GRAPHS WITH SMALL AND LARGE HOP DOMINATION NUMBERS

D. Anusha, J. John and S. Joseph Robin

Abstract

A set $S \subseteq V(G)$ of a graph G is a hop dominating set of G if for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $d(u, v)=2$. The minimum cardinality of a hop dominating set of G is called the hop domination number and is denoted by $\gamma_{h}(G)$. Any hop dominating set of order $\gamma_{h}(G)$ is called γ_{h}-set of G. In this paper necessary and sufficient conditions for the hop domination number to be $2, n-1$ and n are given.

1. Introduction

For notation and graph theory terminology we in general, follow [4]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order $n=|V|$ and edge set E of size $m=|E|$. Let v be a vertex in $V(G)$. Then the open neighborhood of v is the set $N(v)=\{u \in V(G) \mid u v \in E\}$, and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. The degree of a vertex v is $\operatorname{deg}(v)=|N(v)|$. If $e=\{u, v\}$ is an edge of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, then e is called a pendant edge or end edge, u is a leaf or end vertex and v is a support vertex of u. A vertex of degree $n-1$ is called a universal vertex.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. The eccentricity $e(v)$ of a vertex v in G is the maximum distance from v and a vertex of $G . e(v)=\max \{d(v, u): u \in V(G)\}$. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} G$ or $r(G)$ and the maximum eccentricity is its diameter, diamG. We denote $\operatorname{rad}(G)$ by r and $\operatorname{diam} G$ by d.

[^0]The center of a graph is the set of all vertices of minimum eccentricity, that is, the set of all vertices u where the greatest d to other vertices v is minimal. A quadrilateral book consists of r quadrilaterals sharing a common edge $u v$. That is, it is a cartesian product of a star and a single edge. It is denoted by $Q_{r, 2}$.

A set $D \subseteq V(G)$ is a dominating set of G if every vertex $v \in V(G) \backslash D$ is adjacent to some vertex in D. A dominating set D is said to be minimal if no subset of D is a dominating set of G. The minimum cardinality of a minimal dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. The domination number of a graph was studied in [5]. A set $S \subseteq V(G)$ of a graph G is a hop dominating set of G if for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $d(u, v)=2$. The minimum cardinality of a hop dominating set of G is called the hop domination number and is denoted by $\gamma_{h}(G)$. Any hop dominating set of order $\gamma_{h}(G)$ is called γ_{h}-set of G. The hop domination number of a graph was studied in $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}]$. Hop domination has applications in social networks. In a cable network transport system, each person will stand with each vertex with a rope. Cable vehicle will travel, through that network. If a person want to travel in that vehicle, he/she want to stand at a distance two. If each person in the network want to travel in the cable vehicle the minimum hop dominating set is the desired set.

Figure 1

In this paper we have given some necessary and sufficient condition for the the hop domination to be $2, n-1$ and n.

2. Graphs with small and large hop domination numbers

Theorem 2.1. Let G be a connected graph with $\gamma_{h}(G)=2$ and $S=\{u, v\}$ be a γ_{h}-set of G. If
(i) $u v \in E(G)$, then $d \leqslant 5$, and
(ii) $u v \notin E(G)$,
then $d \leqslant 4$.

Proof. (i) Suppose $u v \in E(G)$. Let $S=\{u, v\}$ be a γ_{h}-set of G. If $G=K_{n}$ $(n \geqslant 2)$, then $n=2$. Hence $d=1$ so we assume that G is non-complete. Let $P: u_{0}, u_{1}, u_{2}, \ldots, u_{d}$ be any shortest path in G such that either u or v or both belongs to $V(P)$.

Case (1): $u, v \in V(P)$. Since $u v \notin E(G)$ for any $w \in V-S, d(u, w)=$ $d(v, w)=2$, it follows that $d\left(u_{0}, u\right) \leqslant 2$ and $d\left(u, u_{d}\right) \leqslant 2$. Now

$$
\begin{aligned}
d\left(u_{0}, u_{d}\right) & \leqslant d\left(u_{0}, u\right)+d\left(u, u_{d}\right) \\
& \leqslant d\left(u_{0}, u\right)+d(u, v)+d\left(v, u_{d}\right) \\
& =2+1+2=5
\end{aligned}
$$

Therefore $d\left(u_{0}, u_{d}\right) \leqslant 5$. Since this is true for every shortest path P in G, we have that $d \leqslant 5$.

