POLYNOMIALS ASSOCIATED WITH CLOSED NEIGHBORHOOD CORONA AND NEIGHBORHOOD COMPLEMENT CORONA OF GRAPHS

Harishchandra S. Ramane, Daneshwari D. Patil, and Kartik S. Pise

Abstract

The closed neighborhood of a vertex $v \in V(G)$ is, $N_{G}[v]=$ $N_{G}(v) \cup\{v\}$, where $N_{G}(v)$ is the set of all vertices which are adjacent to v. Motivated by the concept of closed neighborhood, we define a new corona called as, closed neighborhood corona. Further, we study polynomials associated with adjacency matrix, Laplacian matrix and signless Laplacian matrix of the same structure. Also, we study polynomials associated with adjacency matrix, Laplacian matrix and signless Laplacian matrix of the structure of neighborhood complement corona.

1. Introduction

In a graph G, two vertices are neighbors, whenever there is an edge connecting them. The set of all neighbors of a vertex is called its neighborhood. By taking into account of the concept of neighborhood, in 2011, Indulal [6] defined a new corona product, called it as neighborhood corona, hence studied the adjacency, Laplacian and signless Laplacian spectrum when both the graphs forming the corona product

[^0]are regular. Later, in 2014, Liu and Zhou [7] studied the same structure for two arbitrary graphs. Adiga et al. $[\mathbf{1}, \mathbf{2}]$ defined some new variants of neighborhood coronae and studied adjacency, Laplacian and signless Laplacian polynomial for arbitrary graphs. Inline with the concept of neighborhood complement, Rakshit and Subba Krishna [9] defined neighborhood complement corona and hence studied adjacency, Laplacian and signless Laplacian spectrum of regular graphs.

Motivated by the closed neighborhood concept, in the present work we define a new variant of neighborhood corona, called closed neighborhood corona, hence study adjacency, Laplacian and signless Laplacian polynomial for arbitrary graphs and the corresponding spectrum of regular graphs. Further, we study neighborhood complement corona for arbitrary graphs and obtain their adjacency, Laplacian and signless Laplacian polynomials and prove the results for regular graphs. The results due to Rakshit and Subba Krishna [9] becomes particular cases of our results. The signless Laplacian spectrum for neighborhood complement corona of two regular graphs given in [9] is prone to some errors and we have given here the corrected version of the same.

2. Preliminaries

Throughout the paper, we consider simple, finite and undirected graphs. A graph is a pair $G=(V(G), E(G))$ of sets such that, the elements of $E(G)$ are 2-element subsets of $V(G)$. The elements of $V(G)$ are vertices and that of $E(G)$ are edges of the graph G. Two vertices are adjacent, or neighbors, whenever there is an edge between them. The number of neighbors of a vertex is called its degree. If all the vertices in the graph have same degree then graph is called a regular graph. The set of all neighbors of a vertex v is its neighborhood denoted by $N_{G}(v)$. Closed neighborhood of a vertex v is, $N_{G}[v]=N_{G}(v) \cup\{v\}$. For a graph G with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, the adjacency matrix is defined as, $A(G)=\left[a_{i j}\right]_{n \times n}$ in which $a_{i j}=1$ if the vertices v_{i} and v_{j} are adjacent, and 0 otherwise. Laplacian and signless Laplacian matrices are defined as: $L(G)=D(G)-A(G)$ and $Q(G)=$ $D(G)+A(G)$, respectively, where $D(G)$ is the diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$, where $d_{i}=d_{G}\left(v_{i}\right)$ is the degree of a vertex v_{i}. For any matrix $M_{n \times n}$, the polynomial associated with it is given by, $\phi(M ; x)=\operatorname{det}\left(x I_{n}-M\right)$. Thus, $\phi(A(G) ; x), \phi(L(G) ; x)$ and $\phi(Q(G) ; x)$ denotes adjacency polynomial, Laplacian polynomial and signless Laplacian polynomial of G, respectively. Their roots are adjacency eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues of G, respectively. Denote the eigenvalues of $A(G), L(G)$ and $Q(G)$, respectively, by

$$
\begin{aligned}
& \lambda_{1}(G) \geqslant \lambda_{2}(G) \geqslant \ldots \geqslant \lambda_{n}(G), \\
& \mu_{1}(G) \leqslant \mu_{2}(G) \leqslant \ldots \leqslant \mu_{n}(G), \\
& \gamma_{1}(G) \geqslant \gamma_{2}(G) \geqslant \ldots \geqslant \gamma_{n}(G) .
\end{aligned}
$$

It is noted that, $\mu_{i}=r-\lambda_{i}$ and $\gamma_{i}=r+\lambda_{i}$, if the degree of all vertices of G is r. The collection of distinct eigenvalues of $A(G), L(G)$ and $Q(G)$ together with their corresponding multiplicities form the A-spectrum, L-spectrum and Q-spectrum of G, respectively. The complement \bar{G} of a graph G has the same vertices as G, but two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. The Kronecker
product $C \otimes D$ of two matrices $C=\left[c_{i j}\right]_{m \times n}$ and $D=\left[d_{i j}\right]_{p \times q}$ is the $m p \times n q$ matrix obtained from C by replacing each entry $c_{i j}$ by $c_{i j} D$ [5]. For matrices C, D, E and F such that products $C E$ and $D F$ exist, $(C \otimes D)(E \otimes F)=C E \otimes D F$, $(C \otimes D)^{-1}=C^{-1} \otimes D^{-1}$ and $(C \otimes D)^{T}=C^{T} \otimes D^{T}$. Let $\mathbf{1}_{n}$ denotes the column vector of dimension n and J denotes all 1's matrix. For undefined graph theoretical terminologies and notations, we follow the book [4].

