BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **11**(3)(2021), 503-515 DOI: 10.7251/BIMVI2103503B

> Former BULLETIN OF SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

COMMON FIXED POINTS FOR TWO WEAK SUBSEQUENTIAL CONTINUOUS MAPPINGS

Hakima Bouhadjera

ABSTRACT. In this paper we are concerned with the existence and uniqueness of common fixed points for a pair of mappings satisfying an implicit relation under new concepts. Our results present an interesting contribution in the fixed point theory's area.

1. Introduction

In 1986, Jungck [5] introduced the notion of compatible mappings. Inspired by the above work, many authors developed much weaker conditions. One of the most interesting generalization is subcompatibility introduced in [2] ([3]). Again, Pathak et al. [10] introduced the notions of *R*-weak commutativity of type (\mathcal{A}_f) and (\mathcal{A}_g) for obtaining common fixed point theorems. Motivated by the above concepts, Kumar ([6], [7]) gave the notion of *R*-weak commutativity of type (\mathcal{P}). On the other hand, Pant [8] initiated the study of fixed points for discontinuous mappings by using the concept of reciprocal continuity. Recently, in [2] ([3]), we suggested the notion of subsequential continuity which represents a legitimate generalization of the concept of reciprocal continuity and obtained fixed point theorems by employing the new notion. Quite recently, Gopal et al. [4] presented their new notions of sequential continuity of type (\mathcal{A}_f) and (\mathcal{A}_g). Appeared in 2016 in [1], the new concept of weak subsequential continuity represents a genuine reasonable generalization of weak reciprocal continuity represents a genuine reasonable generalization of weak reciprocal continuity represents a genuine reasonable

Communicated by Daniel A. Romano.

²⁰¹⁰ Mathematics Subject Classification. 47H10; 54H25.

Key words and phrases. Implicit relation, weakly reciprocally continuous mappings, weakly subsequentially continuous mappings, subcompatible mappings, *R*-weakly commuting mappings of type (\mathcal{A}_f) (resp. (\mathcal{A}_g) , (\mathcal{P})), metric and complete metric spaces.

BOUHADJERA

 (\mathcal{A}_f) or (\mathcal{A}_g)). This definition makes up an addition to develop the literature of fixed point theory.

2. Preliminaries

Let us start by stating some needed definitions.

DEFINITION 2.1. ([5]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called compatible if and only if

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some $t \in \mathcal{X}$.

DEFINITION 2.2. ([2, 3]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called subcompatible if and only if there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t, t \in \mathcal{X}$ and which satisfy

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0.$$

DEFINITION 2.3. ([8]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called reciprocally continuous if $\lim_{n \to \infty} fgx_n = ft$ and $\lim_{n \to \infty} gfx_n = gt$ whenever $\{x_n\}$ is a sequence such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some t in \mathcal{X} .

DEFINITION 2.4. ([2, 3]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are said to be subsequentially continuous if and only if there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some t in \mathcal{X} and satisfy $\lim_{n \to \infty} fgx_n = ft$ and $\lim_{n \to \infty} gfx_n = gt$.

DEFINITION 2.5. ([9]) Two self-mappings f and g of a metric space (\mathcal{X}, d) will be called weakly reciprocally continuous if $\lim_{n \to \infty} fgx_n = ft$ or $\lim_{n \to \infty} gfx_n = gt$, whenever $\{x_n\}$ is a sequence in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some t in \mathcal{X} .

DEFINITION 2.6. ([4]) A pair (f,g) of self-mappings defined on a metric space (\mathcal{X},d) is said to be sequentially continuous of type (\mathcal{A}_f) if and only if there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some $t \in \mathcal{X}$ and $\lim_{n\to\infty} fgx_n = ft$ and $\lim_{n\to\infty} ggx_n = gt$.

DEFINITION 2.7. ([4]) A pair (f,g) of self-mappings defined on a metric space (\mathcal{X},d) is said to be sequentially continuous of type (\mathcal{A}_g) if and only if there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some $t \in \mathcal{X}$ and $\lim_{n\to\infty} gfx_n = gt$ and $\lim_{n\to\infty} ffx_n = ft$.

DEFINITION 2.8. ([10]) Let (\mathcal{X}, d) be a metric space and let f, g be selfmappings of \mathcal{X} . The mappings f and g are said to be R-weakly commuting of type (\mathcal{A}_f) if there exists a positive real number R such that

$$(2.1) d(fgx, ggx) \leqslant Rd(fx, gx)$$

for all $x \in \mathcal{X}$. f and g are said to be R-weakly commuting of type (\mathcal{A}_f) if (2.1) holds for some real number R > 0.

