BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **11**(3)(2021), 483-489 DOI: 10.7251/BIMVI2103483 A

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

GRAPHS WITH SMALL AND LARGE HOP DOMINATION NUMBERS

D. Anusha, J. John and S. Joseph Robin

ABSTRACT. A set $S \subseteq V(G)$ of a graph G is a hop dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called the hop domination number and is denoted by $\gamma_h(G)$. Any hop dominating set of order $\gamma_h(G)$ is called γ_h -set of G. In this paper necessary and sufficient conditions for the hop domination number to be 2, n-1 and n are given.

1. Introduction

For notation and graph theory terminology we in general, follow [4]. Specifically, let G = (V, E) be a graph with vertex set V of order n = |V| and edge set E of size m = |E|. Let v be a vertex in V(G). Then the open neighborhood of v is the set $N(v) = \{u \in V(G) | uv \in E\}$, and the closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. The degree of a vertex v is deg(v) = |N(v)|. If $e = \{u, v\}$ is an edge of a graph G with deg(u) = 1 and deg(v) > 1, then e is called a pendant edge or end edge, u is a leaf or end vertex and v is a support vertex of u. A vertex of degree n-1 is called a universal vertex.

The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. A u-v path of length d(u, v) is called a u-vgeodesic. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. The eccentricity e(v) of a vertex v in G is the maximum distance from v and a vertex of G. $e(v) = max\{d(v, u) : u \in V(G)\}$. The minimum eccentricity among the vertices of G is the radius, radG or r(G) and the maximum eccentricity is its diameter, diamG. We denote rad(G) by r and diamG by d.

483

²⁰¹⁰ Mathematics Subject Classification. 05C12,05C69.

Key words and phrases. distance, domination number, hop domination number.

Communicated by Daniel A. Romano.

The center of a graph is the set of all vertices of minimum eccentricity, that is, the set of all vertices u where the greatest d to other vertices v is minimal. A quadrilateral book consists of r quadrilaterals sharing a common edge uv. That is, it is a cartesian product of a star and a single edge. It is denoted by $Q_{r,2}$.

A set $D \subseteq V(G)$ is a *dominating set* of G if every vertex $v \in V(G) \setminus D$ is adjacent to some vertex in D. A dominating set D is said to be *minimal* if no subset of D is a dominating set of G. The minimum cardinality of a minimal dominating set of G is called the *domination number* of G and is denoted by $\gamma(G)$. The domination number of a graph was studied in [5]. A set $S \subseteq V(G)$ of a graph Gis a *hop dominating set* of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called the *hop domination number* and is denoted by $\gamma_h(G)$. Any hop dominating set of order $\gamma_h(G)$ is called γ_h -set of G. The hop domination number of a graph was studied in [1, 2, 3, 6, 7, 8, 9, 10]. Hop domination has applications in social networks. In a cable network transport system, each person will stand with each vertex with a rope. Cable vehicle will travel, through that network. If a person want to travel in that vehicle, he/she want to stand at a distance two. If each person in the network want to travel in the cable vehicle the minimum hop dominating set is the desired set.

Figure 1

In this paper we have given some necessary and sufficient condition for the the hop domination to be 2, n - 1 and n.

2. Graphs with small and large hop domination numbers

THEOREM 2.1. Let G be a connected graph with $\gamma_h(G) = 2$ and $S = \{u, v\}$ be a γ_h -set of G. If (i) $uv \in E(G)$, then $d \leq 5$, and (ii) $uv \notin E(G)$,

then $d \leq 4$.

PROOF. (i) Suppose $uv \in E(G)$. Let $S = \{u, v\}$ be a γ_h -set of G. If $G = K_n$ $(n \ge 2)$, then n = 2. Hence d = 1 so we assume that G is non-complete. Let $P : u_0, u_1, u_2, ..., u_d$ be any shortest path in G such that either u or v or both belongs to V(P).