Definition 2.1. ([6]) Given a graph G_{1} on n_{1} vertices and m_{1} edges with the vertex set $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$, and G_{2} be another graph on n_{2} vertices, then the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and making all the vertices in the $i^{t h}$ copy of G_{2} adjacent with the neighbors of v_{i}, for $i=1,2, \ldots, n_{1}$, is called as the neighborhood corona of two graphs, denoted by $G_{1} \star G_{2}$.

Definition 2.2. ([8]) Given a graph G on n vertices with the graph matrix M, where M is viewed as a matrix over the field of rational functions $\mathbb{C}(x)$ with $\operatorname{det}\left(x I_{n}-M\right)$ non zero. The M-coronal $\Gamma_{M}(x) \in \mathbb{C}(x)$ of G is,

$$
\Gamma_{M}(x)=\mathbf{1}_{n}^{T}\left(x I_{n}-M\right)^{-1} \mathbf{1}_{n}
$$

If M has a constant row sum r, then $\Gamma_{M}(x)=\frac{n}{x-r}$.
Proposition 2.1 (Schur Complement [3]). Suppose that the order of all four matrices D_{11}, D_{12}, D_{21} and D_{22} satisfy the rules of operations on matrices. Then we have

$$
\left|\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right|= \begin{cases}\left|D_{22}\right|\left|D_{11}-D_{12} D_{22}^{-1} D_{21}\right|, & \text { if } D_{22} \text { is a non-singular matrix, } \\
\left|D_{11}\right|\left|D_{22}-D_{21} D_{11}^{-1} D_{12}\right|, & \text { if } D_{11} \text { is a non-singular matrix. }\end{cases}
$$

Proposition 2.2 ([4]). If G is an r-regular graph on n vertices with the adjacency eigenvalues: $r, \lambda_{2}(G), \lambda_{3}(G), \ldots, \lambda_{n}(G)$. Then the adjacency eigenvalues of \bar{G} are: $n-r-1,-1-\lambda_{2}(G),-1-\lambda_{3}(G), \ldots,-1-\lambda_{n}(G)$.

3. Closed neighborhood corona of two graphs

Given a graph G_{1}, the neighborhood corona focus only on neighbors of a vertex, in forming the corona product with the graph G_{2}. Closed neighborhood of a vertex include the vertex itself along with its neighbors. Motivated by this, we define a new variation of corona of two graphs, called as closed neighborhood corona.

Definition 3.1. Given a graph G_{1} on n_{1} vertices and m_{1} edges with the vertex set, $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and let G_{2} be another graph on n_{2} vertices and m_{2} edges. Then, the graph obtained by taking a copy of G_{1}, n_{1} copies of G_{2} and then making all vertices in the $i^{t h}$ copy of G_{2} adjacent to the neighbors of v_{i} including v_{i} itself, for $i=1,2, \ldots, n_{1}$, is called as closed neighborhood corona of G_{1} and G_{2}, denoted by $G_{1} \boxed{\star} G_{2}$.

It is noted that $G_{1} \boxed{\star} G_{2}$ has $n_{1}+n_{1} n_{2}$ vertices and $m_{1}+n_{1} m_{2}+n_{1} n_{2}+2 m_{1} n_{2}$ edges.

Example 3.1. Let C_{n} denotes the cycle on n vertices and K_{n} denotes complete graph on n vertices. Fig. 1 depicts $C_{6} \boxed{\star} K_{2}$.

Figure 1: $C_{6} \star K_{2}$.

3.1. Adjacency polynomial of closed neighborhood corona.

Theorem 3.1. If G_{1} and G_{2} are any two graphs on n_{1} and n_{2} vertices respectively, then the spectral polynomial of $A\left(G_{1} \boxed{\star} G_{2}\right)$ is

$$
\phi\left(A\left(G_{1} \boxed{\star} G_{2}\right) ; x\right)=\phi\left(A\left(G_{2}\right) ; x\right)^{n_{1}} \prod_{i=1}^{n_{1}}\left(x-\lambda_{i}\left(G_{1}\right)-\Gamma_{A\left(G_{2}\right)}(x)\left(1+\lambda_{i}\left(G_{1}\right)\right)^{2}\right) .
$$

Proof. The adjacency matrix of $G_{1} \sqrt{\star} G_{2}$ is,

$$
A\left(G_{1} \boxed{\star} G_{2}\right)=\left(\begin{array}{cc}
A\left(G_{1}\right) & \left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes A\left(G_{2}\right)
\end{array}\right) .
$$

The spectral polynomial is,

$$
\begin{aligned}
\phi\left(A\left(G_{1} \boxed{\star} G_{2}\right) ; x\right) & =\operatorname{det}\left(x I_{n_{1}+n_{1} n_{2}}-A\left(G_{1} \sqrt{\star} G_{2}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{c|c}
x I_{n_{1}}-A\left(G_{1}\right) & -\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\hline-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes\left(x I_{n_{2}}-A\left(G_{2}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Applying Proposition 2.1, we have

$$
\phi\left(A\left(G_{1} \boxed{\star} G_{2}\right) ; x\right)=\phi\left(A\left(G_{2}\right) ; x\right)^{n_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-S\right),
$$

where

$$
\begin{aligned}
S & =\left[-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right]\left[I_{n_{1}} \otimes\left(x I_{n_{2}}-A\left(G_{2}\right)\right)\right]^{-1}\left[-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}\right] \\
& =\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2} \otimes \mathbf{1}_{n_{2}}^{T}\left(x I_{n_{2}}-A\left(G_{2}\right)\right)^{-1} \mathbf{1}_{n_{2}} \\
& =\Gamma_{A\left(G_{2}\right)}(x)\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2} .
\end{aligned}
$$

Therefore,
$\phi\left(A\left(G_{1} \boxed{\star} G_{2}\right) ; x\right)=\phi\left(A\left(G_{2}\right) ; x\right)^{n_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\Gamma_{A\left(G_{2}\right)}(x)\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2}\right)$.
Expanding the determinant of RHS in terms of products of $\lambda_{i}\left(G_{1}\right)$, the result follows.

