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POLYNOMIALS ASSOCIATED WITH CLOSED
NEIGHBORHOOD CORONA AND NEIGHBORHOOD

COMPLEMENT CORONA OF GRAPHS
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Abstract. The closed neighborhood of a vertex v ∈ V (G) is, NG[v] =

NG(v) ∪ {v}, where NG(v) is the set of all vertices which are adjacent to
v. Motivated by the concept of closed neighborhood, we define a new corona
called as, closed neighborhood corona. Further, we study polynomials associ-
ated with adjacency matrix, Laplacian matrix and signless Laplacian matrix

of the same structure. Also, we study polynomials associated with adjacency
matrix, Laplacian matrix and signless Laplacian matrix of the structure of
neighborhood complement corona.

1. Introduction

In a graph G, two vertices are neighbors, whenever there is an edge connecting
them. The set of all neighbors of a vertex is called its neighborhood. By taking into
account of the concept of neighborhood, in 2011, Indulal [6] defined a new corona
product, called it as neighborhood corona, hence studied the adjacency, Laplacian
and signless Laplacian spectrum when both the graphs forming the corona product
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are regular. Later, in 2014, Liu and Zhou [7] studied the same structure for two
arbitrary graphs. Adiga et al. [1, 2] defined some new variants of neighborhood
coronae and studied adjacency, Laplacian and signless Laplacian polynomial for
arbitrary graphs. Inline with the concept of neighborhood complement, Rakshit
and Subba Krishna [9] defined neighborhood complement corona and hence studied
adjacency, Laplacian and signless Laplacian spectrum of regular graphs.

Motivated by the closed neighborhood concept, in the present work we define
a new variant of neighborhood corona, called closed neighborhood corona, hence
study adjacency, Laplacian and signless Laplacian polynomial for arbitrary graphs
and the corresponding spectrum of regular graphs. Further, we study neighborhood
complement corona for arbitrary graphs and obtain their adjacency, Laplacian and
signless Laplacian polynomials and prove the results for regular graphs. The results
due to Rakshit and Subba Krishna [9] becomes particular cases of our results. The
signless Laplacian spectrum for neighborhood complement corona of two regular
graphs given in [9] is prone to some errors and we have given here the corrected
version of the same.

2. Preliminaries

Throughout the paper, we consider simple, finite and undirected graphs. A
graph is a pair G =

(
V (G), E(G)

)
of sets such that, the elements of E(G) are

2-element subsets of V (G). The elements of V (G) are vertices and that of E(G)
are edges of the graph G. Two vertices are adjacent, or neighbors, whenever there
is an edge between them. The number of neighbors of a vertex is called its degree.
If all the vertices in the graph have same degree then graph is called a regular
graph. The set of all neighbors of a vertex v is its neighborhood denoted by NG(v).
Closed neighborhood of a vertex v is, NG[v] = NG(v) ∪ {v}. For a graph G with
n vertices v1, v2, . . . , vn, the adjacency matrix is defined as, A(G) = [aij ]n×n in
which aij = 1 if the vertices vi and vj are adjacent, and 0 otherwise. Laplacian
and signless Laplacian matrices are defined as: L(G) = D(G)−A(G) and Q(G) =
D(G)+A(G), respectively, where D(G) is the diagonal matrix with diagonal entries
d1, d2, . . . , dn, where di = dG(vi) is the degree of a vertex vi. For any matrix Mn×n,
the polynomial associated with it is given by, ϕ (M ;x) = det (xIn −M). Thus,
ϕ (A(G);x) , ϕ (L(G);x) and ϕ (Q(G);x) denotes adjacency polynomial, Laplacian
polynomial and signless Laplacian polynomial of G, respectively. Their roots are
adjacency eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues of
G, respectively. Denote the eigenvalues of A(G), L(G) and Q(G), respectively, by

λ1(G) > λ2(G) > . . . > λn(G),
µ1(G) 6 µ2(G) 6 . . . 6 µn(G),
γ1(G) > γ2(G) > . . . > γn(G).