DEFINITION 2.9. ([10]) Let (\mathcal{X}, d) be a metric space and let f, g be selfmappings of \mathcal{X} . The mappings f and g are said to be R-weakly commuting of type (\mathcal{A}_g) if there exists a positive real number R such that

$$(2.2) d(gfx, ffx) \leqslant Rd(fx, gx)$$

for all $x \in \mathcal{X}$. f and g are said to be R-weakly commuting of type (\mathcal{A}_g) if (2.2) holds for some real number R > 0.

DEFINITION 2.10. ([6, 7]) A pair of self-mappings (f, g) of a metric space (\mathcal{X}, d) is said to be *R*-weakly commuting of type (\mathcal{P}) if there exists some R > 0 such that

$$d(ffx,ggx) \leqslant Rd(fx,gx)$$

for all $x \in \mathcal{X}$.

DEFINITION 2.11. ([1]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called **weakly subsequentially continuous** if and only if there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$ for some t in \mathcal{X} and which satisfy $\lim_{n \to \infty} fgx_n = ft$ or $\lim_{n \to \infty} gfx_n = gt$.

According to definitions 2.5, 2.6, 2.7, 2.11, it can easily seen that weakly reciprocally continuous mappings are weakly subsequentially continuous mappings. Also, if in our definition we have $\lim_{n\to\infty} fgx_n = ft$, then evidently sequentially continuous of type (\mathcal{A}_f) mappings imply our definition (alternately, if we have $\lim_{n\to\infty} gfx_n = gt$, then sequentially continuous of type (\mathcal{A}_g) mappings imply our definition). To see that the converse implications are not true in general, let us give the next example which fulfills our desire.

EXAMPLE 2.1. Let $\mathcal{X} = [0,6]$ and let d be the usual metric on \mathcal{X} . We define $f, g: \mathcal{X} \to \mathcal{X}$ as follows:

$$fx = \begin{cases} 3-x \text{ if } x \in [0,3] \\ \frac{9}{x} \text{ if } x \in (3,6], \end{cases} \quad gx = \begin{cases} 3+x \text{ if } x \in [0,3) \\ \frac{27}{x^2} \text{ if } x \in [3,6]. \end{cases}$$

First, we readily see that f and g are not continuous at x = 3. It can also be noted that f and g are weakly subsequentially continuous. To see this, let $\{x_n\}$ be the sequence in \mathcal{X} given by $x_n = 3 + \frac{1}{n}$ for $n = 1, 2, \ldots$ Then

$$fx_n = \frac{9}{x_n} \to 3 = t \text{ as } n \to \infty,$$

and

$$gx_n = \frac{27}{x_n^2} \to 3 = t \text{ as } n \to \infty$$
$$fgx_n = f(\frac{27}{x_n^2}) = 3 - \frac{27}{x_n^2} \to 0 = f(3) \text{ as } n \to \infty,$$

but

$$gfx_n = g(\frac{9}{x_n}) = 3 + \frac{9}{x_n} \to 6 \neq 3 = g(3) \text{ as } n \to \infty.$$

Again, it is obvious that f and g are not sequentially continuous of type (\mathcal{A}_f) because

$$ggx_n = g(\frac{27}{x_n^2}) = 3 + \frac{27}{x_n^2} \to 6 \neq 3 = g(3) \text{ as } n \to \infty.$$

Finally, we can check that f and g are not weakly reciprocally continuous by giving the sequence $x_n = \frac{1}{n}$ for n = 1, 2, ... Then

$$fx_n = 3 - x_n \to 3 = t \text{ as } n \to \infty,$$

$$gx_n = 3 + x_n \to 3 = t \text{ as } n \to \infty$$

but

$$fgx_n = f(3+x_n) = \frac{9}{3+x_n} \to 3 \neq 0 = f(3) \text{ as } n \to \infty$$

and

$$gfx_n = g(3 - x_n) = 6 - x_n \to 6 \neq 3 = g(3) \text{ as } n \to \infty$$

3. Implicit Relations

Motivated by [11], let us consider \mathcal{F} the set of all continuous functions $F: \mathbb{R}^6 \to \mathbb{R}$ such that

- (1) (F_1) : F is increasing in variable t_6 ,
- (2) (F_2) : there exists $h \in [0, 1)$ such that for all $u, v \ge 0$, $F(u, v, v, u, 0, u + v) \le 0$ implies $u \le hv$,
- (3) (F_3) : F(t, t, 0, 0, t, t) > 0 for all t > 0,
- (4) (F_4) : F(t, 0, t, 0, t, 0) > 0 for all t > 0.