Corollary 3.1. If G_{1} is r_{1}-regular graph and G_{2} is r_{2}-regular graph, then the eigenvalues of $A\left(G_{1} \boxed{\star} G_{2}\right)$ are $\lambda_{i}\left(G_{2}\right), i=2,3, \ldots, n_{2}$, each occuring n_{1} times and

$$
\frac{r_{2}+\lambda_{i}\left(G_{1}\right) \pm \sqrt{\left(r_{2}-\lambda_{i}\left(G_{1}\right)\right)^{2}+4 n_{2}\left(\lambda_{i}\left(G_{1}\right)+1\right)^{2}}}{2}, i=1,2, \ldots, n_{1}
$$

Proof. As G_{2} is r_{2}-regular, substituting $\Gamma_{A\left(G_{2}\right)}(x)=\frac{n_{2}}{x-r_{2}}$ in Theorem 3.1, result follows.

3.2. Laplacian polynomial of closed neighborhood corona.

Theorem 3.2. If G_{1} is an r_{1}-regular graph on n_{1} vertices and G_{2} is any graph on n_{2} vertices, then the spectral polynomial of $L\left(G_{1} \boxed{\star} G_{2}\right)$ is,

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \boxed{\star} G_{2}\right) ; x\right) \\
& =\left(\phi\left(L\left(G_{2}\right) ; x-r_{1}-1\right)\right)^{n_{1}} \\
& \prod_{i=1}^{n_{1}}\left(x-n_{2}-r_{1} n_{2}-\mu_{i}\left(G_{1}\right)-\Gamma_{L\left(G_{2}\right)}\left(x-r_{1}-1\right)\left(r_{1}-\mu_{i}\left(G_{1}\right)+1\right)^{2}\right) .
\end{aligned}
$$

Proof. The Laplacian matrix of $G_{1} \sqrt{\star} G_{2}$ is,

$$
L\left(G_{1} \boxed{\star} G_{2}\right)=\left(\begin{array}{cc}
n_{2}\left(D\left(G_{1}\right)+I_{n_{1}}\right)+L\left(G_{1}\right) & -\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes L\left(G_{2}\right)+\left(D\left(G_{1}\right)+I_{n_{1}}\right) \otimes I_{n_{2}} .
\end{array}\right)
$$

The spectral polynomial is

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \boxed{\star} G_{2}\right) ; x\right) \\
= & \operatorname{det}\left(x I_{n_{1}+n_{1} n_{2}}-L\left(G_{1} \star G_{2}\right)\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-n_{2}\left(D\left(G_{1}\right)+I_{n_{1}}\right)-L\left(G_{1}\right) & \left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & x I_{n_{1} n_{2}}-I_{n_{1}} \otimes L\left(G_{2}\right)-\left(D\left(G_{1}\right)+I_{n_{1}}\right) \otimes I_{n_{2}}
\end{array}\right) .
\end{aligned}
$$

As G_{1} is r_{1}-regular graph, we have

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \boxed{\star} G_{2}\right) ; x\right) \\
= & \operatorname{det}\binom{x I_{n_{1}}-n_{2}\left(r_{1}+1\right) I_{n_{1}}-L\left(G_{1}\right)\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}}{\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} x I_{n_{1} n_{2}}-I_{n_{1}} \otimes L\left(G_{2}\right)-\left(r_{1}+1\right) I_{n_{1}} \otimes I_{n_{2}}} \\
= & \operatorname{det}\left(\begin{array}{c|c}
x I_{n_{1}}-n_{2}\left(r_{1}+1\right) I_{n_{1}}-L\left(G_{1}\right) & \left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\hline\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes\left(\left(x-r_{1}-1\right) I_{n_{2}}-L\left(G_{2}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Applying Proposition 2.1, we have

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \boxed{\star} G_{2}\right) ; x\right)= \\
& \phi\left(L\left(G_{2}\right) ; x-r_{1}-1\right)^{n_{1}} \operatorname{det}\left(\left(x-n_{2}-r_{1} n_{2}\right) I_{n_{1}}-L\left(G_{1}\right)-S\right),
\end{aligned}
$$

where

$$
\begin{aligned}
S & =\left[\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right]\left[I_{n_{1}} \otimes\left(\left(x-r_{1}-1\right) I_{n_{2}}-L\left(G_{2}\right)\right)\right]^{-1}\left[\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}\right] \\
& =\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2} \otimes \mathbf{1}_{n_{2}}^{T}\left(\left(x-r_{1}-1\right) I_{n_{2}}-L\left(G_{2}\right)\right)^{-1} \mathbf{1}_{n_{2}} \\
& =\Gamma_{L\left(G_{2}\right)}\left(x-r_{1}-1\right)\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2} .
\end{aligned}
$$

Therefore,
$\phi\left(L\left(G_{1}^{\star \star} G_{2}\right) ; x\right)=$
$\phi\left(L\left(G_{2}\right) ; x-r_{1}-1\right)^{n_{1}} \operatorname{det}\left(\left(x-n_{2}-r_{1} n_{2}\right) I_{n_{1}}-L\left(G_{1}\right)-\Gamma_{L\left(G_{2}\right)}\left(x-r_{1}-1\right)\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2}\right)$.
Expanding the determinant of RHS in terms of products of $\mu_{i}\left(G_{1}\right)$ by using the relation $\lambda_{i}\left(G_{1}\right)=r_{1}-\mu_{i}\left(G_{1}\right)$, the result follows.