Case (2): $u \in V(P)$ and $v \notin V(P)$. Since for any $w \in V-S, d(u, w)=2$, it follows that $d\left(u_{0}, u\right) \leqslant 2$ and $d\left(u_{0}, u_{d}\right) \leqslant 2$. Now

$$
\begin{aligned}
d\left(u_{0}, u_{d}\right) & \leqslant d\left(u_{0}, u\right)+d\left(u, u_{d}\right) \\
& =2+2=4 \leqslant 5
\end{aligned}
$$

Therefore $d\left(u_{0}, u_{d}\right) \leqslant 5$. Since this is true for every shortest path P in G, we have that $d \leqslant 5$.

Case (3): $v \in V(P)$ and $u \notin V(P)$. By the similar argument as in Case (2), we can prove that $d \leqslant 5$.
(ii) $u v \notin E(G)$.

Case (1): $u, v \in V(P)$. Since $u v \notin E(G)$, both u and v are end vertices of P. Without loss of generality, let us assume that $u=u_{0}$ and $v=u_{d}$. By definition of hop dominating set, there must be only two internal vertices in P. Hence it follows that $d(u, v)=3$. Since this is true for all shortest path in G, we have that $d=3$.

Case(2): $u \in V(P)$ and $v \notin V(P)$.
Case(2a): u is an end vertex of P. Without loss of generality, let us assume that $u=u_{0}$. Then by definition of hop dominating set $u_{d}=u_{2}$. Since this is true for all the shortest path in G. We have that $d=2$.

Case(2b): u is not an end vertex of P. Then it follows that u is either u_{1} or u_{2}, or u is either u_{d-1} or u_{d-2}. Suppose that $u=u_{1}, d\left(u_{0}, v\right)=d\left(u_{2}, v\right)=2$. Also since $u=u_{1}, d\left(u_{1}, u_{3}\right)=2$. Hence it follows that $u_{3}=u_{d}$. Therefore

$$
\begin{aligned}
d\left(u_{0}, u_{d}\right) & =d\left(u_{0}, u_{1}\right)+d\left(u_{1}, u_{d}\right) \\
& =1+2=3
\end{aligned}
$$

Suppose that $u=u_{2}$. Then $d\left(v, u_{1}\right)=d\left(v, u_{3}\right)=2$. Also since $u=u_{2}, d\left(u_{0}, u_{2}\right)=$ $d\left(u_{2}, u_{4}\right)=2$. Hence it follows that $u_{4}=u_{d}$. Therefore
$d\left(u_{0}, u_{d}\right)=d\left(u_{0}, u_{2}\right)+d\left(u_{2}, u_{d}\right)$ $=2+2=4$.
Case(3): $v \in V(P)$ and $u \notin V(P)$. By the similar argument as in Case 2, we can prove that $d \leqslant 4$.

Theorem 2.2. Let G be a connected graph with order $n \geqslant 3$. Then $\gamma_{h}(G)=2$ if and only if any one the following conditions hold.
(i) If $\langle S\rangle$ is connected, then $\langle S\rangle$ contains no triangles and $d \leqslant 5$, where S is a γ_{h}-set of G.
(ii) If $\langle S\rangle$ is independent, then $\langle S\rangle$ contains no triangles and $d \leqslant 4$, where S is a γ_{h}-set of G.

Proof. (i) Let $\gamma_{h}(G)=2$. Let $S=\{u, v\}$ be a γ_{h}-set of G. Let $\langle S\rangle$ be connected. Then $u v \in E(G)$. By Theorem 2.1, $d \leqslant 5$. Since S contains two elements, S has no triangles. Conversely, let $\langle S\rangle$ be connected and $d \leqslant 5,\langle S\rangle$ contains no triangles. We prove that $|S|=2$. On the contrary, suppose that $|S| \geqslant 3$. Since $\langle S\rangle$ is connected, let $u, v, w \in S$ such that $\langle u, v, w\rangle$ is connected. Then there exists an edge $u_{1} u_{2}$ such that $u_{2} u \in E(G)$ and $u_{1} u \notin E(G)$. Also there exists end edge $w_{1} w_{2}$ such that $w_{2} w \in E(G)$ and $w_{1} w \notin E(G)$. Since $\langle u, v, w\rangle$ is a path and $|S| \geqslant 3$, we have that $d\left(u_{1}, v\right) \geqslant 3$ and $d\left(w_{1}, v\right) \geqslant 3$. This implies $d\left(u_{1}, w_{1}\right) \geqslant 6$. Hence it follows that $d \geqslant 6$, which is a contradiction. Hence $|S|=2$.
(ii) Let $\gamma_{h}(G)=2$. Let $S=\{u, v\}$ be a γ_{h}-set of G. Let $\langle S\rangle$ be independent. Then $u v \notin E(G)$. By Theorem 2.1, $d \leqslant 4$. Since $\langle S\rangle$ contains two elements, $\langle S\rangle$ has no triangles. Conversely, let $\langle S\rangle$ be independent, $d \leqslant 4$ and $\langle S\rangle$ contains no triangles. We prove that $|S|=2$. On the contrary, suppose that $|S| \geqslant 3$. Since S is independent, let $u, v, w \in S$ such that u, v and w is independent, let $u, v, w \in S$ such that u, v and w are independent. Since S is a γ_{h}-set of $G, d(u, v)=d(v, w)=3$ and $d(u, w) \geqslant 5$. Therefore $u-w$ is a shortest path. Then $d \geqslant 5$, which is a contradiction. Therefore $\gamma_{h}(G)=2$.