EXAMPLE 3.1. $F(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - k \max\{\frac{t_2 + t_3 + t_4}{3}, \frac{t_5 + t_6}{2}\}$, where $k \in [0, 1)$.

(1) (F_1) : Obvious.

(2) (F₂): Let
$$u, v \ge 0$$
, $F(u, v, v, u, 0, u + v) = u - k \max\{\frac{u+2v}{3}, \frac{u+v}{2}\} \le 0$.
If $u > v$, then $v < u \le \frac{k}{2-k}v < v$, a contradiction. Hence $u \le v$ which implies $u \le hv$, where $0 \le h = \frac{2k}{3-k} < 1$.

(3)
$$(F_3)$$
: $F(t, t, 0, 0, t, t) = t - k \max\{\frac{t}{3}, t\} = t(1-k) > 0$ for all $t > 0$.

(4) (F₄):
$$F(t, 0, t, 0, t, 0) = t - k \max\{\frac{t}{3}, \frac{t}{2}\} = t(1 - \frac{k}{2}) > 0$$
 for all $t > 0$

EXAMPLE 3.2. $F(t_1, t_2, t_3, t_4, t_5, t_6) = kt_1 - t_2 - t_3 - t_4 - t_5 - t_6$, where k > 5. (1) (F_1) : Obvious.

- (4) (F_4) : F(t, 0, t, 0, t, 0) = t(k-2) > 0 for all t > 0

EXAMPLE 3.3. $F(t_1, t_2, t_3, t_4, t_5, t_6) = t_1^2 - k \frac{t_3 t_4 + t_5 t_6}{1 + t_2}$, where $k \in [0, 1)$.

- (1) (F_1) : Obvious.
- (2) (F₂): Let $u, v \ge 0$ be and $F(u, v, v, u, 0, u + v) = u^2 k \frac{uv}{1+v} \le 0$. If u > 0, then $u \leq k \frac{v}{1+v}$, which implies $u \leq hv$, where $0 \leq h = k < 1$. If u = 0, then $u \leq hv$.
- (3) (F_3) : $F(t, t, 0, 0, t, t) = t^2(1 \frac{k}{1+t}) > 0$ for all t > 0. (4) (F_4) : $F(t, 0, t, 0, t, 0) = t^2 > 0$ for all t > 0.

Now, let f and g be self-mappings of a metric space (\mathcal{X}, d) . Let us define the set

$$S = \{\{x_n\} \subseteq \mathcal{X} : \text{ if there holds } \lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t,$$

then there holds

$$\lim_{n \to \infty} fgx_n = ft \text{ or } \lim_{n \to \infty} gfx_n = gt\}.$$

Suppose that $f\mathcal{X} \subseteq g\mathcal{X}$, there exists a sequence $\{x_i\}_{i=0}^{\infty}$, such that x_{n+1} is the pre-image under g of fx_n , that is

(a)
$$fx_0 = gx_1, fx_1 = gx_2, \dots, fx_n = gx_{n+1}, \dots$$

Let us define the set U to be the set of all sequences $\{x_n\}$ defined by (a). Let us define the sequence $\{y_n\} \subseteq \mathcal{X}$ by $y_n = fx_n = gx_{n+1}, n = 0, 1, 2, \dots$

4. Main Results

THEOREM 4.1. Let f and q be weakly subsequentially continuous self-mappings of a complete metric space (\mathcal{X}, d) such that $f\mathcal{X} \subseteq g\mathcal{X}, U \cap S \neq \emptyset$ and

$$(4.1) \quad F(d(fx, fy), d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(gx, fy)) \leq 0$$

for all x, y in \mathcal{X} and $F \in \mathcal{F}$. If f and g are either R-weakly commuting of type (\mathcal{A}_g) or *R*-weakly commuting of type (\mathcal{A}_f) or *R*-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

PROOF. We choose an arbitrary x_0 such that the corresponding sequence $\{x_n\}$ defined in (a) belongs to $U \cap S$. Then, as in [9], by a routine calculation it follows that $\{y_n\}$ defined above is a Cauchy sequence. Since \mathcal{X} is complete, $\{y_n\}$ converges to a point t in \mathcal{X} . Moreover, $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_{n+1} = t$.