Corollary 3.2. If G_{1} is r_{1}-regular graph and G_{2} is r_{2}-regular graph, then the eigenvalues of $L\left(G_{1} \star G_{2}\right)$ are $\mu_{i}\left(G_{2}\right)+r_{1}+1, i=2,3, \ldots, n_{2}$, each occuring n_{1} times and

$$
\frac{\left(n_{2}+1\right)\left(r_{1}+1\right)+\mu_{i}\left(G_{1}\right) \pm \sqrt{\left(\left(n_{2}+1\right)\left(r_{1}+1\right)+\mu_{i}\left(G_{1}\right)\right)^{2}+4 k_{i}}}{2}
$$

where $k_{i}=\mu_{i}\left(G_{1}\right)\left(n_{2} \mu_{i}\left(G_{1}\right)-\left(2 n_{2}+1\right)\left(r_{1}+1\right)\right), i=1,2, \ldots, n_{1}$.
Proof. As G_{2} is r_{2}-regular, substituting $\Gamma_{L\left(G_{2}\right)}\left(x-r_{1}-1\right)=\frac{n_{2}}{\left(x-r_{1}-1\right)}$ in Theorem 3.2, result follows.

3.3. Signless Laplacian polynomial of closed neighborhood corona.

Theorem 3.3. If G_{1} is an r_{1}-regular graph on n_{1} vertices and G_{2} is any graph on n_{2} vertices, then the spectral polynomial of $Q\left(G_{1} \star G_{2}\right)$ is

$$
\begin{aligned}
& \phi\left(Q\left(G_{1} \sqrt{\star} G_{2}\right) ; x\right)= \\
& \begin{array}{l}
\left.\phi\left(Q\left(G_{2}\right) ; x-r_{1}-1\right)\right)^{n_{1}} \\
\quad \prod_{i=1}^{n_{1}}\left(x-n_{2}-r_{1} n_{2}-\gamma_{i}\left(G_{1}\right)-\Gamma_{Q\left(G_{2}\right)}\left(x-r_{1}-1\right)\left(\gamma_{i}\left(G_{1}\right)-r_{1}+1\right)^{2}\right) .
\end{array}
\end{aligned} \quad .
$$

Proof. The signless Laplacian matrix of $G_{1} \star G_{2}$ is,

$$
Q\left(G_{1} \boxed{\star} G_{2}\right)=\binom{n_{2}\left(D\left(G_{1}\right)+I_{n_{1}}\right)+Q\left(G_{1}\right)\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}}{\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} I_{n_{1}} \otimes Q\left(G_{2}\right)+\left(D\left(G_{1}\right)+I_{n_{1}}\right) \otimes I_{n_{2}}} .
$$

The spectral polynomial is,

$$
\begin{aligned}
& \phi\left(Q\left(G_{1} \boxed{\star} G_{2}\right) ; x\right) \\
= & \operatorname{det}\left(x I_{n_{1}+n_{1} n_{2}}-Q\left(G_{1} \boxed{\star} G_{2}\right)\right) \\
= & \operatorname{det}\binom{x I_{n_{1}}-n_{2}\left(D\left(G_{1}\right)+I_{n_{1}}\right)-Q\left(G_{1}\right)-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}}{-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} x I_{n_{1} n_{2}}-I_{n_{1}} \otimes Q\left(G_{2}\right)-\left(D\left(G_{1}\right)+I_{n_{1}}\right) \otimes I_{n_{2}}} .
\end{aligned}
$$

As G_{1} is r_{1}-regular graph, we have

$$
\left.\left.\begin{array}{rl}
& \phi\left(Q\left(G_{1} \boxed{\star} G_{2}\right) ; x\right) \\
= & \left.\operatorname{det}\left(\begin{array}{c}
x I_{n_{1}}-n_{2}\left(r_{1}+1\right) I_{n_{1}}-Q\left(G_{1}\right) \\
-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}
\end{array} x I_{n_{1} n_{2}}-I_{n_{1}} \otimes Q\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right)-\left(r_{1}+1\right) I_{n_{1}} \otimes I_{n_{2}}
\end{array}\right), \begin{array}{c}
x I_{n_{1}}-n_{2}\left(r_{1}+1\right) I_{n_{1}}-Q\left(G_{1}\right)-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
= \\
-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} \\
= \\
I_{n_{1}} \otimes\left(\left(x-r_{1}-1\right) I_{n_{2}}-Q\left(G_{2}\right)\right)
\end{array}\right) . \quad .
$$

Applying Proposition 2.1, we have
$\phi\left(Q\left(G_{1} \boxed{\star} G_{2}\right) ; x\right)=$
$\phi\left(Q\left(G_{2}\right) ; x-r_{1}-1\right)^{n_{1}} \operatorname{det}\left(\left(x-n_{2}-r_{1} n_{2}\right) I_{n_{1}}-Q\left(G_{1}\right)-S\right)$,
where
$S=$
$\left[-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right]\left[I_{n_{1}} \otimes\left(\left(x-r_{1}-1\right) I_{n_{2}}-Q\left(G_{2}\right)\right)\right]^{-1}\left[-\left(I_{n_{1}}+A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}\right]$
$=\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2} \otimes \mathbf{1}_{n_{2}}^{T}\left(\left(x-r_{1}-1\right) I_{n_{2}}-Q\left(G_{2}\right)\right)^{-1} \mathbf{1}_{n_{2}}$
$=\Gamma_{Q\left(G_{2}\right)}\left(x-r_{1}-1\right)\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2}$.
Therefore,

$$
\begin{aligned}
& \phi\left(Q\left(G_{1} \star G_{2}\right) ; x\right)=\phi\left(Q\left(G_{2}\right) ; x-r_{1}-1\right)^{n_{1}} \\
& \quad \operatorname{det}\left(\left(x-n_{2}-r_{1} n_{2}\right) I_{n_{1}}-Q\left(G_{1}\right)-\Gamma_{Q\left(G_{2}\right)}\left(x-r_{1}-1\right)\left(I_{n_{1}}+A\left(G_{1}\right)\right)^{2}\right) .
\end{aligned}
$$

Expanding the determinant of RHS in terms of products of $\gamma_{i}\left(G_{1}\right)$ by using the relation $\lambda_{i}\left(G_{1}\right)=\gamma_{i}\left(G_{1}\right)-r_{1}$, the result follows.