It is noted that, µi = r − λi and γi = r + λi, if the degree of all vertices of G is r.
The collection of distinct eigenvalues of A(G), L(G) and Q(G) together with their
corresponding multiplicities form the A-spectrum, L-spectrum and Q-spectrum of
G, respectively. The complementG of a graphG has the same vertices asG, but two
vertices are adjacent in G if and only if they are not adjacent in G. The Kronecker
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product C ⊗ D of two matrices C = [cij ]m×n and D = [dij ]p×q is the mp × nq
matrix obtained from C by replacing each entry cij by cijD [5]. For matrices
C,D,E and F such that products CE and DF exist, (C⊗D) (E⊗F ) = CE⊗DF ,
(C ⊗D)−1 = C−1 ⊗D−1 and (C ⊗D)T = CT ⊗DT . Let 1n denotes the column
vector of dimension n and J denotes all 1′s matrix. For undefined graph theoretical
terminologies and notations, we follow the book [4].

Definition 2.1. ([6]) Given a graph G1 on n1 vertices and m1 edges with the
vertex set V (G1) = {v1, v2, . . . , vn1}, and G2 be another graph on n2 vertices, then
the graph obtained by taking one copy of G1 and n1 copies of G2 and making all the
vertices in the ith copy of G2 adjacent with the neighbors of vi, for i = 1, 2, . . . , n1,
is called as the neighborhood corona of two graphs, denoted by G1 ⋆ G2.

Definition 2.2. ([8]) Given a graph G on n vertices with the graph matrix
M , where M is viewed as a matrix over the field of rational functions C(x) with
det(xIn −M) non zero. The M -coronal ΓM (x) ∈ C(x) of G is,

ΓM (x) = 1T
n

(
xIn −M

)−1

1n.

If M has a constant row sum r, then ΓM (x) =
n

x− r
.

Proposition 2.1 (Schur Complement [3]). Suppose that the order of all four
matrices D11, D12, D21 and D22 satisfy the rules of operations on matrices. Then
we have∣∣∣∣D11 D12

D21 D22

∣∣∣∣ =
|D22| |D11 −D12D

−1
22 D21|, if D22 is a non-singular matrix,

|D11| |D22 −D21D
−1
11 D12|, if D11 is a non-singular matrix.

Proposition 2.2 ([4]). If G is an r-regular graph on n vertices with the adja-
cency eigenvalues: r, λ2(G), λ3(G), . . . , λn(G). Then the adjacency eigenvalues of
G are: n− r − 1,−1− λ2(G),−1− λ3(G), . . . ,−1− λn(G).

3. Closed neighborhood corona of two graphs

Given a graph G1, the neighborhood corona focus only on neighbors of a vertex,
in forming the corona product with the graph G2. Closed neighborhood of a vertex
include the vertex itself along with its neighbors. Motivated by this, we define a
new variation of corona of two graphs, called as closed neighborhood corona.

Definition 3.1. Given a graph G1 on n1 vertices and m1 edges with the vertex
set, V (G1) = {v1, v2, . . . , vn1} and let G2 be another graph on n2 vertices and m2

edges. Then, the graph obtained by taking a copy of G1, n1 copies of G2 and then
making all vertices in the ith copy of G2 adjacent to the neighbors of vi including
vi itself, for i = 1, 2, . . . , n1, is called as closed neighborhood corona of G1 and G2,
denoted by G1 ⋆ G2.

It is noted that G1 ⋆ G2 has n1+n1n2 vertices and m1+n1m2+n1n2+2m1n2

edges.
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Example 3.1. Let Cn denotes the cycle on n vertices and Kn denotes complete
graph on n vertices. Fig. 1 depicts C6 ⋆ K2.
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Figure 1: C6 ⋆ K2.