Case (1): $u, v \in V(P)$. Since $uv \notin E(G)$ for any $w \in V - S$, d(u, w) = d(v, w) = 2, it follows that $d(u_0, u) \leq 2$ and $d(u, u_d) \leq 2$. Now

$$d(u_0, u_d) \leq d(u_0, u) + d(u, u_d) \leq d(u_0, u) + d(u, v) + d(v, u_d) = 2 + 1 + 2 = 5$$

Therefore $d(u_0, u_d) \leq 5$. Since this is true for every shortest path P in G, we have that $d \leq 5$.

Case (2): $u \in V(P)$ and $v \notin V(P)$. Since for any $w \in V - S$, d(u, w) = 2, it follows that $d(u_0, u) \leq 2$ and $d(u_0, u_d) \leq 2$. Now

$$d(u_0, u_d) \leqslant d(u_0, u) + d(u, u_d) = 2 + 2 = 4 \leqslant 5.$$

Therefore $d(u_0, u_d) \leq 5$. Since this is true for every shortest path P in G, we have that $d \leq 5$.

Case (3): $v \in V(P)$ and $u \notin V(P)$. By the similar argument as in Case (2), we can prove that $d \leq 5$.

(ii) $uv \notin E(G)$.

Case (1): $u, v \in V(P)$. Since $uv \notin E(G)$, both u and v are end vertices of P. Without loss of generality, let us assume that $u = u_0$ and $v = u_d$. By definition of hop dominating set, there must be only two internal vertices in P. Hence it follows that d(u, v) = 3. Since this is true for all shortest path in G, we have that d = 3.

Case(2): $u \in V(P)$ and $v \notin V(P)$.

Case(2a): u is an end vertex of P. Without loss of generality, let us assume that $u = u_0$. Then by definition of hop dominating set $u_d = u_2$. Since this is true for all the shortest path in G. We have that d = 2.

Case(2b): u is not an end vertex of P. Then it follows that u is either u_1 or u_2 , or u is either u_{d-1} or u_{d-2} . Suppose that $u = u_1$, $d(u_0, v) = d(u_2, v) = 2$. Also since $u = u_1$, $d(u_1, u_3) = 2$. Hence it follows that $u_3 = u_d$. Therefore $d(u_0, u_d) = d(u_0, u_1) + d(u_1, u_d)$

$$d(u_0, u_d) = d(u_0, u_1) + d(u_1, u_d) + d(u_d) + d(u_$$

Suppose that $u = u_2$. Then $d(v, u_1) = d(v, u_3) = 2$. Also since $u = u_2$, $d(u_0, u_2) = d(u_2, u_4) = 2$. Hence it follows that $u_4 = u_d$. Therefore

 $d(u_0, u_d) = d(u_0, u_2) + d(u_2, u_d)$ = 2+2 = 4.

Case(3): $v \in V(P)$ and $u \notin V(P)$. By the similar argument as in Case 2, we can prove that $d \leq 4$.

THEOREM 2.2. Let G be a connected graph with order $n \ge 3$. Then $\gamma_h(G) = 2$ if and only if any one the following conditions hold.

(i) If $\langle S \rangle$ is connected, then $\langle S \rangle$ contains no triangles and $d \leq 5$, where S is a γ_h -set of G.

(ii) If $\langle S \rangle$ is independent, then $\langle S \rangle$ contains no triangles and $d \leq 4$, where S is a γ_h -set of G.

PROOF. (i) Let $\gamma_h(G) = 2$. Let $S = \{u, v\}$ be a γ_h -set of G. Let $\langle S \rangle$ be connected. Then $uv \in E(G)$. By Theorem 2.1, $d \leq 5$. Since S contains two elements, S has no triangles. Conversely, let $\langle S \rangle$ be connected and $d \leq 5$, $\langle S \rangle$ contains no triangles. We prove that |S| = 2. On the contrary, suppose that $|S| \ge 3$. Since $\langle S \rangle$ is connected, let $u, v, w \in S$ such that $\langle u, v, w \rangle$ is connected. Then there exists an edge u_1u_2 such that $u_2u \in E(G)$ and $u_1u \notin E(G)$. Also there exists end edge w_1w_2 such that $w_2w \in E(G)$ and $w_1w \notin E(G)$. Since $\langle u, v, w \rangle$ is a path and $|S| \ge 3$, we have that $d(u_1, v) \ge 3$ and $d(w_1, v) \ge 3$. This implies $d(u_1, w_1) \ge 6$. Hence it follows that $d \ge 6$, which is a contradiction. Hence |S| = 2.

