COMMON FIXED POINTS FOR TWO WEAK SUBSEQUENTIAL CONTINUOUS MAPPINGS

Hakima Bouhadjera

Abstract

In this paper we are concerned with the existence and uniqueness of common fixed points for a pair of mappings satisfying an implicit relation under new concepts. Our results present an interesting contribution in the fixed point theory's area.

1. Introduction

In 1986, Jungck [5] introduced the notion of compatible mappings. Inspired by the above work, many authors developed much weaker conditions. One of the most interesting generalization is subcompatibility introduced in [2] ([3]). Again, Pathak et al. $[\mathbf{1 0}]$ introduced the notions of R-weak commutativity of type $\left(\mathcal{A}_{f}\right)$ and $\left(\mathcal{A}_{g}\right)$ for obtaining common fixed point theorems. Motivated by the above concepts, Kumar ([6], [7]) gave the notion of R-weak commutativity of type (\mathcal{P}). On the other hand, Pant [8] initiated the study of fixed points for discontinuous mappings by using the concept of reciprocal continuity. Recently, in [2] ([3]), we suggested the notion of subsequential continuity which represents a legitimate generalization of the concept of reciprocal continuity. More recently, Pant et al. [9] introduced the notion of weak reciprocal continuity and obtained fixed point theorems by employing the new notion. Quite recently, Gopal et al. [4] presented their new notions of sequential continuity of type $\left(\mathcal{A}_{f}\right)$ and $\left(\mathcal{A}_{g}\right)$. Appeared in 2016 in [1], the new concept of weak subsequential continuity represents a genuine reasonable generalization of weak reciprocal continuity (resp. sequential continuity of type

[^0]$\left(\mathcal{A}_{f}\right)$ or $\left.\left(\mathcal{A}_{g}\right)\right)$. This definition makes up an addition to develop the literature of fixed point theory.

2. Preliminaries

Let us start by stating some needed definitions.
Definition 2.1. ([5]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called compatible if and only if

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0,
$$

whenever $\left\{x_{n}\right\}$ is a sequence in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in \mathcal{X}$.

Definition 2.2. ([2, $\mathbf{3}])$ Two self-mappings f and g of a metric space (\mathcal{X}, d) are called subcompatible if and only if there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t, t \in \mathcal{X}$ and which satisfy

$$
\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0
$$

Definition 2.3. ([8]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called reciprocally continuous if $\lim _{n \rightarrow \infty} f g x_{n}=f t$ and $\lim _{n \rightarrow \infty} g f x_{n}=g t$ whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some t in \mathcal{X}.

Definition 2.4. ($[\mathbf{2}, \mathbf{3}])$ Two self-mappings f and g of a metric space (\mathcal{X}, d) are said to be subsequentially continuous if and only if there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some t in \mathcal{X} and satisfy $\lim _{n \rightarrow \infty} f g x_{n}=f t$ and $\lim _{n \rightarrow \infty} g f x_{n}=g t$.

Definition 2.5. ([9]) Two self-mappings f and g of a metric space (\mathcal{X}, d) will be called weakly reciprocally continuous if $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$, whenever $\left\{x_{n}\right\}$ is a sequence in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some t in \mathcal{X}.

Definition 2.6. ([4]) A pair (f, g) of self-mappings defined on a metric space (\mathcal{X}, d) is said to be sequentially continuous of type $\left(\mathcal{A}_{f}\right)$ if and only if there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in \mathcal{X}$ and $\lim _{n \rightarrow \infty} f g x_{n}=f t$ and $\lim _{n \rightarrow \infty} g g x_{n}=g t$.

Definition 2.7. ([4]) A pair (f, g) of self-mappings defined on a metric space (\mathcal{X}, d) is said to be sequentially continuous of type $\left(\mathcal{A}_{g}\right)$ if and only if there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in \mathcal{X}$ and $\lim _{n \rightarrow \infty} g f x_{n}=g t$ and $\lim _{n \rightarrow \infty} f f x_{n}=f t$.

Definition 2.8. ([10]) Let (\mathcal{X}, d) be a metric space and let f, g be selfmappings of \mathcal{X}. The mappings f and g are said to be R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ if there exists a positive real number R such that

$$
\begin{equation*}
d(f g x, g g x) \leqslant R d(f x, g x) \tag{2.1}
\end{equation*}
$$

for all $x \in \mathcal{X}$. f and g are said to be R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ if (2.1) holds for some real number $R>0$.

Definition 2.9. ([10]) Let (\mathcal{X}, d) be a metric space and let f, g be selfmappings of \mathcal{X}. The mappings f and g are said to be R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ if there exists a positive real number R such that

$$
\begin{equation*}
d(g f x, f f x) \leqslant R d(f x, g x) \tag{2.2}
\end{equation*}
$$

for all $x \in \mathcal{X}$. f and g are said to be R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ if (2.2) holds for some real number $R>0$.

Definition 2.10. ($[\mathbf{6}, \mathbf{7}]$) A pair of self-mappings (f, g) of a metric space (\mathcal{X}, d) is said to be R-weakly commuting of type (\mathcal{P}) if there exists some $R>0$ such that

$$
d(f f x, g g x) \leqslant R d(f x, g x)
$$

for all $x \in \mathcal{X}$.
Definition 2.11. ([1]) Two self-mappings f and g of a metric space (\mathcal{X}, d) are called weakly subsequentially continuous if and only if there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some t in \mathcal{X} and which satisfy $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$.

