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COMMON FIXED POINTS FOR TWO WEAK

SUBSEQUENTIAL CONTINUOUS MAPPINGS

Hakima Bouhadjera

Abstract. In this paper we are concerned with the existence and uniqueness
of common fixed points for a pair of mappings satisfying an implicit relation
under new concepts. Our results present an interesting contribution in the

fixed point theory’s area.

1. Introduction

In 1986, Jungck [5] introduced the notion of compatible mappings. Inspired by
the above work, many authors developed much weaker conditions. One of the most
interesting generalization is subcompatibility introduced in [2] ([3]). Again, Pathak
et al. [10] introduced the notions of R-weak commutativity of type (Af ) and (Ag)
for obtaining common fixed point theorems. Motivated by the above concepts,
Kumar ([6], [7]) gave the notion of R-weak commutativity of type (P). On the
other hand, Pant [8] initiated the study of fixed points for discontinuous mappings
by using the concept of reciprocal continuity. Recently, in [2] ([3]), we suggested
the notion of subsequential continuity which represents a legitimate generalization
of the concept of reciprocal continuity. More recently, Pant et al. [9] introduced
the notion of weak reciprocal continuity and obtained fixed point theorems by
employing the new notion. Quite recently, Gopal et al. [4] presented their new
notions of sequential continuity of type (Af ) and (Ag). Appeared in 2016 in [1],
the new concept of weak subsequential continuity represents a genuine reasonable
generalization of weak reciprocal continuity (resp. sequential continuity of type
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(Af ) or (Ag)). This definition makes up an addition to develop the literature of
fixed point theory.

2. Preliminaries

Let us start by stating some needed definitions.

Definition 2.1. ([5]) Two self-mappings f and g of a metric space (X , d) are
called compatible if and only if

lim
n→∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some

t ∈ X .

Definition 2.2. ([2, 3]) Two self-mappings f and g of a metric space (X , d)
are called subcompatible if and only if there exists a sequence {xn} in X such that
lim

n→∞
fxn = lim

n→∞
gxn = t, t ∈ X and which satisfy

lim
n→∞

d(fgxn, gfxn) = 0.

Definition 2.3. ([8]) Two self-mappings f and g of a metric space (X , d) are
called reciprocally continuous if lim

n→∞
fgxn = ft and lim

n→∞
gfxn = gt whenever {xn}

is a sequence such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t in X .

Definition 2.4. ([2, 3]) Two self-mappings f and g of a metric space (X , d)
are said to be subsequentially continuous if and only if there exists a sequence {xn}
in X such that lim

n→∞
fxn = lim

n→∞
gxn = t for some t in X and satisfy lim

n→∞
fgxn = ft

and lim
n→∞

gfxn = gt.

Definition 2.5. ([9]) Two self-mappings f and g of a metric space (X , d)
will be called weakly reciprocally continuous if lim

n→∞
fgxn = ft or lim

n→∞
gfxn = gt,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t in

X .

Definition 2.6. ([4]) A pair (f, g) of self-mappings defined on a metric space
(X , d) is said to be sequentially continuous of type (Af ) if and only if there exists
a sequence {xn} in X such that lim

n→∞
fxn = lim

n→∞
gxn = t for some t ∈ X and

lim
n→∞

fgxn = ft and lim
n→∞

ggxn = gt.

Definition 2.7. ([4]) A pair (f, g) of self-mappings defined on a metric space
(X , d) is said to be sequentially continuous of type (Ag) if and only if there exists
a sequence {xn} in X such that lim

n→∞
fxn = lim

n→∞
gxn = t for some t ∈ X and

lim
n→∞

gfxn = gt and lim
n→∞

ffxn = ft.



COMMON FIXED POINTS FOR TWO WEAK SUBSEQUENTIAL ... 505

Definition 2.8. ([10]) Let (X , d) be a metric space and let f , g be self-
mappings of X . The mappings f and g are said to be R-weakly commuting of type
(Af ) if there exists a positive real number R such that

(2.1) d(fgx, ggx) 6 Rd(fx, gx)

for all x ∈ X . f and g are said to be R-weakly commuting of type (Af ) if (2.1)
holds for some real number R > 0.