(ii) Let $\gamma_h(G) = 2$. Let $S = \{u, v\}$ be a γ_h -set of G. Let $\langle S \rangle$ be independent. Then $uv \notin E(G)$. By Theorem 2.1, $d \leq 4$. Since $\langle S \rangle$ contains two elements, $\langle S \rangle$ has no triangles. Conversely, let $\langle S \rangle$ be independent, $d \leq 4$ and $\langle S \rangle$ contains no triangles. We prove that |S| = 2. On the contrary, suppose that $|S| \ge 3$. Since S is independent, let $u, v, w \in S$ such that u, v and w is independent, let $u, v, w \in S$ such that u, v and w are independent. Since S is a γ_h -set of G, d(u, v) = d(v, w) = 3 and $d(u, w) \ge 5$. Therefore u-w is a shortest path. Then $d \ge 5$, which is a contradiction. Therefore $\gamma_h(G) = 2$. \square

COROLLARY 2.1. For the complete bipartite graph $G = K_{m,n}$ $(2 \leq m \leq n)$, the following holds $\gamma_h(G) = 2$.

COROLLARY 2.2. For the graph $G = K_{1,n-1} + e$ $(n \ge 4)$, holds $\gamma_h(G) = 2$.

COROLLARY 2.3. Let $H = \overline{K}_2 + K_{n-2}$ $(n \ge 4)$ and $V(K_2) = \{u, v\}$

Then $\gamma_h(G) = 2$. (i)

(ii) Let H' be a graph obtained from H by attaching end vertices in u or v or both. Then $\gamma_h(H') = 2$.

(iii) Let G be the graph obtained from H' by joining u and v. Then $\gamma_h(G) = 2$.

COROLLARY 2.4. Let $H = Q_{r,2}$ be the book graph with centre (u, v).

(i) Then $\gamma_h(H) = 2$.

(ii) Let G be the graph obtained from H by attaching end vertices in u or v or both. Then $\gamma_h(G) = 2$.

COROLLARY 2.5. Let $V(K_2) = \{u, v\}$. Let H be the graph obtained from K_2 by attaching end vertices in u or v or both.

(i) Then $\gamma_h(H) = 2$.

(ii) Let H' be the graph from H by attaching triangles in u or v or both. Then $\gamma_h(H') = 2.$

(iii) Let G be the graph obtained from H' by attaching end vertices to any

triangles of H'. Then $\gamma_h(G) = 2$. (iv) Let G' be the graph obtained from H by attaching end vertices to any end edge of H. Then $\gamma_h(G') = 2$.

(v) Let K be the graph obtained from H' by attaching end vertices in u and v or both. Then $\gamma_h(K) = 2$.

486

(vi) Let K' be the graph obtained from K by attaching end vertices to end edge of K. Then $\gamma_h(K') = 2$.

(vii) Let I be the graph obtained from G by attaching end vertices u or v or both. Then $\gamma_h(I) = 2$.

(viii) Let I' be the graph obtained from I by attaching end vertices to any end edge of I. Then $\gamma_h(I') = 2$.

COROLLARY 2.6. Let $P_3 : v_1, v_2, v_3$. Let H be the graph obtained from P_3 and \overline{K}_r by joining each vertex of \overline{K}_r with v_1 and v_3 .

(i) Then $\gamma_h(H) = 2$, where r = n - 3.

(ii) Let H' be a graph obtained from H by attaching end vertices in v_1 or v_3 or both. Then $\gamma_h(H') = 2$.

(iii) Let H'' be the graph obtained from H and \overline{K}_s where joining each vertex of \overline{K}_s with v_1 and v_2 . Then $\gamma_h(H'') = 2$, where r + s = n - 3.