According to definitions $2.5,2.6,2.7,2.11$, it can easily seen that weakly reciprocally continuous mappings are weakly subsequentially continuous mappings. Also, if in our definition we have $\lim _{n \rightarrow \infty} f g x_{n}=f t$, then evidently sequentially continuous of type $\left(\mathcal{A}_{f}\right)$ mappings imply our definition (alternately, if we have $\lim _{n \rightarrow \infty} g f x_{n}=g t$, then sequentially continuous of type $\left(\mathcal{A}_{g}\right)$ mappings imply our definition). To see that the converse implications are not true in general, let us give the next example which fulfills our desire.

Example 2.1. Let $\mathcal{X}=[0,6]$ and let d be the usual metric on \mathcal{X}. We define $f, g: \mathcal{X} \rightarrow \mathcal{X}$ as follows:

$$
f x=\left\{\begin{array}{c}
3-x \text { if } x \in[0,3] \\
\frac{9}{x} \text { if } x \in(3,6],
\end{array} \quad g x=\left\{\begin{array}{c}
3+x \text { if } x \in[0,3) \\
\frac{27}{x^{2}} \text { if } x \in[3,6]
\end{array}\right.\right.
$$

First, we readily see that f and g are not continuous at $x=3$. It can also be noted that f and g are weakly subsequentially continuous. To see this, let $\left\{x_{n}\right\}$ be the sequence in \mathcal{X} given by $x_{n}=3+\frac{1}{n}$ for $n=1,2, \ldots$. Then

$$
f x_{n}=\frac{9}{x_{n}} \rightarrow 3=t \text { as } n \rightarrow \infty
$$

$$
g x_{n}=\frac{27}{x_{n}^{2}} \rightarrow 3=t \text { as } n \rightarrow \infty
$$

and

$$
f g x_{n}=f\left(\frac{27}{x_{n}^{2}}\right)=3-\frac{27}{x_{n}^{2}} \rightarrow 0=f(3) \text { as } n \rightarrow \infty
$$

but

$$
g f x_{n}=g\left(\frac{9}{x_{n}}\right)=3+\frac{9}{x_{n}} \rightarrow 6 \neq 3=g(3) \text { as } n \rightarrow \infty .
$$

Again, it is obvious that f and g are not sequentially continuous of type $\left(\mathcal{A}_{f}\right)$ because

$$
g g x_{n}=g\left(\frac{27}{x_{n}^{2}}\right)=3+\frac{27}{x_{n}^{2}} \rightarrow 6 \neq 3=g(3) \text { as } n \rightarrow \infty
$$

Finally, we can check that f and g are not weakly reciprocally continuous by giving the sequence $x_{n}=\frac{1}{n}$ for $n=1,2, \ldots$. Then

$$
\begin{aligned}
f x_{n} & =3-x_{n} \rightarrow 3=t \text { as } n \rightarrow \infty \\
g x_{n} & =3+x_{n} \rightarrow 3=t \text { as } n \rightarrow \infty
\end{aligned}
$$

but

$$
f g x_{n}=f\left(3+x_{n}\right)=\frac{9}{3+x_{n}} \rightarrow 3 \neq 0=f(3) \text { as } n \rightarrow \infty
$$

and

$$
g f x_{n}=g\left(3-x_{n}\right)=6-x_{n} \rightarrow 6 \neq 3=g(3) \text { as } n \rightarrow \infty .
$$

3. Implicit Relations

Motivated by [11], let us consider \mathcal{F} the set of all continuous functions $F: \mathbb{R}^{6} \rightarrow \mathbb{R}$ such that
(1) $\left(F_{1}\right): F$ is increasing in variable t_{6},
(2) $\left(F_{2}\right)$: there exists $h \in[0,1)$ such that for all $u, v \geqslant 0$, $F(u, v, v, u, 0, u+v) \leqslant 0$ implies $u \leqslant h v$,
(3) $\left(F_{3}\right): F(t, t, 0,0, t, t)>0$ for all $t>0$,
(4) $\left(F_{4}\right): F(t, 0, t, 0, t, 0)>0$ for all $t>0$.

Example 3.1. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-k \max \left\{\frac{t_{2}+t_{3}+t_{4}}{3}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in[0,1)$.
(1) $\left(F_{1}\right)$: Obvious.
(2) $\left(F_{2}\right)$: Let $u, v \geqslant 0, F(u, v, v, u, 0, u+v)=u-k \max \left\{\frac{u+2 v}{3}, \frac{u+v}{2}\right\} \leqslant 0$. If $u>v$, then $v<u \leqslant \frac{k}{2-k} v<v$, a contradiction. Hence $u \leqslant v$ which implies $u \leqslant h v$, where $0 \leqslant h=\frac{2 k}{3-k}<1$.
(3) $\left(F_{3}\right): F(t, t, 0,0, t, t)=t-k \max \left\{\frac{t}{3}, t\right\}=t(1-k)>0$ for all $t>0$.
(4) $\left(F_{4}\right): F(t, 0, t, 0, t, 0)=t-k \max \left\{\frac{t}{3}, \frac{t}{2}\right\}=t\left(1-\frac{k}{2}\right)>0$ for all $t>0$.