3.1. Adjacency polynomial of closed neighborhood corona.

Theorem 3.1. If G1 and G2 are any two graphs on n1 and n2 vertices respec-
tively, then the spectral polynomial of A

(
G1 ⋆ G2

)
is

ϕ
(
A(G1 ⋆ G2); x

)
= ϕ(A(G2); x)

n1

n1∏
i=1

(
x− λi(G1)− ΓA(G2)(x) (1 + λi(G1))

2
)
.

Proof. The adjacency matrix of G1 ⋆ G2 is,

A
(
G1 ⋆ G2

)
=

(
A(G1) (In1 +A(G1))⊗ 1T

n2

(In1 +A(G1))⊗ 1n2 In1 ⊗A(G2)

)
.

The spectral polynomial is,

ϕ
(
A
(
G1 ⋆ G2

)
; x
)

= det
(
x In1+n1n2 −A

(
G1 ⋆ G2

))
= det

(
xIn1 −A(G1) − (In1 +A(G1))⊗ 1T

n2

− (In1 +A(G1))⊗ 1n2 In1 ⊗ (xIn2 −A(G2))

)
.

Applying Proposition 2.1, we have

ϕ
(
A
(
G1 ⋆ G2

)
; x
)

= ϕ (A (G2) ; x)
n1 det (xIn1 −A(G1)− S) ,

where

S =
[
− (In1 +A(G1))⊗ 1T

n2

]
[In1 ⊗ (xIn2 −A(G2))]

−1 [− (In1 +A(G1))⊗ 1n2 ]

=
(
In1 +A(G1)

)2

⊗ 1T
n2

(
xIn2 −A(G2)

)−1

1n2

= ΓA(G2)(x)
(
In1 +A(G1)

)2

.
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Therefore,

ϕ
(
A
(
G1 ⋆ G2

)
; x

)
= ϕ(A (G2) ; x)

n1det
(
xIn1 −A(G1)− ΓA(G2)(x) (In1 +A(G1))

2) .
Expanding the determinant of RHS in terms of products of λi(G1), the result
follows. �

Corollary 3.1. If G1 is r1-regular graph and G2 is r2-regular graph, then the
eigenvalues of A

(
G1 ⋆ G2

)
are λi(G2), i = 2, 3, . . . , n2, each occuring n1 times

and

r2 + λi(G1)±
√

(r2 − λi(G1))
2
+ 4n2 (λi(G1) + 1)

2

2
, i = 1, 2, . . . , n1.

Proof. As G2 is r2-regular, substituting ΓA(G2)(x) =
n2

x− r2
in Theorem 3.1,

result follows. �

3.2. Laplacian polynomial of closed neighborhood corona.

Theorem 3.2. If G1 is an r1-regular graph on n1 vertices and G2 is any graph
on n2 vertices, then the spectral polynomial of L

(
G1 ⋆ G2

)
is,

ϕ
(
L
(
G1 ⋆ G2

)
; x
)

= (ϕ (L (G2) ; x− r1 − 1))
n1

n1∏
i=1

(
x− n2 − r1n2 − µi(G1)− ΓL(G2)(x− r1 − 1)

(
r1 − µi(G1) + 1

)2)
.

Proof. The Laplacian matrix of G1 ⋆ G2 is,

L
(
G1 ⋆ G2

)
=

(
n2 (D(G1) + In1) + L(G1) − (In1 +A(G1))⊗ 1T

n2

− (In1 +A(G1))⊗ 1n2 In1 ⊗ L(G2) + (D(G1) + In1)⊗ In2 .

)
The spectral polynomial is

ϕ
(
L
(
G1 ⋆ G2

)
; x
)

= det
(
x In1+n1n2 − L

(
G1 ⋆ G2

))
= det

(
xIn1 − n2 (D(G1) + In1)− L(G1) (In1 +A(G1))⊗ 1T

n2

(In1 +A(G1))⊗ 1n2 xIn1n2 − In1 ⊗ L(G2)− (D(G1) + In1)⊗ In2

)
.