Corollary 3.3. If G_{1} is r_{1}-regular graph and G_{2} is r_{2}-regular graph, then the eigenvalues of $Q\left(G_{1} \star G_{2}\right)$ are $\gamma_{i}\left(G_{2}\right)+r_{1}+1, i=2,3, \ldots, n_{2}$, each occuring n_{1} times and

$$
\frac{\left(n_{2}+1\right)\left(r_{1}+1\right)+2 r_{2}+\gamma_{i}\left(G_{1}\right) \pm \sqrt{\left(\left(n_{2}+1\right)\left(r_{1}+1\right)+2 r_{2}+\gamma_{i}\left(G_{1}\right)\right)^{2}-4 k_{i}}}{2}
$$

where $k_{i}=2 n_{2} r_{2}\left(r_{1}+1\right)+\left(2 n_{2} r_{1}+2 r_{2}-2 n_{2}+r_{1}+1\right) \gamma_{i}\left(G_{1}\right)+\left(4 r_{1}-\gamma_{i}\left(G_{1}\right)^{2}\right) n_{2}$, $i=1,2, \ldots, n_{1}$.

Proof. As G_{2} is r_{2}-regular, substituting

$$
\Gamma_{Q\left(G_{2}\right)}\left(x-r_{1}-1\right)=\frac{n_{2}}{\left(x-r_{1}-1-2 r_{2}\right)}
$$

in Theorem 3.3, result follows.

4. Neighborhood complement corona of two graphs

In 2015, Rakshit et al. [9] defined the neighborhood complement corona $G_{1} \mp G_{2}$ and hence studied adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum of those structures when both the graphs taken into account are regular. In this section we study neighborhood complement corona $G_{1} \AA G_{2}$ for their adjacency polynomial (both G_{1} and G_{2} are arbitrary); Laplacian polynomial and signless Laplacian polynomial (G_{2} is arbitrary). The results due to Rakshit et al. [9] are particular cases when both the graphs are regular.

Definition 4.1. ([9]) Let G_{1} be the graph with vertices $v_{1}, v_{2}, \ldots, v_{n_{1}}$ and G_{2} be another graph. Then, the neighborhood complement corona $G_{1} \bar{\star} G_{2}$ of two graphs G_{1} and G_{2} is obtained by taking n_{1} copies of G_{2} and joining each vertex v_{j} in G_{1} to every vertex of i-th copy of G_{2}, provided the vertices v_{i} and v_{j} are non-adjacent in G_{1} or $i=j$ (see Fig. 2).

Figure 2: $C_{4} \bar{\star} K_{2}$.

4.1. Adjacency polynomial of neighborhood complement corona.

Theorem 4.1. If G_{1} and G_{2} are any two graphs on n_{1} and n_{2} vertices respectively, then the spectral polynomial of $A\left(G_{1} \mp G_{2}\right)$ is,

$$
\begin{aligned}
\phi\left(A\left(G_{1} \bar{\star} G_{2}\right) ; x\right)= & \phi\left(A\left(G_{2}\right) ; x\right)^{n_{1}} \\
& \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\Gamma_{A\left(G_{2}\right)}(x)\left(I_{n_{1}}+A\left(\overline{G_{1}}\right)\right)^{2}\right) .
\end{aligned}
$$

Proof. The adjacency matrix of $G_{1} \AA G_{2}$ is,

$$
A\left(G_{1} \not G_{2}\right)=\left(\begin{array}{cc}
A\left(G_{1}\right) & \left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes A\left(G_{2}\right)
\end{array}\right) .
$$

The spectral polynomial is,

$$
\begin{aligned}
\phi\left(A\left(G_{1} \mp G_{2}\right) ; x\right) & =\operatorname{det}\left(x I_{n_{1}+n_{1} n_{2}}-A\left(G_{1} \mp G_{2}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{c|c}
x I_{n_{1}}-A\left(G_{1}\right) & -\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\hline-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes\left(x I_{n_{2}}-A\left(G_{2}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Applying Proposition 2.1, we have

$$
\phi\left(A\left(G_{1} \bar{\star} G_{2}\right) ; x\right)=\phi\left(A\left(G_{2}\right) ; x\right)^{n_{1}} \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-S\right),
$$

where,
$S=$
$\left[-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right]\left[I_{n_{1}} \otimes\left(x I_{n_{2}}-A\left(G_{2}\right)\right)\right]^{-1}\left[-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}\right]$
$=\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2} \otimes \mathbf{1}_{n_{2}}^{T}\left(x I_{n_{2}}-A\left(G_{2}\right)\right)^{-1} \mathbf{1}_{n_{2}}$
$=\Gamma_{A\left(G_{2}\right)}(x)\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2}$
$=\Gamma_{A\left(G_{2}\right)}(x)\left(I_{n_{1}}+A\left(\overline{G_{1}}\right)\right)^{2}$.
Therefore,

$$
\begin{aligned}
\phi\left(A\left(G_{1} \bar{\star} G_{2}\right) ; x\right)= & \phi\left(A\left(G_{2}\right) ; x\right)^{n_{1}} \\
& \operatorname{det}\left(x I_{n_{1}}-A\left(G_{1}\right)-\Gamma_{A\left(G_{2}\right)}(x)\left(I_{n_{1}}+A\left(\overline{G_{1}}\right)\right)^{2}\right) .
\end{aligned}
$$