Definition 2.9. ([10]) Let (X , d) be a metric space and let f , g be self-
mappings of X . The mappings f and g are said to be R-weakly commuting of type
(Ag) if there exists a positive real number R such that

(2.2) d(gfx, ffx) 6 Rd(fx, gx)

for all x ∈ X . f and g are said to be R-weakly commuting of type (Ag) if (2.2)
holds for some real number R > 0.

Definition 2.10. ([6, 7]) A pair of self-mappings (f, g) of a metric space (X , d)
is said to be R-weakly commuting of type (P) if there exists some R > 0 such that

d(ffx, ggx) 6 Rd(fx, gx)

for all x ∈ X .

Definition 2.11. ([1]) Two self-mappings f and g of a metric space (X , d) are
called weakly subsequentially continuous if and only if there exists a sequence
{xn} in X such that lim

n→∞
fxn = lim

n→∞
gxn = t for some t in X and which satisfy

lim
n→∞

fgxn = ft or lim
n→∞

gfxn = gt.

According to definitions 2.5, 2.6, 2.7, 2.11, it can easily seen that weakly recipro-
cally continuous mappings are weakly subsequentially continuous mappings. Also,
if in our definition we have lim

n→∞
fgxn = ft, then evidently sequentially continuous

of type (Af ) mappings imply our definition (alternately, if we have lim
n→∞

gfxn = gt,

then sequentially continuous of type (Ag) mappings imply our definition). To see
that the converse implications are not true in general, let us give the next example
which fulfills our desire.

Example 2.1. Let X = [0, 6] and let d be the usual metric on X . We define
f , g : X → X as follows:

fx =

{
3− x if x ∈ [0, 3]
9

x
if x ∈ (3, 6],

gx =

{
3 + x if x ∈ [0, 3)
27

x2
if x ∈ [3, 6].

First, we readily see that f and g are not continuous at x = 3. It can also be noted
that f and g are weakly subsequentially continuous. To see this, let {xn} be the

sequence in X given by xn = 3 +
1

n
for n = 1, 2, . . .. Then

fxn =
9

xn
→ 3 = t as n → ∞,
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gxn =
27

x2
n

→ 3 = t as n → ∞

and

fgxn = f(
27

x2
n

) = 3− 27

x2
n

→ 0 = f(3) as n → ∞,

but

gfxn = g(
9

xn
) = 3 +

9

xn
→ 6 ̸= 3 = g(3) as n → ∞.

Again, it is obvious that f and g are not sequentially continuous of type (Af )
because

ggxn = g(
27

x2
n

) = 3 +
27

x2
n

→ 6 ̸= 3 = g(3) as n → ∞.

Finally, we can check that f and g are not weakly reciprocally continuous by giving

the sequence xn =
1

n
for n = 1, 2, . . .. Then

fxn = 3− xn → 3 = t as n → ∞,

gxn = 3 + xn → 3 = t as n → ∞
but

fgxn = f(3 + xn) =
9

3 + xn
→ 3 ̸= 0 = f(3) as n → ∞

and

gfxn = g(3− xn) = 6− xn → 6 ̸= 3 = g(3) as n → ∞.

3. Implicit Relations

Motivated by [11], let us consider F the set of all continuous functions
F : R6 → R such that

(1) (F1): F is increasing in variable t6,
(2) (F2): there exists h ∈ [0, 1) such that for all u, v > 0,

F (u, v, v, u, 0, u+ v) 6 0 implies u 6 hv,
(3) (F3): F (t, t, 0, 0, t, t) > 0 for all t > 0,
(4) (F4): F (t, 0, t, 0, t, 0) > 0 for all t > 0.

Example 3.1. F (t1, t2, t3, t4, t5, t6) = t1 − kmax{ t2 + t3 + t4
3

,
t5 + t6

2
}, where

k ∈ [0, 1).

(1) (F1): Obvious.

(2) (F2): Let u, v > 0, F (u, v, v, u, 0, u+ v) = u− kmax{u+ 2v

3
,
u+ v

2
} 6 0.