As G1 is r1−regular graph, we have

ϕ
(
L
(
G1 ⋆ G2

)
; x
)

= det

(
xIn1 − n2 (r1 + 1) In1 − L(G1) (In1 +A(G1))⊗ 1T

n2

(In1 +A(G1))⊗ 1n2 xIn1n2 − In1 ⊗ L(G2)− (r1 + 1) In1 ⊗ In2

)

= det

(
xIn1 − n2 (r1 + 1) In1 − L(G1) (In1 +A(G1))⊗ 1T

n2

(In1 +A(G1))⊗ 1n2 In1 ⊗ ((x− r1 − 1)In2 − L(G2))

)
.
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Applying Proposition 2.1, we have

ϕ
(
L
(
G1 ⋆ G2

)
; x
)
=

ϕ (L (G2) ; x− r1 − 1)
n1 det ((x− n2 − r1n2)In1 − L(G1)− S) ,

where

S =
[
(In1 +A(G1))⊗ 1T

n2

]
[In1 ⊗ ((x− r1 − 1)In2 − L(G2))]

−1 [(In1 +A(G1))⊗ 1n2 ]

= (In1 +A(G1))
2 ⊗ 1T

n2
((x− r1 − 1)In2 − L(G2))

−1 1n2

= ΓL(G2)(x− r1 − 1) (In1 +A(G1))
2 .

Therefore,

ϕ
(
L
(
G1 ⋆ G2

)
; x
)
=

ϕ (L (G2) ; x− r1 − 1)n1 det
(
(x− n2 − r1n2)In1 − L(G1)− ΓL(G2)(x− r1 − 1) (In1 +A(G1))

2
)
.

Expanding the determinant of RHS in terms of products of µi(G1) by using the
relation λi(G1) = r1 − µi(G1), the result follows. �

Corollary 3.2. If G1 is r1-regular graph and G2 is r2-regular graph, then the
eigenvalues of L

(
G1 ⋆ G2

)
are µi(G2) + r1 + 1, i = 2, 3, . . . , n2, each occuring n1

times and

(n2 + 1)(r1 + 1) + µi(G1)±
√

((n2 + 1)(r1 + 1) + µi(G1))
2
+ 4ki

2
,

where ki = µi(G1) (n2µi(G1)− (2n2 + 1)(r1 + 1)), i = 1, 2, . . . , n1.

Proof. As G2 is r2-regular, substituting ΓL(G2)(x− r1 − 1) =
n2

(x− r1 − 1)
in

Theorem 3.2, result follows. �

3.3. Signless Laplacian polynomial of closed neighborhood corona.

Theorem 3.3. If G1 is an r1-regular graph on n1 vertices and G2 is any graph
on n2 vertices, then the spectral polynomial of Q

(
G1 ⋆ G2

)
is

ϕ
(
Q
(
G1 ⋆ G2

)
; x
)
=

(ϕ (Q (G2) ; x− r1 − 1))
n1∏n1

i=1

(
x− n2 − r1n2 − γi(G1)− ΓQ(G2)(x− r1 − 1) (γi(G1)− r1 + 1)

2
)
.

Proof. The signless Laplacian matrix of G1 ⋆ G2 is,

Q
(
G1 ⋆ G2

)
=

(
n2 (D(G1) + In1) +Q(G1) (In1 +A(G1))⊗ 1T

n2

(In1 +A(G1))⊗ 1n2 In1 ⊗Q(G2) + (D(G1) + In1)⊗ In2

)
.
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The spectral polynomial is,

ϕ
(
Q

(
G1 ⋆ G2

)
; x

)
= det

(
x In1+n1n2 − Q

(
G1 ⋆ G2

))
= det

 xIn1 − n2 (D(G1) + In1)−Q(G1) − (In1 +A(G1))⊗ 1T
n2

− (In1 +A(G1))⊗ 1n2 xIn1n2 − In1 ⊗Q(G2)− (D(G1) + In1)⊗ In2

 .