Hence, the result follows.
Corollary 4.1. If G_{1} and G_{2} are r_{1} and r_{2}-regular graphs, respectively, then the eigenvalues of $A\left(G_{1} \AA G_{2}\right)$ are $\lambda_{i}\left(G_{2}\right), i=2,3, \ldots, n_{2}$, each occuring n_{1} times,

$$
\frac{r_{2}+r_{1} \pm \sqrt{\left(r_{2}-r_{1}\right)^{2}+4 n_{2}\left(n_{1}-r_{1}\right)^{2}}}{2}
$$

and

$$
\frac{r_{2}+\lambda_{i}\left(G_{1}\right) \pm \sqrt{\left(r_{2}-\lambda_{i}\left(G_{1}\right)\right)^{2}+4 n_{2} \lambda_{i}\left(G_{1}\right)^{2}}}{2}, i=2,3, \ldots, n_{1} .
$$

Proof. Both G_{1} and G_{2} are regular graphs. Therefore substituting $\Gamma_{A\left(G_{2}\right)}(x)=$ $\frac{n_{2}}{x-r_{2}}$ in Theorem 4.1, using the relation between $\lambda_{i}(G)$ and $\lambda_{i}(\bar{G})$ from Proposition 2.2 and equating the RHS to zero, we will arrive at the spectrum of $A\left(G_{1} \mp G_{2}\right)$.

Theorem 3.1 of [$\mathbf{9}]$ becomes the particular case of Theorem 4.1 and is observed from Corollary 4.1.

4.2. Laplacian polynomial of neighborhood complement corona.

THEOREM 4.2. If G_{1} is an r_{1}-regular graph on n_{1} vertices and G_{2} is any graph on n_{2} vertices, then the spectral polynomial of $L\left(G_{1} \mp G_{2}\right)$ is,

```
\phi(L(G1\nwarrow}\mp@subsup{G}{2}{});x)=(\phi(L(\mp@subsup{G}{2}{});x-\mp@subsup{n}{1}{}+\mp@subsup{r}{1}{})\mp@subsup{)}{}{\mp@subsup{n}{1}{}
    det ((x-n, n}\mp@subsup{n}{2}{}+\mp@subsup{r}{1}{}\mp@subsup{n}{2}{})\mp@subsup{I}{\mp@subsup{n}{1}{}}{}-L(\mp@subsup{G}{1}{})-\mp@subsup{\Gamma}{L(\mp@subsup{G}{2}{})}{(x-n
```

Proof. The Laplacian matrix of $G_{1} \mp G_{2}$ is

$$
L\left(G_{1} \not \approx G_{2}\right)=\left(\begin{array}{cc}
n_{2}\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right)+L\left(G_{1}\right) & -\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes L\left(G_{2}\right)+\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right) \otimes I_{n_{2}}
\end{array}\right) .
$$

The spectral polynomial is

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \bar{\star} G_{2}\right) ; x\right) \\
= & \operatorname{det}\left(x I_{n_{1}+n_{1} n_{2}}-L\left(G_{1} \bar{\star} G_{2}\right)\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-n_{2}\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right)-L\left(G_{1}\right) & \left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & x I_{n_{1} n_{2}}-I_{n_{1}} \otimes L\left(G_{2}\right)-\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right) \otimes I_{n_{2}}
\end{array}\right) .
\end{aligned}
$$

As G_{1} is r_{1}-regular graph, we have

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \not G_{2}\right) ; x\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-n_{2}\left(n_{1}-r_{1}\right) I_{n_{1}}-L\left(G_{1}\right) & \left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & x I_{n_{1} n_{2}}-I_{n_{1}} \otimes L\left(G_{2}\right)-\left(n_{1}-r_{1}\right) I_{n_{1}} \otimes I_{n_{2}}
\end{array}\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-n_{2}\left(n_{1}-r_{1}\right) I_{n_{1}}-L\left(G_{1}\right) & \left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes\left(\left(x-n_{1}+r_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Applying Proposition 2.1, we have

$$
\begin{aligned}
& \phi\left(L\left(G_{1} \bar{\star} G_{2}\right) ; x\right)= \\
& \phi\left(L\left(G_{2}\right) ; x-n_{1}+r_{1}\right)^{n_{1}} \operatorname{det}\left(\left(x-n_{1} n_{2}+r_{1} n_{2}\right) I_{n_{1}}-L\left(G_{1}\right)-S\right),
\end{aligned}
$$

where,
$S=$
$\left[\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right]\left[I_{n_{1}} \otimes\left(\left(x-n_{1}+r_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right)\right]^{-1}\left[\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}\right]$
$=\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2} \otimes \mathbf{1}_{n_{2}}^{T}\left(\left(x-n_{1}+r_{1}\right) I_{n_{2}}-L\left(G_{2}\right)\right)^{-1} \mathbf{1}_{n_{2}}$
$=\Gamma_{L\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2}$.
Therefore,

$$
\begin{aligned}
\phi\left(L\left(G_{1} \star G_{2}\right) ; x\right)= & \left(\phi\left(L\left(G_{2}\right) ; x-n_{1}+r_{1}\right)\right)^{n_{1}} \\
& \operatorname{det}\left(\left(x-n_{1} n_{2}+r_{1} n_{2}\right) I_{n_{1}}-L\left(G_{1}\right)-\Gamma_{L\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2}\right) .
\end{aligned}
$$