Example 3.2. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=k t_{1}-t_{2}-t_{3}-t_{4}-t_{5}-t_{6}$, where $k>5$.
(1) $\left(F_{1}\right)$: Obvious.
(2) $\left(F_{2}\right)$: Let $u, v \geqslant 0$ and $F(u, v, v, u, 0, u+v)=u(k-2)-3 v \leqslant 0$ which implies $u \leqslant h v$, where $h=\frac{3}{k-2} \in[0,1)$.
(3) $\left(F_{3}\right): F(t, t, 0,0, t, t)=t(k-3)>0$ for all $t>0$.
(4) $\left(F_{4}\right): F(t, 0, t, 0, t, 0)=t(k-2)>0$ for all $t>0$.

EXAMPLE 3.3. $F\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}^{2}-k \frac{t_{3} t_{4}+t_{5} t_{6}}{1+t_{2}}$, where $k \in[0,1)$.
(1) $\left(F_{1}\right)$: Obvious.
(2) $\left(F_{2}\right)$: Let $u, v \geqslant 0$ be and $F(u, v, v, u, 0, u+v)=u^{2}-k \frac{u v}{1+v} \leqslant 0$. If $u>0$, then $u \leqslant k \frac{v}{1+v}$, which implies $u \leqslant h v$, where $0 \leqslant h=k<1$. If $u=0$, then $u \leqslant h v$.
(3) $\left(F_{3}\right): F(t, t, 0,0, t, t)=t^{2}\left(1-\frac{k}{1+t}\right)>0$ for all $t>0$.
(4) $\left(F_{4}\right): F(t, 0, t, 0, t, 0)=t^{2}>0$ for all $t>0$.

Now, let f and g be self-mappings of a metric space (\mathcal{X}, d). Let us define the set

$$
S=\left\{\left\{x_{n}\right\} \subseteq \mathcal{X}: \text { if there holds } \lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t\right.
$$

then there holds

$$
\left.\lim _{n \rightarrow \infty} f g x_{n}=f t \text { or } \lim _{n \rightarrow \infty} g f x_{n}=g t\right\} .
$$

Suppose that $f \mathcal{X} \subseteq g \mathcal{X}$, there exists a sequence $\left\{x_{i}\right\}_{i=0}^{\infty}$, such that x_{n+1} is the pre-image under g of $f x_{n}$, that is

$$
\text { (a) } f x_{0}=g x_{1}, f x_{1}=g x_{2}, \ldots, f x_{n}=g x_{n+1}, \ldots
$$

Let us define the set U to be the set of all sequences $\left\{x_{n}\right\}$ defined by (a). Let us define the sequence $\left\{y_{n}\right\} \subseteq \mathcal{X}$ by $y_{n}=f x_{n}=g x_{n+1}, n=0,1,2, \ldots$..

4. Main Results

Theorem 4.1. Let f and g be weakly subsequentially continuous self-mappings of a complete metric space (\mathcal{X}, d) such that $f \mathcal{X} \subseteq g \mathcal{X}, U \cap S \neq \emptyset$ and

$$
\begin{equation*}
F(d(f x, f y), d(g x, g y), d(f x, g x), d(f y, g y), d(f x, g y), d(g x, f y)) \leqslant 0 \tag{4.1}
\end{equation*}
$$

for all x, y in \mathcal{X} and $F \in \mathcal{F}$. If f and g are either R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

Proof. We choose an arbitrary x_{0} such that the corresponding sequence $\left\{x_{n}\right\}$ defined in (a) belongs to $U \cap S$. Then, as in [9], by a routine calculation it follows that $\left\{y_{n}\right\}$ defined above is a Cauchy sequence. Since \mathcal{X} is complete, $\left\{y_{n}\right\}$ converges to a point t in \mathcal{X}. Moreover, $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n+1}=t$.

Now, suppose that f and g are R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$. Weak subsequential continuity of f and g implies that $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Let us first assume that $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Then R-weak commutativity of type $\left(\mathcal{A}_{g}\right)$ yields $d\left(f f x_{n}, g f x_{n}\right) \leqslant R d\left(f x_{n}, g x_{n}\right)$. Taking the limit as $n \rightarrow \infty$, we obtain $\lim _{n \rightarrow \infty} f f x_{n}=g t$. Using (4.1) we get

$$
\begin{aligned}
& F\left(d\left(f t, f f x_{n}\right), d\left(g t, g f x_{n}\right), d(f t, g t), d\left(f f x_{n}, g f x_{n}\right),\right. \\
& \left.d\left(f t, g f x_{n}\right), d\left(g t, f f x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

Making $n \rightarrow \infty$ we get

$$
F(d(f t, g t), 0, d(f t, g t), 0, d(f t, g t), 0) \leqslant 0
$$

that is $f t=g t$. Again, by virtue of R-weak commutativity of type $\left(\mathcal{A}_{g}\right)$, $d(f f t, g f t) \leqslant R d(f t, g t)$. This yields $f f t=g f t$ or $f g t=f f t=g f t=g g t$. By (4.1) we have

$$
\begin{aligned}
& F(d(f t, f f t), d(g t, g f t), d(f t, g t), d(f f t, g f t), d(f t, g f t), d(g t, f f t)) \\
& =F(d(f t, f f t), d(f t, f f t), 0,0, d(f t, f f t), d(f t, f f t)) \leqslant 0
\end{aligned}
$$

i.e., $f t=f f t=g f t$.