BOUHADJERA

Now, suppose that f and g are R-weakly commuting of type (\mathcal{A}_g) . Weak subsequential continuity of f and g implies that $\lim_{n\to\infty} fgx_n = ft$ or $\lim_{n\to\infty} gfx_n = gt$. Let us first assume that $\lim_{n\to\infty} gfx_n = gt$. Then R-weak commutativity of type (\mathcal{A}_g) yields $d(ffx_n, gfx_n) \leq Rd(fx_n, gx_n)$. Taking the limit as $n \to \infty$, we obtain $\lim_{n\to\infty} ffx_n = gt$. Using (4.1) we get

$$\begin{split} F(d(ft, ffx_n), d(gt, gfx_n), d(ft, gt), d(ffx_n, gfx_n), \\ d(ft, gfx_n), d(gt, ffx_n)) \leqslant 0. \end{split}$$

Making $n \to \infty$ we get

$$F(d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) \leq 0,$$

that is ft = gt. Again, by virtue of *R*-weak commutativity of type (\mathcal{A}_g) , $d(fft, gft) \leq Rd(ft, gt)$. This yields fft = gft or fgt = fft = gft = ggt. By (4.1) we have

$$\begin{aligned} F(d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft)) \\ &= F(d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) \leqslant 0, \end{aligned}$$

i.e., ft = fft = gft.

Next, assume that $\lim_{n\to\infty} fgx_n = ft$. $f\mathcal{X} \subseteq g\mathcal{X}$ implies that there is a point $u \in \mathcal{X}$ such that ft = gu. Then $\lim_{n\to\infty} fgx_n = gu$. By virtue of (a) this also yields $\lim_{n\to\infty} ffx_n = gu$. Hence *R*-weak commutativity of type (\mathcal{A}_g) implies that $d(ffx_n, gfx_n) \leq Rd(fx_n, gx_n)$. Taking the limit as $n \to \infty$ we get $\lim_{n\to\infty} gfx_n = ft = gu$. On using (4.1), we find

 $F(d(fu, ffx_n), d(gu, gfx_n), d(fu, gu), d(ffx_n, gfx_n), d(fu, gfx_n), d(gu, ffx_n)) \leq 0.$

On letting $n \to \infty$ we obtain

$$F(d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) \leq 0$$

so fu = gu. Again, *R*-weak commutativity of type (\mathcal{A}_g) implies that $d(ffu, gfu) \leq Rd(fu, gu)$, which yields ffu = gfuand fgu = ffu = gfu = ggu. Finally, on using (4.1), we get

$$\begin{split} F(d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu)) \\ &= F(d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) \leqslant 0, \end{split}$$

which is a contradiction. Thus fu = ffu = gfu.

Suppose that f and g are R-weakly commuting of type (\mathcal{A}_f) . Weak subsequential continuity of f and g implies that $\lim_{n\to\infty} fgx_n = ft$ or $\lim_{n\to\infty} gfx_n = gt$. Let $\lim_{n\to\infty} gfx_n = gt$. R-weak commutativity of type (\mathcal{A}_f) yields

 $d(ggx_n, fgx_n) \leq Rd(fx_n, gx_n)$. Taking the limit as $n \to \infty$ and by virtue of (a), we obtain $\lim fgx_n = gt$. On using (4.1), we get

$$F(d(ft, fgx_n), d(gt, ggx_n), d(ft, gt), d(fgx_n, ggx_n), d(ft, ggx_n), d(gt, fgx_n)) \leq 0.$$

Making $n \to \infty$, we get

$$F(d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) \leq 0$$

a contradiction. Hence ft = gt. Again, by virtue of *R*-weak commutativity of type $(\mathcal{A}_f), d(ggt, fgt) \leq Rd(ft, gt)$. This yields ggt = fgt and gft = ggt = fgt = fft. By (4.1), we have

$$\begin{split} F(d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft)) \\ &= F(d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) \leqslant 0, \end{split}$$

that is ft = fft = gft.