Hence, the result follows.
Corollary 4.2. If G_{1} is r_{1}-regular graph and G_{2} is r_{2}-regular graph, then the eigenvalues of $L\left(G_{1} \mp G_{2}\right)$ are $\mu_{i}\left(G_{2}\right)+n_{1}-r_{1}, i=2,3, \ldots, n_{2}$, each occuring n_{1} times, 0 and $\left(n_{1}-r_{1}\right)\left(n_{2}+1\right)$, each occuring one time and

$$
\frac{\left(n_{1}-r_{1}\right)\left(n_{2}+1\right)+\mu_{i}\left(G_{1}\right) \pm \sqrt{\left(\left(n_{1}-r_{1}\right)\left(n_{2}+1\right)+\mu_{i}\left(G_{1}\right)\right)^{2}+4 k_{i}}}{2}
$$

where, $k_{i}=n_{2}\left(n_{1}-\mu_{i}\left(G_{1}\right)\right)\left(2 r_{1}-\mu_{i}\left(G_{1}\right)-n_{1}\right)-\mu_{i}\left(G_{1}\right)\left(n_{1}-r_{1}\right)$, for $i=2,3, \ldots, n_{1}$.

Proof. Both G_{1} and G_{2} are regular graphs. Therefore substituting $\Gamma_{L\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)=\frac{n_{2}}{x-n_{1}+r_{1}}$ and $J_{n_{1}}-A\left(G_{1}\right)=I_{n_{1}}+A\left(\overline{G_{1}}\right)$ in Theorem 4.2 and then, using the relation between $\lambda_{i}(G)$ and $\lambda_{i}(\bar{G})$ from Proposition 2.2 and $\mu_{i}\left(G_{1}\right)=r_{1}-\lambda_{i}\left(G_{1}\right)$ and equating the RHS to zero, we will arrive at the spectrum of $L\left(G_{1} \mp G_{2}\right)$.

Theorem 3.3 of [$\mathbf{9}]$ becomes the particular case of Theorem 4.2.

4.3. Signless Laplacian polynomial of neighborhood

 complement corona.Theorem 4.3. If G_{1} is an r_{1}-regular graph on n_{1} vertices and G_{2} is any graph on n_{2} vertices, then the spectral polynomial of $Q\left(G_{1} \mp G_{2}\right)$ is,

$$
\begin{aligned}
\phi\left(Q\left(G_{1} \nexists G_{2}\right) ; x\right)= & \left(\phi\left(Q\left(G_{2}\right) ; x-n_{1}+r_{1}\right)\right)^{n_{1}} \\
& \operatorname{det}\left(\left(x-n_{1} n_{2}+r_{1} n_{2}\right) I_{n_{1}}-Q\left(G_{1}\right)-\Gamma_{Q\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2}\right) .
\end{aligned}
$$

Proof. The signless Laplacian matrix of $G_{1} \mp G_{2}$ is,

$$
Q\left(G_{1} \mp G_{2}\right)=\left(\begin{array}{c}
n_{2}\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right)+Q\left(G_{1}\right) \\
\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} \\
I_{n_{1}} \otimes Q\left(G_{2}\right)+\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right) \otimes I_{n_{2}}
\end{array}\right) .
$$

The spectral polynomial is

$$
\left.\begin{array}{rl}
& \phi\left(Q\left(G_{1} \bar{\star} G_{2}\right) ; x\right) \\
= & \operatorname{det}\left(x I_{n_{1}+n_{1} n_{2}}-Q\left(G_{1} \bar{\star} G_{2}\right)\right) \\
= & \operatorname{det}\left(\begin{array}{c}
x I_{n_{1}}-n_{2}\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right)-Q\left(G_{1}\right) \\
-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}
\end{array} \quad x I_{n_{1} n_{2}}-I_{n_{1}} \otimes Q\left(G_{2}\right)-\left(n_{1} I_{n_{1}}-D\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right. \\
\hline
\end{array}\right) .
$$

As G_{1} is r_{1}-regular graph, we have

$$
\begin{aligned}
& \phi\left(Q\left(G_{1} \bar{\star} G_{2}\right) ; x\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
x I_{n_{1}}-n_{2}\left(n_{1}-r_{1}\right) I_{n_{1}}-Q\left(G_{1}\right) & -\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & x I_{n_{1} n_{2}}-I_{n_{1}} \otimes Q\left(G_{2}\right)-\left(n_{1}-r_{1}\right) I_{n_{1}} \otimes I_{n_{2}}
\end{array}\right) \\
= & \operatorname{det}\left(\begin{array}{c|c}
x I_{n_{1}}-n_{2}\left(n_{1}-r_{1}\right) I_{n_{1}}-Q\left(G_{1}\right) & -\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T} \\
\hline-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}} & I_{n_{1}} \otimes\left(\left(x-n_{1}+r_{1}\right) I_{n_{2}}-Q\left(G_{2}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Applying Proposition 2.1, we have

$$
\phi\left(Q\left(G_{1} \bar{\star} G_{2}\right) ; x\right)=\phi\left(Q\left(G_{2}\right) ; x-n_{1}+r_{1}\right)^{n_{1}} \operatorname{det}\left(\left(x-n_{1} n_{2}+r_{1} n_{2}\right) I_{n_{1}}-Q\left(G_{1}\right)-S\right)
$$

where
$S=$
$\left[-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}^{T}\right]\left[I_{n_{1}} \otimes\left(\left(x-n_{1}+r_{1}\right) I_{n_{2}}-Q\left(G_{2}\right)\right)\right]^{-1}\left[-\left(J_{n_{1}}-A\left(G_{1}\right)\right) \otimes \mathbf{1}_{n_{2}}\right]$
$=\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2} \otimes \mathbf{1}_{n_{2}}^{T}\left(\left(x-n_{1}+r_{1}\right) I_{n_{2}}-Q\left(G_{2}\right)\right)^{-1} \mathbf{1}_{n_{2}}$
$=\Gamma_{Q\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2}$.
Therefore,

$$
\begin{aligned}
& \phi\left(Q\left(G_{1} \bar{\star} G_{2}\right) ; x\right)= \\
& \left(\phi\left(Q\left(G_{2}\right) ; x-n_{1}+r_{1}\right)\right)^{n_{1}} \\
& \operatorname{det}\left(\left(x-n_{1} n_{2}+r_{1} n_{2}\right) I_{n_{1}}-Q\left(G_{1}\right)-\Gamma_{Q\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)\left(J_{n_{1}}-A\left(G_{1}\right)\right)^{2}\right) .
\end{aligned}
$$