(iv) Let H''' be the graph obtained from H'' by attaching end vertices on v_1 or v_3 or both. Then $\gamma_h(H''') = 2$.

(v) Let K be the graph obtained from H'' by introducing the edges u_2u_i , $1 \leq i \leq r$. Then $\gamma_h(K) = 2$.

(vi) Let K' be the graph obtained from K by attaching end vertices on v_1 or v_3 . Then $\gamma_h(K') = 2$.

COROLLARY 2.7. Let $V(K_1) = u$. Let $P_i : u_i, v_i, w_i$ $(1 \le i \le r)$ be a copy on three vertices. Let G be the graph obtained from K_1, P_i $(1 \le i \le r)$ and \overline{K}_s by joining u with each u_i and w_i $(1 \le i \le r)$ and joining u with each element of \overline{K}_s . Then $\gamma_h(H) = 2$, where r + s = n - 1.

COROLLARY 2.8. Let $C_4 : v_1, v_2, v_3, v_4$. Let G be the graph obtained from $C_4, \overline{K}_{m_1}, \overline{K}_{m_2}, \overline{K}_{m_3}, \overline{K}_{m_4}$ and \overline{K}_{m_5} by joining each element of \overline{K}_{m_1} with v_1 and v_2 , each element of \overline{K}_{m_2} with v_2 and v_3 , each element of \overline{K}_{m_4} with v_1 and v_3 , each element of \overline{K}_{m_5} with v_2 and v_4 . Then $\gamma_h(G) = 2$, where $m_1 + m_2 + m_3 + m_4 + m_5 = n - 4$.

THEOREM 2.3. Let G be a connected graph having diameter d = 2 with a cut vertex. Then $\gamma_h(G) = 2$ if and only if $\delta(G) = 1$.

PROOF. Let v be a cut vertex of G. Let $G_1, G_2, ..., G_r$ $(r \ge 2)$ be the components of G - v. First assume that $\delta(G) = 1$. Then G contains at least one end vertex. Let x be an end vertex of G and $S = \{v, x\}$. Then for every $y \in V - S$, d(x, y) = 2 and so S is a hop dominating set of G so that $\gamma_h(G) = 2$.

Conversely that $\gamma_h(G) = 2$. Suppose that $\delta(G) \ge 2$. Let u be a vertex of minimum degree. Therefore $deg(u) \ge 2$. Let us assume that $u \in V(G_s)$ for some $s; 1 \le s \le r$. Therefore $|V(G_s)| \ge 2$. Then $S' = V(G_s) \cup \{v\}$ is a hop dominating set and so $\gamma_h(G) \ge 3$, which is a contradiction. Therefore $\delta(G) = 1$. \Box

COROLLARY 2.9. For the star graph $G = K_{1,n-1}$ holds $\gamma_h(G) = 2$.

COROLLARY 2.10. For the graph $G = K_1 + (m_1 K_1 \cup m_1 K_1 \cup m_2 K_2 \cup ... \cup m_r K_r)$, where $m_1 + m_2 + ... + m_r = n - 1$ and $r \ge 2$, the following golds $\gamma_h(G) = 2$ if and if only $m_1 \ne 0$.

THEOREM 2.4. Let G be a non-complete connected graph with order $n \ge 3$. Then $\gamma_h(G) \le n-1$.

PROOF. On the contrary, suppose that $\gamma_h(G) = n$. Hence it follows that S = V(G) is the unique γ_h -set of G. Therefore vertex x in G is adjacent to all the elements of G. Hence it follows that $G = K_n$, which is a contradiction. Hence $\gamma_h(G) \leq n-1$.

REMARK 2.1. The bound in Theorem 2.4, is sharp. For $G = P_3$, we have $\gamma_h(G) = 2 = n - 1$.

COROLLARY 2.11. For a connected graph G of order $n \ge 2$, holds $\gamma_h(G) = n$ if and only if $G = K_n$.

PROOF. Let $\gamma_h(G) = n$. We prove that $G = K_n$. On the contrary, suppose that $G \neq K_n$. By Theorem 2.4, $\gamma_h(G) \leq n-1$, which is a contradiction. Therefore $\gamma_h(G) = n$. Converse is clear.