Next, assume that $\lim _{n \rightarrow \infty} f g x_{n}=f t . f \mathcal{X} \subseteq g \mathcal{X}$ implies that there is a point $u \in \mathcal{X}$ such that $f t=g u$. Then $\lim _{n \rightarrow \infty} f g x_{n}=g u$. By virtue of (a) this also yields $\lim _{n \rightarrow \infty} f f x_{n}=g u$. Hence R-weak commutativity of type $\left(\mathcal{A}_{g}\right)$ implies that $d\left(f f x_{n}, g f x_{n}\right) \leqslant R d\left(f x_{n}, g x_{n}\right)$. Taking the limit as $n \rightarrow \infty$ we get $\lim _{n \rightarrow \infty} g f x_{n}=f t=g u$. On using (4.1), we find

$$
\begin{aligned}
& F\left(d\left(f u, f f x_{n}\right), d\left(g u, g f x_{n}\right), d(f u, g u), d\left(f f x_{n}, g f x_{n}\right),\right. \\
& \left.d\left(f u, g f x_{n}\right), d\left(g u, f f x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

On letting $n \rightarrow \infty$ we obtain

$$
F(d(f u, g u), 0, d(f u, g u), 0, d(f u, g u), 0) \leqslant 0,
$$

so $f u=g u$. Again, R-weak commutativity of type $\left(\mathcal{A}_{g}\right)$ implies that $d(f f u, g f u) \leqslant R d(f u, g u)$, which yields $f f u=g f u$
and $f g u=f f u=g f u=g g u$. Finally, on using (4.1), we get

$$
\begin{aligned}
& F(d(f u, f f u), d(g u, g f u), d(f u, g u), d(f f u, g f u), d(f u, g f u), d(g u, f f u)) \\
& =F(d(f u, f f u), d(f u, f f u), 0,0, d(f u, f f u), d(f u, f f u)) \leqslant 0
\end{aligned}
$$

which is a contradiction. Thus $f u=f f u=g f u$.
Suppose that f and g are R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$. Weak subsequential continuity of f and g implies that $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Let $\lim _{n \rightarrow \infty} g f x_{n}=g t . R$-weak commutativity of type $\left(\mathcal{A}_{f}\right)$ yields
$d\left(g g x_{n}, f g x_{n}\right) \leqslant R d\left(f x_{n}, g x_{n}\right)$. Taking the limit as $n \rightarrow \infty$ and by virtue of (a), we obtain $\lim _{n \rightarrow \infty} f g x_{n}=g t$. On using (4.1), we get

$$
\begin{aligned}
& F\left(d\left(f t, f g x_{n}\right), d\left(g t, g g x_{n}\right), d(f t, g t), d\left(f g x_{n}, g g x_{n}\right),\right. \\
& \left.d\left(f t, g g x_{n}\right), d\left(g t, f g x_{n}\right)\right) \leqslant 0
\end{aligned}
$$

Making $n \rightarrow \infty$, we get

$$
F(d(f t, g t), 0, d(f t, g t), 0, d(f t, g t), 0) \leqslant 0
$$

a contradiction. Hence $f t=g t$. Again, by virtue of R-weak commutativity of type $\left(\mathcal{A}_{f}\right), d(g g t, f g t) \leqslant R d(f t, g t)$. This yields $g g t=f g t$ and $g f t=g g t=f g t=f f t$. By (4.1), we have

$$
\begin{aligned}
& F(d(f t, f f t), d(g t, g f t), d(f t, g t), d(f f t, g f t), d(f t, g f t), d(g t, f f t)) \\
& =F(d(f t, f f t), d(f t, f f t), 0,0, d(f t, f f t), d(f t, f f t)) \leqslant 0
\end{aligned}
$$

that is $f t=f f t=g f t$.
Next, assume that $\lim _{n \rightarrow \infty} f g x_{n}=f t$. Then $f \mathcal{X} \subseteq g \mathcal{X}$ implies that there is an element $u \in \mathcal{X}$ such that $f t=g u$. Hence R-weak commutativity of type $\left(\mathcal{A}_{f}\right)$ implies that $d\left(g g x_{n}, f g x_{n}\right) \leqslant R d\left(f x_{n}, g x_{n}\right)$. Letting $n \rightarrow \infty$ we get
$\lim _{n \rightarrow \infty} g g x_{n}=f t=g u$. On using (4.1), we get

$$
\begin{aligned}
& F\left(d\left(f u, f g x_{n}\right), d\left(g u, g g x_{n}\right), d(f u, g u), d\left(f g x_{n}, g g x_{n}\right),\right. \\
& \left.d\left(f u, g g x_{n}\right), d\left(g u, f g x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we obtain

$$
F(d(f u, g u), 0, d(f u, g u), 0, d(f u, g u), 0) \leqslant 0
$$

a contradiction so that $f u=g u$. Again, using R-weak commutativity of type $\left(\mathcal{A}_{f}\right)$ we have $d(g g u, f g u) \leqslant R d(f u, g u)$. This yields $g g u=f g u$ and $g f u=g g u=f g u=f f u$. By (4.1), we have

$$
\begin{aligned}
& F(d(f u, f f u), d(g u, g f u), d(f u, g u), d(f f u, g f u), d(f u, g f u), d(g u, f f u)) \\
& =F(d(f u, f f u), d(f u, f f u), 0,0, d(f u, f f u), d(f u, f f u)) \leqslant 0
\end{aligned}
$$

i.e., $f u=f f u=g f u$.