Corollary 2.1. For the complete bipartite graph $G=K_{m, n}(2 \leqslant m \leqslant n)$, the following holds $\gamma_{h}(G)=2$.

Corollary 2.2. For the graph $G=K_{1, n-1}+e(n \geqslant 4)$, holds $\gamma_{h}(G)=2$.
Corollary 2.3. Let $H=\bar{K}_{2}+K_{n-2}(n \geqslant 4)$ and $V\left(K_{2}\right)=\{u, v\}$
(i) Then $\gamma_{h}(G)=2$.
(ii) Let H^{\prime} be a graph obtained from H by attaching end vertices in u or v or both. Then $\gamma_{h}\left(H^{\prime}\right)=2$.
(iii) Let G be the graph obtained from H^{\prime} by joining u and v. Then $\gamma_{h}(G)=2$.

Corollary 2.4. Let $H=Q_{r, 2}$ be the book graph with centre (u, v).
(i) Then $\gamma_{h}(H)=2$.
(ii) Let G be the graph obtained from H by attaching end vertices in u or v or both. Then $\gamma_{h}(G)=2$.

Corollary 2.5. Let $V\left(K_{2}\right)=\{u, v\}$. Let H be the graph obtained from K_{2} by attaching end vertices in u or v or both.
(i) Then $\gamma_{h}(H)=2$.
(ii) Let H^{\prime} be the graph from H by attaching triangles in u or v or both. Then $\gamma_{h}\left(H^{\prime}\right)=2$.
(iii) Let G be the graph obtained from H^{\prime} by attaching end vertices to any triangles of H^{\prime}. Then $\gamma_{h}(G)=2$.
(iv) Let G^{\prime} be the graph obtained from H by attaching end vertices to any end edge of H. Then $\gamma_{h}\left(G^{\prime}\right)=2$.
(v) Let K be the graph obtained from H^{\prime} by attaching end vertices in u and v or both. Then $\gamma_{h}(K)=2$.
(vi) Let K^{\prime} be the graph obtained from K by attaching end vertices to end edge of K. Then $\gamma_{h}\left(K^{\prime}\right)=2$.
(vii) Let I be the graph obtained from G by attaching end vertices u or v or both. Then $\gamma_{h}(I)=2$.
(viii) Let I^{\prime} be the graph obtained from I by attaching end vertices to any end edge of I. Then $\gamma_{h}\left(I^{\prime}\right)=2$.

Corollary 2.6. Let $P_{3}: v_{1}, v_{2}, v_{3}$. Let H be the graph obtained from P_{3} and \bar{K}_{r} by joining each vertex of \bar{K}_{r} with v_{1} and v_{3}.
(i) Then $\gamma_{h}(H)=2$, where $r=n-3$.
(ii) Let H^{\prime} be a graph obtained from H by attaching end vertices in v_{1} or v_{3} or both. Then $\gamma_{h}\left(H^{\prime}\right)=2$.
(iii) Let $H^{\prime \prime}$ be the graph obtained from H and \bar{K}_{s} where joining each vertex of \bar{K}_{s} with v_{1} and v_{2}. Then $\gamma_{h}\left(H^{\prime \prime}\right)=2$, where $r+s=n-3$.
(iv) Let $H^{\prime \prime \prime}$ be the graph obtained from $H^{\prime \prime}$ by attaching end vertices on v_{1} or v_{3} or both. Then $\gamma_{h}\left(H^{\prime \prime \prime}\right)=2$.
(v) Let K be the graph obtained from $H^{\prime \prime}$ by introducing the edges $u_{2} u_{i}, 1 \leqslant$ $i \leqslant r$. Then $\gamma_{h}(K)=2$.
(vi) Let K^{\prime} be the graph obtained from K by attaching end vertices on v_{1} or v_{3}. Then $\gamma_{h}\left(K^{\prime}\right)=2$.