If u > v, then v < u 6 k

2− k
v < v, a contradiction. Hence u 6 v which

implies u 6 hv, where 0 6 h =
2k

3− k
< 1.

(3) (F3): F (t, t, 0, 0, t, t) = t− kmax{ t
3
, t} = t(1− k) > 0 for all t > 0.

(4) (F4): F (t, 0, t, 0, t, 0) = t− kmax{ t
3
,
t

2
} = t(1− k

2
) > 0 for all t > 0.
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Example 3.2. F (t1, t2, t3, t4, t5, t6) = kt1 − t2 − t3 − t4 − t5 − t6, where k > 5.

(1) (F1): Obvious.
(2) (F2): Let u, v > 0 and F (u, v, v, u, 0, u + v) = u(k − 2) − 3v 6 0 which

implies u 6 hv, where h =
3

k − 2
∈ [0, 1).

(3) (F3): F (t, t, 0, 0, t, t) = t(k − 3) > 0 for all t > 0.
(4) (F4): F (t, 0, t, 0, t, 0) = t(k − 2) > 0 for all t > 0.

Example 3.3. F (t1, t2, t3, t4, t5, t6) = t21 − k
t3t4 + t5t6
1 + t2

, where k ∈ [0, 1).

(1) (F1): Obvious.

(2) (F2): Let u, v > 0 be and F (u, v, v, u, 0, u + v) = u2 − k
uv

1 + v
6 0. If

u > 0, then u 6 k
v

1 + v
, which implies u 6 hv, where 0 6 h = k < 1. If

u = 0, then u 6 hv.

(3) (F3): F (t, t, 0, 0, t, t) = t2(1− k

1 + t
) > 0 for all t > 0.

(4) (F4): F (t, 0, t, 0, t, 0) = t2 > 0 for all t > 0.

Now, let f and g be self-mappings of a metric space (X , d). Let us define the
set

S = {{xn} ⊆ X : if there holds lim
n→∞

fxn = lim
n→∞

gxn = t,

then there holds

lim
n→∞

fgxn = ft or lim
n→∞

gfxn = gt}.

Suppose that fX ⊆ gX , there exists a sequence {xi}∞i=0, such that xn+1 is the
pre-image under g of fxn, that is

(a) fx0 = gx1, fx1 = gx2, . . . , fxn = gxn+1, . . . .

Let us define the set U to be the set of all sequences {xn} defined by (a). Let
us define the sequence {yn} ⊆ X by yn = fxn = gxn+1, n = 0, 1, 2, . . ..

4. Main Results

Theorem 4.1. Let f and g be weakly subsequentially continuous self-mappings
of a complete metric space (X , d) such that fX ⊆ gX , U ∩ S ̸= ∅ and

F (d(fx, fy), d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(gx, fy)) 6 0(4.1)

for all x, y in X and F ∈ F . If f and g are either R-weakly commuting of type
(Ag) or R-weakly commuting of type (Af ) or R-weakly commuting of type (P) then
f and g have a unique common fixed point.

Proof. We choose an arbitrary x0 such that the corresponding sequence {xn}
defined in (a) belongs to U ∩ S. Then, as in [9], by a routine calculation it follows
that {yn} defined above is a Cauchy sequence. Since X is complete, {yn} converges
to a point t in X . Moreover, lim

n→∞
fxn = lim

n→∞
gxn+1 = t.
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Now, suppose that f and g are R-weakly commuting of type (Ag). Weak
subsequential continuity of f and g implies that lim

n→∞
fgxn = ft or lim

n→∞
gfxn = gt.

Let us first assume that lim
n→∞

gfxn = gt. Then R-weak commutativity of type

(Ag) yields d(ffxn, gfxn) 6 Rd(fxn, gxn). Taking the limit as n → ∞, we obtain
lim

n→∞
ffxn = gt. Using (4.1) we get

F (d(ft, ffxn), d(gt, gfxn), d(ft, gt), d(ffxn, gfxn),

d(ft, gfxn), d(gt, ffxn)) 6 0.