Finally, suppose that f and g are R-weakly commuting of type (\mathcal{P}). Now, weak subsequential continuity of f and g implies that $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Let us first assume that $\lim _{n \rightarrow \infty} g f x_{n}=g t$. By virtue of (a) and R-weak commutativity of type (\mathcal{P}), we have $\lim _{n \rightarrow \infty} f f x_{n}=\lim _{n \rightarrow \infty} g g x_{n}=g t$. Using (4.1), we get

$$
\begin{aligned}
& F\left(d\left(f t, f f x_{n}\right), d\left(g t, g f x_{n}\right), d(f t, g t), d\left(f f x_{n}, g f x_{n}\right),\right. \\
& \left.d\left(f t, g f x_{n}\right), d\left(g t, f f x_{n}\right)\right) \leqslant 0
\end{aligned}
$$

On letting $n \rightarrow \infty$, we obtain

$$
F(d(f t, g t), 0, d(f t, g t), 0, d(f t, g t), 0) \leqslant 0
$$

that is $f t=g t$. Again, by virtue of R-weak commutativity of type (\mathcal{P}), $d(f f t=g g t) \leqslant R d(f t, g t)$. This implies that $f f t=g g t$
and $f g t=f f t=g g t=g f t$. Also, using (4.1), we find

$$
\begin{aligned}
& F(d(f t, f f t), d(g t, g f t), d(f t, g t), d(f f t, g f t), d(f t, g f t), d(g t, f f t)) \\
& =F(d(f t, f f t), d(f t, f f t), 0,0, d(f t, f f t), d(f t, f f t)) \leqslant 0
\end{aligned}
$$

a contradiction. Hence $f t=f f t=g f t$.
Now, assume that $\lim _{n \rightarrow \infty} f g x_{n}=f t . f \mathcal{X} \subseteq g \mathcal{X}$ implies that there exists a point $u \in \mathcal{X}$ which verifies $f t=g u$. By virtue of (a) and R-weak commutativity of type (\mathcal{P}), we get $\lim _{n \rightarrow \infty} f f x_{n}=\lim _{n \rightarrow \infty} g g x_{n}=f t=g u$. We assert that $f u=g u$. Let on contrary that $f u \neq g u$. Using (4.1), we obtain

$$
\begin{aligned}
& F\left(d\left(f u, f g x_{n}\right), d\left(g u, g g x_{n}\right), d(f u, g u), d\left(f g x_{n}, g g x_{n}\right),\right. \\
& \left.d\left(f u, g g x_{n}\right), d\left(g u, f g x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

At infinity, we get

$$
F(d(f u, g u), 0, d(f u, g u), 0, d(f u, g u), 0) \leqslant 0,
$$

i.e., $f u=g u$. Again, by virtue of R-weak commutativity of type (\mathcal{P}),
$d(f f u, g g u) \leqslant R d(f u, g u)$. This yields $f f u=g g u$ and $f g u=f f u=g g u=g f u$. On using (4.1), we get

$$
\begin{aligned}
& F(d(f u, f f u), d(g u, g f u), d(f u, g u), d(f f u, g f u), d(f u, g f u), d(g u, f f u)) \\
& =F(d(f u, f f u), d(f u, f f u), 0,0, d(f u, f f u), d(f u, f f u)) \leqslant 0
\end{aligned}
$$

that is, $f u=f f u=g f u$.
Uniqueness of the common fixed point follows immediately by $\left(F_{3}\right)$ and (4.1).

To illustrate our Theorem, we give the following example.
Example 4.1. Let $\mathcal{X}=[1,3]$ and let d be the usual metric on \mathcal{X}. Define $f, g: \mathcal{X} \rightarrow \mathcal{X}$ as follows:

$$
f x=\left\{\begin{array}{c}
1 \text { if } x=1 \\
\frac{3}{2} \text { if } x \in(1,2] \\
1 \text { if } x \in(2,3],
\end{array} \quad g x=\left\{\begin{array}{c}
1 \text { if } x=1 \\
3 \text { if } x \in(1,2] \\
\frac{x}{2} \text { if } x \in(2,3]
\end{array}\right.\right.
$$

Then f and g satisfy all conditions of the above theorem and have the common fixed point $x=1$. It can be verified that f and g satisfy condition (4.1) with $F=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ where $k \in\left[\frac{1}{4}, \frac{1}{2}\right)$. Furthermore, f and g are R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$. It can be noted that f and g are weakly subsequentially continuous. At this end, let $\left\{x_{n}\right\}$ be a sequence in \mathcal{X} such that $x_{n}=2+\frac{1}{n}$ for $n=1,2, \ldots$. Then, $f x_{n}=1 \rightarrow 1=t, g x_{n}=\frac{x_{n}}{2} \rightarrow 1=t$ and $g f x_{n}=g(1)=1$, but $f g x_{n}=f\left(\frac{x_{n}}{2}\right)=\frac{3}{2} \neq 1=f(1)$. On the other hand, we have $f \mathcal{X}=\left\{1, \frac{3}{2}\right\} \subseteq g \mathcal{X}=\left[1, \frac{3}{2}\right] \cup\{3\}$.