Next, assume that $\lim_{n\to\infty} fgx_n = ft$. Then $f\mathcal{X} \subseteq g\mathcal{X}$ implies that there is an element $u \in \mathcal{X}$ such that ft = gu. Hence *R*-weak commutativity of type (\mathcal{A}_f) implies that $d(ggx_n, fgx_n) \leq Rd(fx_n, gx_n)$. Letting $n \to \infty$ we get $\lim_{n\to\infty} ggx_n = ft = gu$. On using (4.1), we get

 $F(d(fu, fgx_n), d(gu, ggx_n), d(fu, gu), d(fgx_n, ggx_n), d(fu, ggx_n), d(gu, fgx_n)) \leq 0.$

Taking the limit as $n \to \infty$, we obtain

$$F(d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) \leq 0,$$

a contradiction so that fu = gu. Again, using *R*-weak commutativity of type (\mathcal{A}_f) we have $d(ggu, fgu) \leq Rd(fu, gu)$. This yields ggu = fgu and gfu = ggu = fgu = ffu. By (4.1), we have

$$\begin{split} F(d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu)) \\ &= F(d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) \leqslant 0, \end{split}$$

i.e., fu = ffu = gfu.

Finally, suppose that f and g are R-weakly commuting of type (\mathcal{P}) . Now, weak subsequential continuity of f and g implies that $\lim_{n \to \infty} fgx_n = ft$ or $\lim_{n \to \infty} gfx_n = gt$. Let us first assume that $\lim_{n \to \infty} gfx_n = gt$. By virtue of (a) and R-weak commutativity of type (\mathcal{P}) , we have $\lim_{n \to \infty} ffx_n = \lim_{n \to \infty} ggx_n = gt$. Using (4.1), we get

$$\begin{split} F(d(ft,ffx_n),d(gt,gfx_n),d(ft,gt),d(ffx_n,gfx_n),\\ d(ft,gfx_n),d(gt,ffx_n)) \leqslant 0. \end{split}$$

On letting $n \to \infty$, we obtain

$$F(d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) \leq 0$$

that is ft = gt. Again, by virtue of *R*-weak commutativity of type (\mathcal{P}) , $d(fft = ggt) \leq Rd(ft, gt)$. This implies that fft = ggt

and fgt = fft = ggt = gft. Also, using (4.1), we find

$$\begin{split} F(d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft)) \\ = F(d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) \leqslant 0, \end{split}$$

a contradiction. Hence ft = fft = gft.

Now, assume that $\lim_{n\to\infty} fgx_n = ft$. $f\mathcal{X} \subseteq g\mathcal{X}$ implies that there exists a point $u \in \mathcal{X}$ which verifies ft = gu. By virtue of (a) and *R*-weak commutativity of type (\mathcal{P}) , we get $\lim_{n\to\infty} ffx_n = \lim_{n\to\infty} ggx_n = ft = gu$. We assert that fu = gu. Let on contrary that $fu \neq gu$. Using (4.1), we obtain

$$F(d(fu, fgx_n), d(gu, ggx_n), d(fu, gu), d(fgx_n, ggx_n), d(fu, ggx_n), d(gu, fgx_n)) \leq 0.$$

At infinity, we get

$$F(d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) \le 0,$$

i.e., fu = gu. Again, by virtue of *R*-weak commutativity of type (\mathcal{P}) , $d(ffu, ggu) \leq Rd(fu, gu)$. This yields ffu = ggu and fgu = ffu = ggu = gfu. On using (4.1), we get

$$\begin{split} F(d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu)) \\ &= F(d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) \leqslant 0, \end{split}$$

that is, fu = ffu = gfu.

Uniqueness of the common fixed point follows immediately by (F_3) and (4.1).

To illustrate our Theorem, we give the following example.

EXAMPLE 4.1. Let $\mathcal{X} = [1,3]$ and let d be the usual metric on \mathcal{X} . Define $f, g: \mathcal{X} \to \mathcal{X}$ as follows:

$$fx = \begin{cases} 1 \text{ if } x = 1\\ \frac{3}{2} \text{ if } x \in (1,2] \\ 1 \text{ if } x \in (2,3], \end{cases} gx = \begin{cases} 1 \text{ if } x = 1\\ 3 \text{ if } x \in (1,2] \\ \frac{x}{2} \text{ if } x \in (2,3] \end{cases}$$

Then f and g satisfy all conditions of the above theorem and have the common fixed point x = 1. It can be verified that f and g satisfy condition (4.1) with $F = t_1 - k \max\{t_2, t_3, t_4, t_5, t_6\}$ where $k \in [\frac{1}{4}, \frac{1}{2})$. Furthermore, f and g are *R*-weakly commuting of type (\mathcal{A}_g) . It can be noted that f and g are weakly subsequentially continuous. At this end, let $\{x_n\}$ be a sequence in \mathcal{X} such that $x_n = 2 + \frac{1}{n}$ for $n = 1, 2, \ldots$. Then, $fx_n = 1 \to 1 = t$, $gx_n = \frac{x_n}{2} \to 1 = t$ and $gfx_n = g(1) = 1$, but $fgx_n = f(\frac{x_n}{2}) = \frac{3}{2} \neq 1 = f(1)$. On the other hand, we have $f\mathcal{X} = \{1, \frac{3}{2}\} \subseteq g\mathcal{X} = [1, \frac{3}{2}] \cup \{3\}.$

Now, we give some results.