Corollary 2.7. Let $V\left(K_{1}\right)=u$. Let $P_{i}: u_{i}, v_{i}, w_{i}(1 \leqslant i \leqslant r)$ be a copy on three vertices. Let G be the graph obtained from $K_{1}, P_{i}(1 \leqslant i \leqslant r)$ and \bar{K}_{s} by joining u with each u_{i} and $w_{i}(1 \leqslant i \leqslant r)$ and joining u with each element of \bar{K}_{s}. Then $\gamma_{h}(H)=2$, where $r+s=n-1$.

Corollary 2.8. Let $C_{4}: v_{1}, v_{2}, v_{3}, v_{4}$. Let G be the graph obtained from $C_{4}, \bar{K}_{m_{1}}, \bar{K}_{m_{2}}, \bar{K}_{m_{3}}, \bar{K}_{m_{4}}$ and $\bar{K}_{m_{5}}$ by joining each element of $\bar{K}_{m_{1}}$ with v_{1} and v_{2}, each element of $\bar{K}_{m_{2}}$ with v_{2} and v_{3}, each element of $\bar{K}_{m_{4}}$ with v_{1} and v_{3}, each element of $\bar{K}_{m_{5}}$ with v_{2} and v_{4}. Then $\gamma_{h}(G)=2$, where $m_{1}+m_{2}+m_{3}+m_{4}+m_{5}=$ $n-4$.

Theorem 2.3. Let G be a connected graph having diameter $d=2$ with a cut vertex. Then $\gamma_{h}(G)=2$ if and only if $\delta(G)=1$.

Proof. Let v be a cut vertex of G. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geqslant 2)$ be the components of $G-v$. First assume that $\delta(G)=1$. Then G contains at least one end vertex. Let x be an end vertex of G and $S=\{v, x\}$. Then for every $y \in V-S$, $d(x, y)=2$ and so S is a hop dominating set of G so that $\gamma_{h}(G)=2$.

Conversely that $\gamma_{h}(G)=2$. Suppose that $\delta(G) \geqslant 2$. Let u be a vertex of minimum degree. Therefore $\operatorname{deg}(u) \geqslant 2$. Let us assume that $u \in V\left(G_{s}\right)$ for some $s ; 1 \leqslant s \leqslant r$. Therefore $\left|V\left(G_{s}\right)\right| \geqslant 2$. Then $S^{\prime}=V\left(G_{s}\right) \cup\{v\}$ is a hop dominating set and so $\gamma_{h}(G) \geqslant 3$, which is a contradiction. Therefore $\delta(G)=1$.

Corollary 2.9. For the star graph $G=K_{1, n-1}$ holds $\gamma_{h}(G)=2$.

Corollary 2.10. For the graph $G=K_{1}+\left(m_{1} K_{1} \cup m_{1} K_{1} \cup m_{2} K_{2} \cup \ldots \cup m_{r} K_{r}\right)$, where $m_{1}+m_{2}+. .+m_{r}=n-1$ and $r \geqslant 2$, the following golds $\gamma_{h}(G)=2$ if and if only $m_{1} \neq 0$.

Theorem 2.4. Let G be a non-complete connected graph with order $n \geqslant 3$. Then $\gamma_{h}(G) \leqslant n-1$.

Proof. On the contrary, suppose that $\gamma_{h}(G)=n$. Hence it follows that $S=V(G)$ is the unique γ_{h}-set of G. Therefore vertex x in G is adjacent to all the elements of G. Hence it follows that $G=K_{n}$, which is a contradiction. Hence $\gamma_{h}(G) \leqslant n-1$.

Remark 2.1. The bound in Theorem 2.4, is sharp. For $G=P_{3}$, we have $\gamma_{h}(G)=2=n-1$.

Corollary 2.11. For a connected graph G of order $n \geqslant 2$, holds $\gamma_{h}(G)=n$ if and only if $G=K_{n}$.