Now, we give some results.

Corollary 4.1. Let f and g be weakly subsequentially continuous mappings from a complete metric space (\mathcal{X}, d) into itself such that $f \mathcal{X} \subseteq g \mathcal{X}, U \cap S \neq \emptyset$ and

$$
d(f x, f y) \leqslant k \max \left\{\frac{d(g x, g y)+d(f x, g x)+d(f y, g y)}{3}, \frac{d(f x, g y)+d(g x, f y)}{2}\right\}
$$

for all x, y in \mathcal{X}, where $k \in[0,1)$. If f and g are either R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

Proof. Use Theorem 4.1 and Example 3.1.
Corollary 4.2. Let f and g be weakly subsequentially continuous mappings from a complete metric space (\mathcal{X}, d) into itself such that $f \mathcal{X} \subseteq g \mathcal{X}, U \cap S \neq \emptyset$ and

$$
d(f x, f y) \leqslant \frac{1}{k}[d(g x, g y)+d(f x, g x)+d(f y, g y)+d(f x, g y)+d(g x, f y)]
$$

for all x, y in \mathcal{X}, where $k>5$. If f and g are either R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

Proof. Use Theorem 4.1 and Example 3.2.
Corollary 4.3. Let f and g be weakly subsequentially continuous mappings from a complete metric space (\mathcal{X}, d) into itself such that $f \mathcal{X} \subseteq g \mathcal{X}, U \cap S \neq \emptyset$ and

$$
d^{2}(f x, f y) \leqslant k\left[\frac{d(f x, g x) d(f y, g y)+d(f x, g y) d(g x, f y)}{1+d(g x, g y)}\right]
$$

for all x, y in \mathcal{X}, where $k \in[0,1)$. If f and g are either R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ or R-weakly commuting of type (\mathcal{P}) then f and g have a unique common fixed point.

Proof. Use Theorem 4.1 and Example 3.3.
In the following, we will prove a common fixed point theorem for a subcompatible pair of self-mappings.

Theorem 4.2. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and

$$
\begin{equation*}
F(d(f x, f y), d(g x, g y), d(f x, g x), d(f y, g y), d(f x, g y), d(g x, f y)) \leqslant 0 \tag{4.2}
\end{equation*}
$$

for all x, y in \mathcal{X}, where F is continuous and satisfies only $\left(F_{3}\right)$ and $\left(F_{4}\right)$. If f and g are R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ then f and g have a unique common fixed point.

Proof. Since f and g are weakly reciprocally continuous there exists a sequence $\left\{x_{n}\right\}$ in \mathcal{X} such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some t in \mathcal{X} and which satisfy $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Let $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Then R-weak commutativity of type $\left(\mathcal{A}_{g}\right)$ yields $d\left(f f x_{n}, g f x_{n}\right) \leqslant R d\left(f x_{n}, g x_{n}\right)$. Taking the limit as
$n \rightarrow \infty$, we get $\lim _{n \rightarrow \infty} f f x_{n}=g t$. By (4.2) we have

$$
\begin{aligned}
& F\left(d\left(f t, f f x_{n}\right), d\left(g t, g f x_{n}\right), d(f t, g t), d\left(f f x_{n}, g f x_{n}\right)\right. \\
& \left.d\left(f t, g f x_{n}\right), d\left(g t, f f x_{n}\right)\right) \leqslant 0
\end{aligned}
$$

At infinity we get

$$
F(d(f t, g t), 0, d(f t, g t), 0, d(f t, g t), 0) \leqslant 0,
$$

a contradiction so that $f t=g t$. Again, by virtue of R-weak commutativity of type $\left(\mathcal{A}_{g}\right), d(f f t, g f t) \leqslant R d(f t, g t)$, which yields $f f t=g f t$ and $f g t=f f t=g f t=g g t$. Using (4.2), we obtain

$$
\begin{aligned}
& F(d(f t, f f t), d(g t, g f t), d(f t, g t), d(f f t, g f t), d(f t, g f t), d(g t, f f t)) \\
& =F(d(f t, f f t), d(f t, f f t), 0,0, d(f t, f f t), d(f t, f f t)) \leqslant 0
\end{aligned}
$$

a contradiction. Hence $f t=f f t=g f t$.
Next, assume that $\lim _{n \rightarrow \infty} f g x_{n}=f t$. Since $f \mathcal{X} \subseteq g \mathcal{X}$ then, there is an element $u \in \mathcal{X}$ such that $f t=g u$. By virtue of subcompatibility and R-weak commutativity of type $\left(\mathcal{A}_{g}\right), \lim _{n \rightarrow \infty} f f x_{n}=\lim _{n \rightarrow \infty} g f x_{n}=f t=g u$. By (4.2), we have

$$
\begin{aligned}
& F\left(d\left(f u, f f x_{n}\right), d\left(g u, g f x_{n}\right), d(f u, g u), d\left(f f x_{n}, g f x_{n}\right),\right. \\
& \left.d\left(f u, g f x_{n}\right), d\left(g u, f f x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