As G1 is r1−regular graph, we have

ϕ
(
Q
(
G1 ⋆ G2

)
; x
)

= det

(
xIn1 − n2(r1 + 1)In1 −Q(G1) − (In1 +A(G1))⊗ 1T

n2

− (In1 +A(G1))⊗ 1n2 xIn1n2 − In1 ⊗Q(G2)− (r1 + 1)In1 ⊗ In2

)

= det

(
xIn1 − n2(r1 + 1)In1 −Q(G1) − (In1 +A(G1))⊗ 1T

n2

− (In1 +A(G1))⊗ 1n2 In1 ⊗ ((x− r1 − 1)In2 −Q(G2))

)
.

Applying Proposition 2.1, we have

ϕ
(
Q
(
G1 ⋆ G2

)
; x
)
=

ϕ (Q (G2) ; x− r1 − 1)
n1 det ((x− n2 − r1n2)In1 −Q(G1)− S),

where
S =[
− (In1 +A(G1))⊗ 1T

n2

]
[In1 ⊗ ((x− r1 − 1)In2 −Q(G2))]

−1 [− (In1 +A(G1))⊗ 1n2 ]

= (In1 +A(G1))
2 ⊗ 1T

n2
((x− r1 − 1)In2 −Q(G2))

−1
1n2

= ΓQ(G2)(x− r1 − 1)
(
In1 +A(G1)

)2
.

Therefore,

ϕ
(
Q
(
G1 ⋆ G2

)
; x

)
= ϕ

(
Q
(
G2

)
; x− r1 − 1

)n1

det
(
(x− n2 − r1n2)In1 −Q(G1)− ΓQ(G2)(x− r1 − 1) (In1 +A(G1))

2) .
Expanding the determinant of RHS in terms of products of γi(G1) by using the
relation λi(G1) = γi(G1)− r1, the result follows. �

Corollary 3.3. If G1 is r1-regular graph and G2 is r2-regular graph, then the
eigenvalues of Q

(
G1 ⋆ G2

)
are γi(G2) + r1 + 1, i = 2, 3, . . . , n2, each occuring n1

times and

(n2 + 1)(r1 + 1) + 2r2 + γi(G1)±
√

((n2 + 1)(r1 + 1) + 2r2 + γi(G1))
2 − 4ki

2
,

where ki = 2n2r2(r1+1)+ (2n2r1+2r2− 2n2+ r1+1)γi(G1)+ (4r1− γi(G1)
2)n2,

i = 1, 2, . . . , n1.

Proof. As G2 is r2-regular, substituting

ΓQ(G2)(x− r1 − 1) =
n2

(x− r1 − 1− 2r2)

in Theorem 3.3, result follows. �
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4. Neighborhood complement corona of two graphs

In 2015, Rakshit et al. [9] defined the neighborhood complement corona G1⋆G2

and hence studied adjacency spectrum, Laplacian spectrum and signless Laplacian
spectrum of those structures when both the graphs taken into account are regu-
lar. In this section we study neighborhood complement corona G1⋆G2 for their
adjacency polynomial (both G1 and G2 are arbitrary); Laplacian polynomial and
signless Laplacian polynomial (G2 is arbitrary). The results due to Rakshit et al.
[9] are particular cases when both the graphs are regular.

Definition 4.1. ([9]) Let G1 be the graph with vertices v1, v2, . . . , vn1 and
G2 be another graph. Then, the neighborhood complement corona G1⋆G2 of two
graphs G1 and G2 is obtained by taking n1 copies of G2 and joining each vertex
vj in G1 to every vertex of i-th copy of G2, provided the vertices vi and vj are
non-adjacent in G1 or i = j (see Fig. 2).







A
A
AHHHHHHHHHH

@
@
@
@
@
@
@@

J
J
JJ�
�
� ����������

�
�

�
�
�

�
��

J
J
JJ�
�
�

��
��
��

��
��

�
�
�
�
�
�
��







A
A
A

HH
HH

HH
HH

HH

@
@

@
@
@

@
@@

u
u u

u
u u

u
u

u u u
u

Figure 2: C4⋆K2.