COROLLARY 4.1. Let f and g be weakly subsequentially continuous mappings from a complete metric space (\mathcal{X}, d) into itself such that $f\mathcal{X} \subseteq g\mathcal{X}, U \cap S \neq \emptyset$ and

$$d(fx, fy) \leqslant k \max\{\frac{d(gx, gy) + d(fx, gx) + d(fy, gy)}{3}, \frac{d(fx, gy) + d(gx, fy)}{2}\}$$

for all x, y in \mathcal{X} , where $k \in [0, 1)$. If f and g are either R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

PROOF. Use Theorem 4.1 and Example 3.1.

COROLLARY 4.2. Let f and g be weakly subsequentially continuous mappings from a complete metric space (\mathcal{X}, d) into itself such that $f\mathcal{X} \subseteq g\mathcal{X}, U \cap S \neq \emptyset$ and

$$d(fx, fy) \leq \frac{1}{k} [d(gx, gy) + d(fx, gx) + d(fy, gy) + d(fx, gy) + d(gx, fy)]$$

for all x, y in \mathcal{X} , where k > 5. If f and g are either R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

PROOF. Use Theorem 4.1 and Example 3.2.

COROLLARY 4.3. Let f and g be weakly subsequentially continuous mappings from a complete metric space (\mathcal{X}, d) into itself such that $f\mathcal{X} \subseteq g\mathcal{X}, U \cap S \neq \emptyset$ and

$$d^{2}(fx, fy) \leqslant k \left[\frac{d(fx, gx)d(fy, gy) + d(fx, gy)d(gx, fy)}{1 + d(gx, gy)} \right]$$

for all x, y in \mathcal{X} , where $k \in [0, 1)$. If f and g are either R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

PROOF. Use Theorem 4.1 and Example 3.3.

In the following, we will prove a common fixed point theorem for a subcompatible pair of self-mappings.

THEOREM 4.2. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and

$$(4.2) \quad F(d(fx, fy), d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(gx, fy)) \leq 0$$

for all x, y in \mathcal{X} , where F is continuous and satisfies only (F_3) and (F_4) . If f and g are R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) then f and g have a unique common fixed point.

PROOF. Since f and g are weakly reciprocally continuous there exists a sequence $\{x_n\}$ in \mathcal{X} such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = t$ for some t in \mathcal{X} and which satisfy $\lim_{n\to\infty} fgx_n = ft$ or $\lim_{n\to\infty} gfx_n = gt$. Let $\lim_{n\to\infty} gfx_n = gt$. Then R-weak commutativity of type (\mathcal{A}_g) yields $d(ffx_n, gfx_n) \leq Rd(fx_n, gx_n)$. Taking the limit as

 $n \to \infty$, we get $\lim_{n \to \infty} ffx_n = gt$. By (4.2) we have

$$\begin{split} F(d(ft,ffx_n),d(gt,gfx_n),d(ft,gt),d(ffx_n,gfx_n),\\ d(ft,gfx_n),d(gt,ffx_n)) \leqslant 0. \end{split}$$

At infinity we get

$$F(d(ft,gt), 0, d(ft,gt), 0, d(ft,gt), 0) \leq 0,$$

a contradiction so that ft = gt. Again, by virtue of *R*-weak commutativity of type $(\mathcal{A}_g), d(fft, gft) \leq Rd(ft, gt)$, which yields fft = gft and fgt = fft = gft = ggt. Using (4.2), we obtain

$$\begin{split} F(d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft)) \\ &= F(d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) \leqslant 0, \end{split}$$

a contradiction. Hence ft = fft = gft.