Hence, the result follows.
Corollary 4.3. If G_{1} and G_{2} are r_{1} and r_{2}-regular graphs, respectively, then the eigenvalues of $Q\left(G_{1} \bar{\star} G_{2}\right)$ are $\gamma_{i}\left(G_{2}\right)+n_{1}-r_{1}, i=2,3, \ldots, n_{2}$, each occuring n_{1} times and

$$
\frac{n_{2}\left(n_{1}-r_{1}\right)+n_{1}+r_{1}+2 r_{2} \pm \sqrt{\left(n_{2}\left(n_{1}-r_{1}\right)+n_{1}+r_{1}+2 r_{2}\right)^{2}+8 k_{i}}}{2}
$$

where $k_{i}=\left[n_{2} r_{2}\left(r_{1}-n_{1}\right)+r_{1}^{2}-r_{1}\left(2 r_{2}+n_{1}\right)\right]$ and

$$
\frac{\left(n_{1}-r_{1}\right)\left(n_{2}+1\right)+2 r_{2}+\gamma_{i}\left(G_{1}\right) \pm \sqrt{\left(\left(n_{1}-r_{1}\right)\left(n_{2}+1\right)+2 r_{2}+\gamma_{i}\left(G_{1}\right)\right)^{2}+4 s_{i}}}{2}
$$

where $s_{i}=n_{2}\left(2 n_{1} r_{1}-2 n_{1} r_{2}+2 r_{1} r_{2}-n_{1}^{2}+\gamma_{i}\left(G_{1}\right)^{2}\right)-\gamma_{i}\left(G_{1}\right)\left(2 r_{1} n_{2}+2 r_{2}+n_{1}-r_{1}\right)$, $i=2,3, \ldots, n_{1}$.

Proof. Both G_{1} and G_{2} are regular graphs. Substituting $\Gamma_{Q\left(G_{2}\right)}\left(x-n_{1}+r_{1}\right)=\frac{n_{2}}{x-n_{1}+r_{1}-2 r_{2}}, J_{n_{1}}-A\left(G_{1}\right)=I_{n_{1}}+A\left(\overline{G_{1}}\right)$, in Theorem 4.3 and then, using the relation between $\lambda_{i}(G)$ and $\lambda_{i}(\bar{G}$ from Proposition 2.2, $\gamma_{i}\left(G_{1}\right)=r_{1}+\lambda_{i}\left(G_{1}\right)$ and equating the RHS to zero, we arrive at the spectrum of $Q\left(G_{1} \mp G_{2}\right)$.

References

[1] C. Adiga and B. R. Rakshith. Spectra of graph operations based on corona and neighborhood corona of graphs G and K_{1}. J. Int. Math. Virtual Inst., 5(2015), 55-69.
[2] C. Adiga, B. R. Rakshith and K. N. Subba Krishna. Spectra of extended neighborhood corona and extended corona of two graphs. Electron. J. Graph Theory Appl., 4(1)(2016), 101-110.
[3] R. B. Bapat. Graphs and Matrices. Springer, New York, 2010.
[4] D. M. Cvetković, P. Rowlinson and S. Simić. An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
[5] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991.
[6] G. Indulal. The spectrum of neighborhood corona of graphs. Kragujevac J. Math., 35(3)(2011), 493-500.
[7] X. Liu and S. Zhou. Spectra of neighbourhood corona of two graphs. Linear Multilinear Algebra, 62(9)(2014), 1205-1219.
[8] C. McLeman and E. McNicholas. Spectra of coronae. Linear Algebra Appl., 435(5)(2011), 998-1007.
[9] B. R. Rakshith and K. N. Subba Krishna. The spectrum of the neighborhood complement corona of two graphs. Adv. Appl. Discrete Math. , 16(1)(2015), 77-87.

Received by editors 02.02.2021; Revised version 03.05.2021; Available online 10.05.2021.
Department of Mathematics, Karnatak Unniversity Dharwad-580003, India
E-mail address: hsramane@yahoo.com
Department of Mathematics, Karnatak Unniversity Dharwad-580003, India
E-mail address: daneshwarip@gmail.com
Department of Mathematics, Karnatak Unniversity Dharwad-580003, India
E-mail address: pise.kartik@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05C; Secondary 05C50.
 Key words and phrases. Neighborhood corona, neighborhood complement corona, closed neighborhood corona.

 The work of H. S. Ramane was partially supported by University Grants Commission (UGC), New Delhi through the grant under UGC-SAP DRS-III for 2016-2021:F.510/3/DRS-III/2016(SAP-I). The work of D. D. Patil was partially supported by Karnataka Science and Technology Promotion Society, Bengaluru through fellowship No. DST/KSTePS/Ph.D Fellowship/OTH-01:2018-19. The work of K. S. Pise was partially supported by Council of Scientific and Industrial Research (CSIR), New Delhi through Junior Research Fellowship: File No. 09/101(00590059)/2020-EMR-I..

 Communicated by Igor Milovanović.