4.1. Adjacency polynomial of neighborhood complement corona.

Theorem 4.1. If G1 and G2 are any two graphs on n1 and n2 vertices respec-
tively, then the spectral polynomial of A

(
G1⋆G2

)
is,

ϕ
(
A
(
G1⋆G2

)
; x
)

= ϕ (A (G2) ; x)
n1

det
(
xIn1 −A(G1)− ΓA(G2)(x)

(
In1 +A(G1)

)2)
.

Proof. The adjacency matrix of G1⋆G2 is,

A (G1⋆G2) =

(
A(G1) (Jn1 −A(G1))⊗ 1T

n2

(Jn1 −A(G1))⊗ 1n2 In1 ⊗A(G2)

)
.

The spectral polynomial is,

ϕ (A (G1⋆G2) ; x) = det (x In1+n1n2 −A (G1⋆G2))

= det

(
xIn1 −A(G1) − (Jn1 −A(G1))⊗ 1T

n2

− (Jn1 −A(G1))⊗ 1n2 In1 ⊗ (xIn2 −A(G2))

)
.
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Applying Proposition 2.1, we have

ϕ (A (G1⋆G2) ; x) = ϕ (A (G2) ; x)
n1 det (xIn1 −A(G1)− S) ,

where,
S =[

− (Jn1 −A(G1))⊗ 1T
n2

]
[In1 ⊗ (xIn2 −A(G2))]

−1
[− (Jn1 −A(G1))⊗ 1n2 ]

= (Jn1 −A(G1))
2 ⊗ 1T

n2
(xIn2 −A(G2))

−1
1n2

= ΓA(G2)(x) (Jn1 −A(G1))
2

= ΓA(G2)(x)
(
In1 +A(G1)

)2
.

Therefore,

ϕ
(
A
(
G1⋆G2

)
; x
)

= ϕ (A (G2) ; x)
n1

det
(
xIn1 −A(G1)− ΓA(G2)(x)

(
In1 +A(G1)

)2)
.

Hence, the result follows. �

Corollary 4.1. If G1 and G2 are r1 and r2-regular graphs, respectively, then
the eigenvalues of A (G1⋆G2) are λi(G2), i = 2, 3, . . . , n2, each occuring n1 times,

r2 + r1 ±
√
(r2 − r1)2 + 4n2(n1 − r1)2

2

and

r2 + λi(G1)±
√
(r2 − λi(G1))

2
+ 4n2λi(G1)2

2
, i = 2, 3, . . . , n1.

Proof. BothG1 andG2 are regular graphs. Therefore substituting ΓA(G2)(x) =
n2

x− r2
in Theorem 4.1, using the relation between λi(G) and λi(G) from Proposi-

tion 2.2 and equating the RHS to zero, we will arrive at the spectrum of A(G1⋆G2).
�

Theorem 3.1 of [9] becomes the particular case of Theorem 4.1 and is observed
from Corollary 4.1.

4.2. Laplacian polynomial of neighborhood complement corona.

Theorem 4.2. If G1 is an r1-regular graph on n1 vertices and G2 is any graph
on n2 vertices, then the spectral polynomial of L

(
G1⋆G2

)
is,

ϕ
(
L
(
G1⋆G2

)
; x

)
= (ϕ (L (G2) ; x − n1 + r1))

n1

det
(
(x − n1n2 + r1n2)In1 − L(G1) − ΓL(G2)(x − n1 + r1)

(
Jn1 − A(G1)

)2)
.