Next, assume that $\lim_{n\to\infty} fgx_n = ft$. Since $f\mathcal{X} \subseteq g\mathcal{X}$ then, there is an element $u \in \mathcal{X}$ such that ft = gu. By virtue of subcompatibility and *R*-weak commutativity of type (\mathcal{A}_g) , $\lim_{n\to\infty} ffx_n = \lim_{n\to\infty} gfx_n = ft = gu$. By (4.2), we have

 $F(d(fu, ffx_n), d(gu, gfx_n), d(fu, gu), d(ffx_n, gfx_n), d(fu, gfx_n), d(gu, ffx_n)) \leq 0.$

Making $n \to \infty$, we obtain

$$F(d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) \leq 0,$$

a contradiction. Hence fu = gu. Again, by virtue of *R*-weak commutativity of type (\mathcal{A}_g) we get ffu = gfu and fgu = ffu = gfu = ggu. On using (4.2), we obtain

$$\begin{split} F(d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu)) \\ &= F(d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) \leqslant 0, \end{split}$$

that is, fu = ffu = gfu.

Finally, suppose that f and g are R-weakly commuting of type (\mathcal{A}_f) , then, we have $d(fgx_n, ggx_n) \leq Rd(fx_n, gx_n)$. Now, weak reciprocal continuity implies that $\lim_{n \to \infty} fgx_n = ft$ or $\lim_{n \to \infty} gfx_n = gt$. Let $\lim_{n \to \infty} gfx_n = gt$. By virtue of subcompatibility, we have $\lim_{n \to \infty} fgx_n = gt$ and consequently $\lim_{n \to \infty} ggx_n = gt$. Using (4.2), we get

$$F(d(ft, fgx_n), d(gt, ggx_n), d(ft, gt), d(fgx_n, ggx_n), d(ft, ggx_n), d(gt, fgx_n)) \leq 0.$$

At infinity we get

$$F(d(ft,gt), 0, d(ft,gt), 0, d(ft,gt), 0) \leqslant 0,$$

i.e., ft = gt. Again, by virtue of *R*-weak commutativity of type (\mathcal{A}_f) , ggt = fgtand gft = ggt = fgt = fft. On using (4.2), we obtain

$$\begin{aligned} F(d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft)) \\ &= F(d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) \leqslant 0, \end{aligned}$$

that is, ft = fft = gft.

Next, suppose that $\lim_{n\to\infty} fgx_n = ft$. $f\mathcal{X} \subseteq g\mathcal{X}$ implies that, there exists some $u \in \mathcal{X}$ such that ft = gu. By virtue of *R*-weak commutativity of type (\mathcal{A}_f) , we have $\lim_{n\to\infty} ggx_n = \lim_{n\to\infty} fgx_n = ft = gu$. Using (4.2), we get

$$F(d(fu, fgx_n), d(gu, ggx_n), d(fu, gu), d(fgx_n, ggx_n), d(fu, ggx_n), d(gu, fgx_n)) \leq 0.$$

Taking the limit as $n \to \infty$, we obtain

$$F(d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) \leq 0,$$

i.e., fu = gu. Again, by virtue of *R*-weak commutativity of type (\mathcal{A}_f) we get ggu = fgu and gfu = ggu = fgu = ffu. We assert that fu = ffu = gfu. Let on contrary that $fu \neq ffu$. On using (4.2), we obtain

$$\begin{split} F(d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu)) \\ &= F(d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) \leqslant 0, \end{split}$$

a contradiction. Hence fu = ffu = gfu.

Uniqueness of the common fixed point follows easily by (F_3) and (4.2).

The next example illustrates our result.

EXAMPLE 4.2. Endow $\mathcal{X} = [0, 10]$ with the absolute value metric and define $f, g: \mathcal{X} \to \mathcal{X}$ by

$$fx = \begin{cases} 1 \text{ if } x \in [0,1] \\ \frac{4}{3} \text{ if } x \in (1,5] \\ 1 \text{ if } x \in (5,10], \end{cases} \quad gx = \begin{cases} 1 \text{ if } x \in [0,1] \\ 7 \text{ if } x \in (1,5] \\ \frac{x+1}{6} \text{ if } x \in (5,10]. \end{cases}$$

Then f and g are certainly R-weakly commuting of type (\mathcal{A}_g) since $d(ffx, gfx) \leq Rd(fx, gx)$ for all $x \in \mathcal{X}$.

Moreover, f and g are subcompatible. To this end, consider the sequence $x_n = 1 - \frac{1}{n}$ for $n = 1, 2, \ldots$. Then $fx_n = 1 = gx_n$ and $fgx_n = gfx_n = 1$. Thus $|fgx_n - gfx_n| = 0$. To see that f and g are weakly reciprocally continuous, consider $x_n = 5 + \frac{1}{n}$ for $n = 1, 2, \ldots$. Then $fx_n = 1, gx_n = \frac{x_n + 1}{6} \to 1$, and $gfx_n = 1 = g(1)$; whereas $fgx_n = f(\frac{x_n + 1}{6}) = \frac{4}{3} \neq 1 = f(1)$.