Making $n \rightarrow \infty$, we obtain

$$
F(d(f u, g u), 0, d(f u, g u), 0, d(f u, g u), 0) \leqslant 0,
$$

a contradiction. Hence $f u=g u$. Again, by virtue of R-weak commutativity of type $\left(\mathcal{A}_{g}\right)$ we get $f f u=g f u$ and $f g u=f f u=g f u=g g u$. On using (4.2), we obtain

$$
\begin{aligned}
& F(d(f u, f f u), d(g u, g f u), d(f u, g u), d(f f u, g f u), d(f u, g f u), d(g u, f f u)) \\
& =F(d(f u, f f u), d(f u, f f u), 0,0, d(f u, f f u), d(f u, f f u)) \leqslant 0
\end{aligned}
$$

that is, $f u=f f u=g f u$.
Finally, suppose that f and g are R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$, then, we have $d\left(f g x_{n}, g g x_{n}\right) \leqslant R d\left(f x_{n}, g x_{n}\right)$. Now, weak reciprocal continuity implies that $\lim _{n \rightarrow \infty} f g x_{n}=f t$ or $\lim _{n \rightarrow \infty} g f x_{n}=g t$. Let $\lim _{n \rightarrow \infty} g f x_{n}=g t$. By virtue of subcompatibility, we have $\lim _{n \rightarrow \infty} f g x_{n}=g t$ and consequently $\lim _{n \rightarrow \infty} g g x_{n}=g t$. Using (4.2), we get

$$
\begin{aligned}
& F\left(d\left(f t, f g x_{n}\right), d\left(g t, g g x_{n}\right), d(f t, g t), d\left(f g x_{n}, g g x_{n}\right),\right. \\
& \left.d\left(f t, g g x_{n}\right), d\left(g t, f g x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

At infinity we get

$$
F(d(f t, g t), 0, d(f t, g t), 0, d(f t, g t), 0) \leqslant 0
$$

i.e., $f t=g t$. Again, by virtue of R-weak commutativity of type $\left(\mathcal{A}_{f}\right), g g t=f g t$ and $g f t=g g t=f g t=f f t$. On using (4.2), we obtain

$$
\begin{aligned}
& F(d(f t, f f t), d(g t, g f t), d(f t, g t), d(f f t, g f t), d(f t, g f t), d(g t, f f t)) \\
& =F(d(f t, f f t), d(f t, f f t), 0,0, d(f t, f f t), d(f t, f f t)) \leqslant 0
\end{aligned}
$$

that is, $f t=f f t=g f t$.
Next, suppose that $\lim _{n \rightarrow \infty} f g x_{n}=f t . f \mathcal{X} \subseteq g \mathcal{X}$ implies that, there exists some $u \in \mathcal{X}$ such that $f t=g u$. By virtue of R-weak commutativity of type $\left(\mathcal{A}_{f}\right)$, we have $\lim _{n \rightarrow \infty} g g x_{n}=\lim _{n \rightarrow \infty} f g x_{n}=f t=g u$. Using (4.2), we get

$$
\begin{aligned}
& F\left(d\left(f u, f g x_{n}\right), d\left(g u, g g x_{n}\right), d(f u, g u), d\left(f g x_{n}, g g x_{n}\right),\right. \\
& \left.d\left(f u, g g x_{n}\right), d\left(g u, f g x_{n}\right)\right) \leqslant 0 .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we obtain

$$
F(d(f u, g u), 0, d(f u, g u), 0, d(f u, g u), 0) \leqslant 0
$$

i.e., $f u=g u$. Again, by virtue of R-weak commutativity of type $\left(\mathcal{A}_{f}\right)$ we get $g g u=f g u$ and $g f u=g g u=f g u=f f u$. We assert that $f u=f f u=g f u$. Let on contrary that $f u \neq f f u$. On using (4.2), we obtain

$$
\begin{aligned}
& F(d(f u, f f u), d(g u, g f u), d(f u, g u), d(f f u, g f u), d(f u, g f u), d(g u, f f u)) \\
& =F(d(f u, f f u), d(f u, f f u), 0,0, d(f u, f f u), d(f u, f f u)) \leqslant 0
\end{aligned}
$$

a contradiction. Hence $f u=f f u=g f u$.
Uniqueness of the common fixed point follows easily by $\left(F_{3}\right)$ and (4.2).
The next example illustrates our result.
Example 4.2. Endow $\mathcal{X}=[0,10]$ with the absolute value metric and define $f, g: \mathcal{X} \rightarrow \mathcal{X}$ by

$$
f x=\left\{\begin{array}{c}
1 \text { if } x \in[0,1] \\
\frac{4}{3} \text { if } x \in(1,5] \\
1 \text { if } x \in(5,10]
\end{array} \quad g x=\left\{\begin{array}{c}
1 \text { if } x \in[0,1] \\
7 \text { if } x \in(1,5] \\
\frac{x+1}{6} \text { if } x \in(5,10]
\end{array}\right.\right.
$$

Then f and g are certainly R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ since

$$
d(f f x, g f x) \leqslant R d(f x, g x) \text { for all } x \in \mathcal{X}
$$