Making n → ∞ we get

F (d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) 6 0,

that is ft = gt. Again, by virtue of R-weak commutativity of type (Ag),
d(fft, gft) 6 Rd(ft, gt). This yields fft = gft or fgt = fft = gft = ggt. By
(4.1) we have

F (d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft))

= F (d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) 6 0,

i.e., ft = fft = gft.
Next, assume that lim

n→∞
fgxn = ft. fX ⊆ gX implies that there is a point

u ∈ X such that ft = gu. Then lim
n→∞

fgxn = gu. By virtue of (a) this also

yields lim
n→∞

ffxn = gu. Hence R-weak commutativity of type (Ag) implies that

d(ffxn, gfxn) 6 Rd(fxn, gxn). Taking the limit as n → ∞ we get
lim

n→∞
gfxn = ft = gu. On using (4.1), we find

F (d(fu, ffxn), d(gu, gfxn), d(fu, gu), d(ffxn, gfxn),

d(fu, gfxn), d(gu, ffxn)) 6 0.

On letting n → ∞ we obtain

F (d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) 6 0,

so fu = gu. Again, R-weak commutativity of type (Ag) implies that
d(ffu, gfu) 6 Rd(fu, gu), which yields ffu = gfu
and fgu = ffu = gfu = ggu. Finally, on using (4.1), we get

F (d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu))

= F (d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) 6 0,

which is a contradiction. Thus fu = ffu = gfu.
Suppose that f and g are R-weakly commuting of type (Af ). Weak subse-

quential continuity of f and g implies that lim
n→∞

fgxn = ft or lim
n→∞

gfxn = gt. Let

lim
n→∞

gfxn = gt. R-weak commutativity of type (Af ) yields
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d(ggxn, fgxn) 6 Rd(fxn, gxn). Taking the limit as n → ∞ and by virtue of (a),
we obtain lim

n→∞
fgxn = gt. On using (4.1), we get

F (d(ft, fgxn), d(gt, ggxn), d(ft, gt), d(fgxn, ggxn),

d(ft, ggxn), d(gt, fgxn)) 6 0.

Making n → ∞, we get

F (d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) 6 0,

a contradiction. Hence ft = gt. Again, by virtue of R-weak commutativity of type
(Af ), d(ggt, fgt) 6 Rd(ft, gt). This yields ggt = fgt
and gft = ggt = fgt = fft. By (4.1), we have

F (d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft))

= F (d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) 6 0,

that is ft = fft = gft.
Next, assume that lim

n→∞
fgxn = ft. Then fX ⊆ gX implies that there is an

element u ∈ X such that ft = gu. Hence R-weak commutativity of type (Af )
implies that d(ggxn, fgxn) 6 Rd(fxn, gxn). Letting n → ∞ we get
lim

n→∞
ggxn = ft = gu. On using (4.1), we get

F (d(fu, fgxn), d(gu, ggxn), d(fu, gu), d(fgxn, ggxn),

d(fu, ggxn), d(gu, fgxn)) 6 0.

Taking the limit as n → ∞, we obtain

F (d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) 6 0,

a contradiction so that fu = gu. Again, using R-weak commutativity of type (Af )
we have d(ggu, fgu) 6 Rd(fu, gu). This yields ggu = fgu
and gfu = ggu = fgu = ffu. By (4.1), we have

F (d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu))

= F (d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) 6 0,

i.e., fu = ffu = gfu.
Finally, suppose that f and g are R-weakly commuting of type (P). Now, weak

subsequential continuity of f and g implies that lim
n→∞

fgxn = ft or lim
n→∞

gfxn = gt.

Let us first assume that lim
n→∞

gfxn = gt. By virtue of (a) andR-weak commutativity

of type (P), we have lim
n→∞

ffxn = lim
n→∞

ggxn = gt. Using (4.1), we get

F (d(ft, ffxn), d(gt, gfxn), d(ft, gt), d(ffxn, gfxn),

d(ft, gfxn), d(gt, ffxn)) 6 0.