Proof. The Laplacian matrix of G1⋆G2 is

L (G1⋆G2) =

(
n2 (n1In1 −D(G1)) + L(G1) − (Jn1 −A(G1))⊗ 1T

n2

− (Jn1 −A(G1))⊗ 1n2 In1 ⊗ L(G2) + (n1In1 −D(G1))⊗ In2

)
.
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The spectral polynomial is

ϕ (L (G1⋆G2) ; x)

= det (x In1+n1n2
− L (G1⋆G2))

= det
(

xIn1 − n2

(
n1In1 − D(G1)

)
− L(G1)

(
Jn1 − A(G1)

)
⊗ 1T

n2(
Jn1 − A(G1)

)
⊗ 1n2 xIn1n2 − In1 ⊗ L(G2) −

(
n1In1 − D(G1)

)
⊗ In2

)
.

As G1 is r1-regular graph, we have

ϕ (L (G1⋆G2) ; x)

= det

(
xIn1 − n2(n1 − r1)In1 − L(G1) (Jn1 −A(G1))⊗ 1T

n2

(Jn1 −A(G1))⊗ 1n2 xIn1n2 − In1 ⊗ L(G2)− (n1 − r1)In1 ⊗ In2

)

= det

(
xIn1

− n2(n1 − r1)In1
− L(G1) (Jn1

−A(G1))⊗ 1T
n2

(Jn1 −A(G1))⊗ 1n2 In1 ⊗ ((x− n1 + r1)In2 − L(G2))

)
.

Applying Proposition 2.1, we have

ϕ (L (G1⋆G2) ; x) =

ϕ (L (G2) ; x− n1 + r1)
n1 det ((x− n1n2 + r1n2)In1 − L(G1)− S) ,

where,

S =[
(Jn1 −A(G1))⊗ 1T

n2

]
[In1 ⊗ ((x− n1 + r1)In2 − L(G2))]

−1
[(Jn1 −A(G1))⊗ 1n2 ]

= (Jn1 −A(G1))
2 ⊗ 1T

n2
((x− n1 + r1)In2 − L(G2))

−1
1n2

= ΓL(G2)(x− n1 + r1) (Jn1 −A(G1))
2
.

Therefore,

ϕ
(
L
(
G1⋆G2

)
; x

)
= (ϕ (L (G2) ; x − n1 + r1))

n1

det
(
(x − n1n2 + r1n2)In1 − L(G1) − ΓL(G2)(x − n1 + r1)

(
Jn1 − A(G1)

)2)
.

Hence, the result follows. �

Corollary 4.2. If G1 is r1-regular graph and G2 is r2-regular graph, then the
eigenvalues of L (G1⋆G2) are µi(G2) + n1 − r1, i = 2, 3, . . . , n2, each occuring n1

times, 0 and (n1 − r1)(n2 + 1), each occuring one time and

(n1 − r1)(n2 + 1) + µi(G1)±
√

((n1 − r1)(n2 + 1) + µi(G1))
2
+ 4ki

2
,

where, ki = n2 (n1 − µi(G1)) (2r1 − µi(G1)− n1)− µi(G1) (n1 − r1),
for i = 2, 3, . . . , n1.

Proof. Both G1 and G2 are regular graphs. Therefore substituting

ΓL(G2)(x − n1 + r1) =
n2

x− n1 + r1
and Jn1 − A(G1) = In1 + A(G1) in Theorem

4.2 and then, using the relation between λi(G) and λi(G) from Proposition 2.2 and
µi(G1) = r1−λi(G1) and equating the RHS to zero, we will arrive at the spectrum
of L(G1⋆G2). �

Theorem 3.3 of [9] becomes the particular case of Theorem 4.2.
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4.3. Signless Laplacian polynomial of neighborhood
complement corona.

Theorem 4.3. If G1 is an r1-regular graph on n1 vertices and G2 is any graph
on n2 vertices, then the spectral polynomial of Q

(
G1⋆G2

)
is,

ϕ
(
Q
(
G1⋆G2

)
; x

)
=

(
ϕ
(
Q(G2); x − n1 + r1

))n1

det
(
(x − n1n2 + r1n2)In1 − Q(G1) − ΓQ(G2)(x − n1 + r1)

(
Jn1 − A(G1)

)2)
.

