ ∂Ωc1 , then by Lemma 3.4, we have
iP (A,Ωc1) = 0. Since

f c2
0 6

1−M
m−2∑
i=1

βi(1 + ηi)

MN
and y ̸= Ay for y ∈ ∂Pc2 , from Lemma 3.3 we get iP (A,Pc2) = 1. By Lemma
3.2(ii) and c1 < c2, we have Ωc1 ⊂ P c1 ⊂ Pc2 . From Lemma 3.1(iii), A has a fixed
point in Pc2 r Ωc1 . If y ̸= Ay for y ∈ ∂Ωc3 , then from Lemma 3.4 iP (A,Ωc3) = 0.
By Lemma 3.2(ii) and c2 < Mc3, we get P c2 ⊂ PMc3 ⊂ Ωc3 . From Lemma 3.1(iii),
A has a fixed point in Ωc3 r P c2 . The proof is similar when (C2) holds and we
omit it here. �

As a special case of Theorem 3.1, we have the following result.

Theorem 3.2. Suppose (H1)-(H3) hold. Let M,N and L be as in (2.4), (3.1),
and (3.2), respectively. Assume that one of the following conditions holds.

(C3) There exist constants c1, c2 ∈ R with 0 < c1 < c2 such that

f c1
Mc1

> M
1 + η1
α1L

and f c2
0 6

1−M
m−2∑
i=1

βi(1 + ηi)

MN
.

(C4) There exist constants c1, c2 ∈ R with 0 < c1 < Mc2 such that

f c1
0 6

1−M
m−2∑
i=1

βi(1 + ηi)

MN
and f c2

Mc2
> M

1 + η1
α1L

.

Then (1.1) has a positive solution.
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[23] İ. Yaslan and Z. Haznedar. Existence of positive solutions for second-order impulsive time
scale boundary value problems on infinite intervals. Filomat, 28(10)(2014), 2163-2173.
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