On letting n → ∞, we obtain

F (d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) 6 0,

that is ft = gt. Again, by virtue of R-weak commutativity of type (P),
d(fft = ggt) 6 Rd(ft, gt). This implies that fft = ggt
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and fgt = fft = ggt = gft. Also, using (4.1), we find

F (d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft))

= F (d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) 6 0,

a contradiction. Hence ft = fft = gft.
Now, assume that lim

n→∞
fgxn = ft. fX ⊆ gX implies that there exists a point

u ∈ X which verifies ft = gu. By virtue of (a) and R-weak commutativity of type
(P), we get lim

n→∞
ffxn = lim

n→∞
ggxn = ft = gu. We assert that fu = gu. Let on

contrary that fu ̸= gu. Using (4.1), we obtain

F (d(fu, fgxn), d(gu, ggxn), d(fu, gu), d(fgxn, ggxn),

d(fu, ggxn), d(gu, fgxn)) 6 0.

At infinity, we get

F (d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) 6 0,

i.e., fu = gu. Again, by virtue of R-weak commutativity of type (P),
d(ffu, ggu) 6 Rd(fu, gu). This yields ffu = ggu
and fgu = ffu = ggu = gfu. On using (4.1), we get

F (d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu))

= F (d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) 6 0,

that is, fu = ffu = gfu.
Uniqueness of the common fixed point follows immediately by (F3) and (4.1).

�

To illustrate our Theorem, we give the following example.

Example 4.1. Let X = [1, 3] and let d be the usual metric on X . Define
f, g : X → X as follows:

fx =


1 if x = 1

3

2
if x ∈ (1, 2]

1 if x ∈ (2, 3],

gx =


1 if x = 1

3 if x ∈ (1, 2]
x

2
if x ∈ (2, 3].

Then f and g satisfy all conditions of the above theorem and have the common
fixed point x = 1. It can be verified that f and g satisfy condition (4.1) with

F = t1 − kmax{t2, t3, t4, t5, t6} where k ∈ [
1

4
,
1

2
). Furthermore, f and g are

R-weakly commuting of type (Ag). It can be noted that f and g are weakly
subsequentially continuous. At this end, let {xn} be a sequence in X such that

xn = 2 +
1

n
for n = 1, 2, . . .. Then, fxn = 1 → 1 = t, gxn =

xn

2
→ 1 = t and

gfxn = g(1) = 1, but fgxn = f(
xn

2
) =

3

2
̸= 1 = f(1). On the other hand, we have

fX = {1, 3
2
} ⊆ gX = [1,

3

2
] ∪ {3}.

Now, we give some results.
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Corollary 4.1. Let f and g be weakly subsequentially continuous mappings
from a complete metric space (X , d) into itself such that fX ⊆ gX , U ∩ S ̸= ∅ and

d(fx, fy) 6 kmax{d(gx, gy) + d(fx, gx) + d(fy, gy)

3
,
d(fx, gy) + d(gx, fy)

2
}

for all x, y in X , where k ∈ [0, 1). If f and g are either R-weakly commuting of
type (Ag) or R-weakly commuting of type (Af ) or R-weakly commuting of type (P)
then f and g have a unique common fixed point.

Proof. Use Theorem 4.1 and Example 3.1. �

Corollary 4.2. Let f and g be weakly subsequentially continuous mappings
from a complete metric space (X , d) into itself such that fX ⊆ gX , U ∩ S ̸= ∅ and

d(fx, fy) 6 1

k
[d(gx, gy) + d(fx, gx) + d(fy, gy) + d(fx, gy) + d(gx, fy)]

for all x, y in X , where k > 5. If f and g are either R-weakly commuting of type
(Ag) or R-weakly commuting of type (Af ) or R-weakly commuting of type (P) then
f and g have a unique common fixed point.

Proof. Use Theorem 4.1 and Example 3.2. �

Corollary 4.3. Let f and g be weakly subsequentially continuous mappings
from a complete metric space (X , d) into itself such that fX ⊆ gX , U ∩ S ̸= ∅ and

d2(fx, fy) 6 k[
d(fx, gx)d(fy, gy) + d(fx, gy)d(gx, fy)

1 + d(gx, gy)
]

for all x, y in X , where k ∈ [0, 1). If f and g are either R-weakly commuting of
type (Ag) or R-weakly commuting of type (Af ) or R-weakly commuting of type (P)
then f and g have a unique common fixed point.