Proof. Let $\gamma_{h}(G)=n$. We prove that $G=K_{n}$. On the contrary, suppose that $G \neq K_{n}$. By Theorem 2.4, $\gamma_{h}(G) \leqslant n-1$, which is a contradiction. Therefore $\gamma_{h}(G)=n$. Converse is clear.

Theorem 2.5. Let G be a connected graph of order $n \geqslant 3$. Then $\gamma_{h}(G)=n-1$ if and only if $G=P_{3}$ or $G=K_{n}-\{e\}$.

Proof. Let $\gamma_{h}(G)=n-1$. Let $n=3$. Then G is either P_{3} or K_{3}. If $G=K_{3}$ then by Corollary 2.11, $\gamma_{h}(G)=n$, which is a contradiction. If $G=P_{3}$, then $\gamma_{h}(G)=2$. So, we have done. So let $n \geqslant 4$. Let $x \in V$ and $S=V-\{x\}$ be a γ_{h}-set of G. We prove that $G[S]$ is a clique. On the contrary, suppose that $G[S]$ is not a clique. Then there exist vertices $y, z \in G[S]$ such that $d_{G[S]}(y, z) \geqslant 2$. Let $S_{1}=S-\{y\}$. Then S_{1} is a hop dominating set of G so that $\gamma_{h}(G) \leqslant n-2$, which is a contradiction. Therefore $G[S]$ is clique.

Next we prove that x is adjacent to $|G[S]|-1$ vertices of $G[S]$. On the contrary, suppose that x is adjacent to all vertices of $G[S]$. Then $G=K_{n}$. Which implies $\gamma_{h}(G)=n$, which is a contradiction. Therefore x is adjacent to $n-2$ vertices of G. Therefore $G=K_{n}-\{e\}$. Converse is clear.

3. Conclusion

In this article we characterize connected graphs of order n with hop domination number 2 or $n-1$ or n. We will make effort to characterize connected graphs of order n with hop domination number $n-2$ in future study.

Acknowledgment The authors express their gratitude to the referees for the useful suggestions.

References

[1] D. Anusha and S. Joseph Robin. The forcing hop domination number of a graph. Adv. Appl. Discrete Math., 25(1)(2020), 55-70.
[2] D. Anusha and S. Joseph Robin. The geodetic hop domination number of a graph, (Communicated).
[3] D. Anusha, J. John and S. Joseph Robin. The geodetic hop domination number of a complementary prisms. Discrete Math. Algorithms Appl., https://doi.org/10.1142/ S1793830921500774.
[4] F. Buckley and F. Harary. Distance in Graph. Addition-Wesly, Redwood City, 1990.
[5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of domination in graphs. Marcel Dekker, New York, 1998.
[6] M. A. Henning and N. J. Rad. On 2-Step and Hhp dominating sets in graphs. Graphs Comb., 33(4)(2017), 913-927.
[7] C. Natarajan, S. K. Ayyaswamy and G. Sathiamoorthy. A note on hop domination number of some special families of graphs. Int. J. Pure Appl. Math., 119(12)(2018), 14165-14171.
[8] C. Natarajan and S. K. Ayyaswamy. Hop domination in graphs-II. An. tiin. Univ. Ovidius Constana, Ser. Mat., 23(2)(2015), 187-199.
[9] C. Natarajan and S. K. Ayyaswamy. A note on the hop domination number of a subdivision graph. Int. J. Pure Appl. Math., 32(3)(2019), 381-390.
[10] S. R. Canoy Jr., R. V. Mollejon, J. G. E. Canoy. Hop dominating sets in graphs under binary operations. Eur. J. Pure Appl. Math., 12(4)(2019), 1455-1463.

Received by editors 07.10.2020; Revised version 18.04.2021; Available online 03.05.2021.
D. Anusha: Research Scholar, Register Number-19223162092032, Department of Mathematics, Sree Devi Kumari Women’s College,, Kuzhithurai-629 163,, India.

E-mail address: anushasenthil84@gmail.com
J. John: Department of Mathematics, Government College of Engineering, Tirunelveli 627 007, India.

E-mail address: john@gcetly.ac.in
S. Joseph Robin: Department of Mathematics, Scott Christian College, Nagercoil629 003, India.

E-mail address: dr.robinscc@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C12,05C69.
 Key words and phrases. distance, domination number, hop domination number.
 Communicated by Daniel A. Romano.