Moreover, f and g are subcompatible. To this end, consider the sequence $x_{n}=1-\frac{1}{n}$ for $n=1,2, \ldots$ Then $f x_{n}=1=g x_{n}$ and $f g x_{n}=g f x_{n}=1$. Thus $\left|f g x_{n}-g f x_{n}\right|=$ 0 . To see that f and g are weakly reciprocally continuous, consider $x_{n}=5+\frac{1}{n}$ for $n=1,2, \ldots$. Then $f x_{n}=1, g x_{n}=\frac{x_{n}+1}{6} \rightarrow 1$, and $g f x_{n}=1=g(1)$; whereas

$$
f g x_{n}=f\left(\frac{x_{n}+1}{6}\right)=\frac{4}{3} \neq 1=f(1) .
$$

On the other hand, observe that
$f \mathcal{X}=\left\{1, \frac{4}{3}\right\} \subseteq g \mathcal{X}=\left[1, \frac{11}{6}\right] \cup\{7\}$. Finally, we can check that condition (4.2) is verified for all $x, y \in \mathcal{X}$ with $k \in\left[\frac{3}{35}, 1\right)$. Consequently, all conditions of theorem 4.2 are satisfied and $x=1$ is the unique common fixed point.

Finally, we end our paper by giving some results.
Corollary 4.4. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and the inequality

$$
d(f x, f y) \leqslant k \max \left\{\frac{d(g x, g y)+d(f x, g x)+d(f y, g y)}{3}, \frac{d(f x, g y)+d(g x, f y)}{2}\right\}
$$

for all x, y in \mathcal{X}, where $k \in[0,1)$. If f and g are R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ then f and g have a unique common fixed point.

Proof. Use Theorem 4.2 and Example 3.1.
Corollary 4.5. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and the inequality

$$
d(f x, f y) \leqslant \frac{1}{k}[d(g x, g y)+d(f x, g x)+d(f y, g y)+d(f x, g y)+d(g x, f y)]
$$

for all x, y in \mathcal{X}, where $k>3$. If f and g are R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ then f and g have a unique common fixed point.

Proof. Use Theorem 4.2 and Example 3.2.
Corollary 4.6. Let f and g be weakly reciprocally continuous subcompatible self-mappings of a metric space (\mathcal{X}, d) satisfying $f \mathcal{X} \subseteq g \mathcal{X}$ and the inequality

$$
d^{2}(f x, f y) \leqslant k\left[\frac{d(f x, g x) d(f y, g y)+d(f x, g y) d(g x, f y)}{1+d(g x, g y)}\right]
$$

for all x, y in \mathcal{X}, where $k \in[0,1)$. If f and g are R-weakly commuting of type $\left(\mathcal{A}_{g}\right)$ or R-weakly commuting of type $\left(\mathcal{A}_{f}\right)$ then f and g have a unique common fixed point.

Proof. Use Theorem 4.2 and Example 3.3.

References

[1] H. Bouhadjera. More general common fixed point theorems under a new concept. Demonstr. Math. , 49(1)(2016), 64-78.
[2] H. Bouhadjera and C. Godet-Thobie. Common fixed point theorems for pairs of subcompatible maps. arXiv: 0906.3159v1 [math. FA], 17 June 2009.
[3] H. Bouhadjera and C. Godet-Thobie. Common fixed point theorems for pairs of subcompatible maps. arXiv: 0906.3159v2 [math. FA], 23 May 2011.
[4] D. Gopal, M. Imdad and M. Abbas. Metrical common fixed point theorems without completness and closedness. Fixed Point Theory Appl., 2012, 2012:18. https://doi.org/10.1186/1687-1812-2012-18
[5] G. Jungck. Compatible mappings and common fixed points. Int. J. Math. Math. Sci., 9(4)(1986), 771-779.
[6] S. Kumar. A note on Jungck's fixed point theorem. Fasc. Math., 45 (2010), 59-69.
[7] S. Kumar and S. K. Garg. Expansion mapping theorems in metric spaces. Int. J. Contemp. Math. Sciences, 4(36)(2009), 1749-1758.
[8] R. P. Pant. Common fixed points of four mappings. Bull. Cal. Math. Soc., 90(4)(1998), 281-286.
[9] R. P. Pant, R. K. Bisht and D. Arora. Weak reciprocal continuity and fixed point theorems. Ann. Univ. Ferrara, Sez. VII, Sci. Mat., 57(1)(2011), 181-190.
[10] H. K. Pathak, Y. J. Cho and S. M. Kang. Remarks on R-weakly commuting mappings and common fixed point theorems. Bull. Korean Math. Soc., 34(2)(1997), 247-257.
[11] V. Popa and A. M. Patriciu. A general fixed point theorem for a pair of mappings satisfying an implicit relation. J. Adv. Math. Stud., 6(2)(2013), 167-173.

Received by editors 02.11.2020; Revised version 08.05.2021; Available online 17.05.2021.
Laboratory of Applied Mathematics, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

E-mail address: b_hakima2000@yahoo.fr

[^0]: 2010 Mathematics Subject Classification. 47H10; 54H25.
 Key words and phrases. Implicit relation, weakly reciprocally continuous mappings, weakly subsequentially continuous mappings, subcompatible mappings, R-weakly commuting mappings of type $\left(\mathcal{A}_{f}\right)$ (resp. $\left.\left(\mathcal{A}_{g}\right),(\mathcal{P})\right)$, metric and complete metric spaces.

 Communicated by Daniel A. Romano.