Proof. Use Theorem 4.1 and Example 3.3. �

In the following, we will prove a common fixed point theorem for a subcom-
patible pair of self-mappings.

Theorem 4.2. Let f and g be weakly reciprocally continuous subcompatible
self-mappings of a metric space (X , d) satisfying fX ⊆ gX and

F (d(fx, fy), d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(gx, fy)) 6 0(4.2)

for all x, y in X , where F is continuous and satisfies only (F3) and (F4). If f and
g are R-weakly commuting of type (Ag) or R-weakly commuting of type (Af ) then
f and g have a unique common fixed point.

Proof. Since f and g are weakly reciprocally continuous there exists a se-
quence {xn} in X such that lim

n→∞
fxn = lim

n→∞
gxn = t for some t in X and which

satisfy lim
n→∞

fgxn = ft or lim
n→∞

gfxn = gt. Let lim
n→∞

gfxn = gt. Then R-weak com-

mutativity of type (Ag) yields d(ffxn, gfxn) 6 Rd(fxn, gxn). Taking the limit as
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n → ∞, we get lim
n→∞

ffxn = gt. By (4.2) we have

F (d(ft, ffxn), d(gt, gfxn), d(ft, gt), d(ffxn, gfxn),

d(ft, gfxn), d(gt, ffxn)) 6 0.

At infinity we get

F (d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) 6 0,

a contradiction so that ft = gt. Again, by virtue of R-weak commutativity of type
(Ag), d(fft, gft) 6 Rd(ft, gt), which yields fft = gft
and fgt = fft = gft = ggt. Using (4.2), we obtain

F (d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft))

= F (d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) 6 0,

a contradiction. Hence ft = fft = gft.
Next, assume that lim

n→∞
fgxn = ft. Since fX ⊆ gX then, there is an element

u ∈ X such that ft = gu. By virtue of subcompatibility and R-weak commutativity
of type (Ag), lim

n→∞
ffxn = lim

n→∞
gfxn = ft = gu. By (4.2), we have

F (d(fu, ffxn), d(gu, gfxn), d(fu, gu), d(ffxn, gfxn),

d(fu, gfxn), d(gu, ffxn)) 6 0.

Making n → ∞, we obtain

F (d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) 6 0,

a contradiction. Hence fu = gu. Again, by virtue of R-weak commutativity of
type (Ag) we get ffu = gfu and fgu = ffu = gfu = ggu. On using (4.2), we
obtain

F (d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu))

= F (d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) 6 0,

that is, fu = ffu = gfu.
Finally, suppose that f and g are R-weakly commuting of type (Af ), then, we

have d(fgxn, ggxn) 6 Rd(fxn, gxn). Now, weak reciprocal continuity implies that
lim

n→∞
fgxn = ft or lim

n→∞
gfxn = gt. Let lim

n→∞
gfxn = gt. By virtue of subcompat-

ibility, we have lim
n→∞

fgxn = gt and consequently lim
n→∞

ggxn = gt. Using (4.2), we

get

F (d(ft, fgxn), d(gt, ggxn), d(ft, gt), d(fgxn, ggxn),

d(ft, ggxn), d(gt, fgxn)) 6 0.

At infinity we get

F (d(ft, gt), 0, d(ft, gt), 0, d(ft, gt), 0) 6 0,
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i.e., ft = gt. Again, by virtue of R-weak commutativity of type (Af ), ggt = fgt
and gft = ggt = fgt = fft. On using (4.2), we obtain

F (d(ft, fft), d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(gt, fft))

= F (d(ft, fft), d(ft, fft), 0, 0, d(ft, fft), d(ft, fft)) 6 0,

that is, ft = fft = gft.
Next, suppose that lim

n→∞
fgxn = ft. fX ⊆ gX implies that, there exists some

u ∈ X such that ft = gu. By virtue of R-weak commutativity of type (Af ), we
have lim

n→∞
ggxn = lim

n→∞
fgxn = ft = gu. Using (4.2), we get

F (d(fu, fgxn), d(gu, ggxn), d(fu, gu), d(fgxn, ggxn),

d(fu, ggxn), d(gu, fgxn)) 6 0.