On the other hand, observe that

BOUHADJERA

 $f\mathcal{X} = \{1, \frac{4}{3}\} \subseteq g\mathcal{X} = [1, \frac{11}{6}] \cup \{7\}$. Finally, we can check that condition (4.2) is verified for all $x, y \in \mathcal{X}$ with $k \in [\frac{3}{35}, 1)$. Consequently, all conditions of theorem 4.2 are satisfied and x = 1 is the unique common fixed point.

Finally, we end our paper by giving some results.

COROLLARY 4.4. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and the inequality

$$d(fx, fy) \leq k \max\{\frac{d(gx, gy) + d(fx, gx) + d(fy, gy)}{3}, \frac{d(fx, gy) + d(gx, fy)}{2}\}$$

for all x, y in \mathcal{X} , where $k \in [0, 1)$. If f and g are R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) then f and g have a unique common fixed point.

PROOF. Use Theorem 4.2 and Example 3.1.

COROLLARY 4.5. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and the inequality

$$d(fx, fy) \leqslant \frac{1}{k} [d(gx, gy) + d(fx, gx) + d(fy, gy) + d(fx, gy) + d(gx, fy)]$$

for all x, y in \mathcal{X} , where k > 3. If f and g are R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) then f and g have a unique common fixed point.

PROOF. Use Theorem 4.2 and Example 3.2.

COROLLARY 4.6. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and the inequality

$$d^2(fx, fy) \leqslant k[\frac{d(fx, gx)d(fy, gy) + d(fx, gy)d(gx, fy)}{1 + d(gx, gy)}]$$

for all x, y in \mathcal{X} , where $k \in [0,1)$. If f and g are R-weakly commuting of type (\mathcal{A}_g) or R-weakly commuting of type (\mathcal{A}_f) then f and g have a unique common fixed point.

PROOF. Use Theorem 4.2 and Example 3.3.

References

- H. Bouhadjera. More general common fixed point theorems under a new concept. Demonstr. Math., 49(1)(2016), 64–78.
- [2] H. Bouhadjera and C. Godet-Thobie. Common fixed point theorems for pairs of subcompatible maps. arXiv: 0906.3159v1 [math. FA], 17 June 2009.
- [3] H. Bouhadjera and C. Godet-Thobie. Common fixed point theorems for pairs of subcompatible maps. arXiv: 0906.3159v2 [math. FA], 23 May 2011.
- [4] D. Gopal, M. Imdad and M. Abbas. Metrical common fixed point theorems without completness and closedness. *Fixed Point Theory Appl.*, **2012**, 2012:18. https://doi.org/10.1186/1687-1812-2012-18
- [5] G. Jungck. Compatible mappings and common fixed points. Int. J. Math. Math. Sci., 9(4)(1986), 771–779.

- [6] S. Kumar. A note on Jungck's fixed point theorem. Fasc. Math., 45 (2010), 59–69.
- [7] S. Kumar and S. K. Garg. Expansion mapping theorems in metric spaces. Int. J. Contemp. Math. Sciences, 4(36)(2009), 1749–1758.
- [8] R. P. Pant. Common fixed points of four mappings. Bull. Cal. Math. Soc., 90(4)(1998), 281–286.
- [9] R. P. Pant, R. K. Bisht and D. Arora. Weak reciprocal continuity and fixed point theorems. Ann. Univ. Ferrara, Sez. VII, Sci. Mat., 57(1)(2011), 181–190.
- [10] H. K. Pathak, Y. J. Cho and S. M. Kang. Remarks on *R*-weakly commuting mappings and common fixed point theorems. *Bull. Korean Math. Soc.*, 34(2)(1997), 247–257.
- [11] V. Popa and A. M. Patriciu. A general fixed point theorem for a pair of mappings satisfying an implicit relation. J. Adv. Math. Stud., 6(2)(2013), 167–173.

Received by editors 02.11.2020; Revised version 08.05.2021; Available online 17.05.2021.

LABORATORY OF APPLIED MATHEMATICS, BADJI MOKHTAR-ANNABA UNIVERSITY, P.O. BOX 12, 23000 ANNABA, ALGERIA

E-mail address: b_hakima2000@yahoo.fr