Proof. The signless Laplacian matrix of G1⋆G2 is,

Q (G1⋆G2) =

(
n2 (n1In1 −D(G1)) +Q(G1) (Jn1 −A(G1))⊗ 1T

n2

(Jn1 −A(G1))⊗ 1n2 In1 ⊗Q(G2) + (n1In1 −D(G1))⊗ In2

)
.

The spectral polynomial is

ϕ (Q (G1⋆G2) ; x)

= det (x In1+n1n2 −Q (G1⋆G2))

= det

(
xIn1 − n2

(
n1In1 − D(G1)

)
− Q(G1) −

(
Jn1 − A(G1)

)
⊗ 1T

n2

−
(
Jn1 − A(G1)

)
⊗ 1n2 xIn1n2 − In1 ⊗ Q(G2) −

(
n1In1 − D(G1)

)
⊗ In2

)
.

As G1 is r1-regular graph, we have

ϕ (Q (G1⋆G2) ; x)

= det

(
xIn1 − n2(n1 − r1) In1 −Q(G1) − (Jn1 −A(G1))⊗ 1T

n2

− (Jn1 −A(G1))⊗ 1n2 xIn1n2 − In1 ⊗Q(G2)− (n1 − r1)In1 ⊗ In2

)
= det

(
xIn1 − n2(n1 − r1) In1 −Q(G1) − (Jn1 −A(G1))⊗ 1T

n2

− (Jn1
−A(G1))⊗ 1n2

In1
⊗ ((x− n1 + r1)In2

−Q(G2))

)
.

Applying Proposition 2.1, we have

ϕ (Q (G1⋆G2) ; x) = ϕ (Q (G2) ; x− n1 + r1)
n1 det ((x− n1n2 + r1n2)In1 −Q(G1)− S)

where

S =[
− (Jn1 −A(G1))⊗ 1T

n2

]
[In1 ⊗ ((x− n1 + r1)In2 −Q(G2))]

−1 [− (Jn1 −A(G1))⊗ 1n2 ]

= (Jn1 −A(G1))
2 ⊗ 1T

n2
((x− n1 + r1)In2 −Q(G2))

−1
1n2

= ΓQ(G2)(x− n1 + r1) (Jn1 −A(G1))
2
.

Therefore,

ϕ
(
Q
(
G1⋆G2

)
; x
)
=

(ϕ (Q (G2) ; x− n1 + r1))
n1

det
(
(x− n1n2 + r1n2)In1 −Q(G1)− ΓQ(G2)(x− n1 + r1) (Jn1 −A(G1))

2
)
.

Hence, the result follows. �
Corollary 4.3. If G1 and G2 are r1 and r2-regular graphs, respectively, then

the eigenvalues of Q (G1⋆G2) are γi(G2) + n1 − r1, i = 2, 3, . . . , n2, each occuring
n1 times and

n2(n1 − r1) + n1 + r1 + 2r2 ±
√

(n2(n1 − r1) + n1 + r1 + 2r2)
2
+ 8ki

2
,
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where ki = [n2r2(r1 − n1) + r21 − r1(2r2 + n1)] and

(n1 − r1)(n2 + 1) + 2r2 + γi(G1)±
√
((n1 − r1)(n2 + 1) + 2r2 + γi(G1))

2
+ 4si

2
,

where si = n2(2n1r1−2n1r2+2r1r2−n2
1+γi(G1)

2)−γi(G1)(2r1n2+2r2+n1−r1),
i = 2, 3, . . . , n1.

Proof. Both G1 and G2 are regular graphs. Substituting

ΓQ(G2)(x− n1 + r1) =
n2

x− n1 + r1 − 2r2
, Jn1 −A(G1) = In1 +A(G1), in Theorem

4.3 and then, using the relation between λi(G) and λi(G from Proposition 2.2,
γi(G1) = r1 + λi(G1) and equating the RHS to zero, we arrive at the spectrum of
Q(G1⋆G2).

�
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