Taking the limit as n → ∞, we obtain

F (d(fu, gu), 0, d(fu, gu), 0, d(fu, gu), 0) 6 0,

i.e., fu = gu. Again, by virtue of R-weak commutativity of type (Af ) we get
ggu = fgu and gfu = ggu = fgu = ffu. We assert that fu = ffu = gfu. Let on
contrary that fu ̸= ffu. On using (4.2), we obtain

F (d(fu, ffu), d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(gu, ffu))

= F (d(fu, ffu), d(fu, ffu), 0, 0, d(fu, ffu), d(fu, ffu)) 6 0,

a contradiction. Hence fu = ffu = gfu.
Uniqueness of the common fixed point follows easily by (F3) and (4.2). �

The next example illustrates our result.

Example 4.2. Endow X = [0, 10] with the absolute value metric and define
f, g : X → X by

fx =


1 if x ∈ [0, 1]
4

3
if x ∈ (1, 5]

1 if x ∈ (5, 10],

gx =


1 if x ∈ [0, 1]
7 if x ∈ (1, 5]

x+ 1

6
if x ∈ (5, 10].

Then f and g are certainly R-weakly commuting of type (Ag) since

d(ffx, gfx) 6 Rd(fx, gx) for all x ∈ X .

Moreover, f and g are subcompatible. To this end, consider the sequence xn = 1− 1

n
for n = 1, 2, . . .. Then fxn = 1 = gxn and fgxn = gfxn = 1. Thus |fgxn−gfxn| =
0. To see that f and g are weakly reciprocally continuous, consider xn = 5+

1

n
for

n = 1, 2, . . .. Then fxn = 1, gxn =
xn + 1

6
→ 1, and gfxn = 1 = g(1); whereas

fgxn = f(
xn + 1

6
) =

4

3
̸= 1 = f(1).

On the other hand, observe that
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fX = {1, 4
3
} ⊆ gX = [1,

11

6
] ∪ {7}. Finally, we can check that condition (4.2) is

verified for all x, y ∈ X with k ∈ [
3

35
, 1). Consequently, all conditions of theorem

4.2 are satisfied and x = 1 is the unique common fixed point.

Finally, we end our paper by giving some results.

Corollary 4.4. Let f and g be weakly reciprocally continuous subcompatible
self-mappings of a metric space (X , d) satisfying fX ⊆ gX and the inequality

d(fx, fy) 6 kmax{d(gx, gy) + d(fx, gx) + d(fy, gy)

3
,
d(fx, gy) + d(gx, fy)

2
}

for all x, y in X , where k ∈ [0, 1). If f and g are R-weakly commuting of type (Ag)
or R-weakly commuting of type (Af ) then f and g have a unique common fixed
point.

Proof. Use Theorem 4.2 and Example 3.1. �

Corollary 4.5. Let f and g be weakly reciprocally continuous subcompatible
self-mappings of a metric space (X , d) satisfying fX ⊆ gX and the inequality

d(fx, fy) 6 1

k
[d(gx, gy) + d(fx, gx) + d(fy, gy) + d(fx, gy) + d(gx, fy)]

for all x, y in X , where k > 3. If f and g are R-weakly commuting of type (Ag) or
R-weakly commuting of type (Af ) then f and g have a unique common fixed point.

Proof. Use Theorem 4.2 and Example 3.2. �

Corollary 4.6. Let f and g be weakly reciprocally continuous subcompatible
self-mappings of a metric space (X , d) satisfying fX ⊆ gX and the inequality

d2(fx, fy) 6 k[
d(fx, gx)d(fy, gy) + d(fx, gy)d(gx, fy)

1 + d(gx, gy)
]

for all x, y in X , where k ∈ [0, 1). If f and g are R-weakly commuting of type (Ag)
or R-weakly commuting of type (Af ) then f and g have a unique common fixed
point.

Proof. Use Theorem 4.2 and Example 3.3. �
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