THEOREM 2.5. Let G be a connected graph of order $n \ge 3$. Then $\gamma_h(G) = n-1$ if and only if $G = P_3$ or $G = K_n - \{e\}$.

PROOF. Let $\gamma_h(G) = n - 1$. Let n = 3. Then G is either P_3 or K_3 . If $G = K_3$ then by Corollary 2.11, $\gamma_h(G) = n$, which is a contradiction. If $G = P_3$, then $\gamma_h(G) = 2$. So, we have done. So let $n \ge 4$. Let $x \in V$ and $S = V - \{x\}$ be a γ_h -set of G. We prove that G[S] is a clique. On the contrary, suppose that G[S] is not a clique. Then there exist vertices $y, z \in G[S]$ such that $d_{G[S]}(y, z) \ge 2$. Let $S_1 = S - \{y\}$. Then S_1 is a hop dominating set of G so that $\gamma_h(G) \le n - 2$, which is a contradiction. Therefore G[S] is clique.

Next we prove that x is adjacent to |G[S]| - 1 vertices of G[S]. On the contrary, suppose that x is adjacent to all vertices of G[S]. Then $G = K_n$. Which implies $\gamma_h(G) = n$, which is a contradiction. Therefore x is adjacent to n-2 vertices of G. Therefore $G = K_n - \{e\}$. Converse is clear.

3. Conclusion

In this article we characterize connected graphs of order n with hop domination number 2 or n - 1 or n. We will make effort to characterize connected graphs of order n with hop domination number n - 2 in future study.

Acknowledgment The authors express their gratitude to the referees for the useful suggestions.

References

 D. Anusha and S. Joseph Robin. The forcing hop domination number of a graph. Adv. Appl. Discrete Math., 25(1)(2020), 55–70.

488

- [2] D. Anusha and S. Joseph Robin. The geodetic hop domination number of a graph, (Communicated).
- [3] D. Anusha, J. John and S. Joseph Robin. The geodetic hop domination number of a complementary prisms. *Discrete Math. Algorithms Appl.*, https://doi.org/10.1142/ S1793830921500774.
- [4] F. Buckley and F. Harary. Distance in Graph. Addition-Wesly, Redwood City, 1990.
- [5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of domination in graphs. Marcel Dekker, New York, 1998.
- [6] M. A. Henning and N. J. Rad. On 2-Step and Hhp dominating sets in graphs. Graphs Comb., 33(4)(2017), 913–927.
- [7] C. Natarajan, S. K. Ayyaswamy and G. Sathiamoorthy. A note on hop domination number of some special families of graphs. Int. J. Pure Appl. Math., 119(12)(2018), 14165–14171.
- [8] C. Natarajan and S. K. Ayyaswamy. Hop domination in graphs-II. An. tiin. Univ. Ovidius Constana, Ser. Mat., 23(2)(2015), 187–199.
- [9] C. Natarajan and S. K. Ayyaswamy. A note on the hop domination number of a subdivision graph. Int. J. Pure Appl. Math., 32(3)(2019), 381–390.
- [10] S. R. Canoy Jr., R. V. Mollejon, J. G. E. Canoy. Hop dominating sets in graphs under binary operations. Eur. J. Pure Appl. Math., 12(4)(2019), 1455–1463.

Received by editors 07.10.2020; Revised version 18.04.2021; Available online 03.05.2021.

D. Anusha: Research Scholar, Register Number-19223162092032, Department of Mathematics, Sree Devi Kumari Women's College,, Kuzhithurai-629 163,, India.

 $E\text{-}mail\ address:\ \texttt{anushasenthil84@gmail.com}$

J. John: Department of Mathematics, Government College of Engineering, Tirunelveli $627\ 007,$ India.

E-mail address: john@gcetly.ac.in

S. JOSEPH ROBIN: DEPARTMENT OF MATHEMATICS, SCOTT CHRISTIAN COLLEGE, NAGERCOIL-629 003, INDIA.

E-mail address: dr.robinscc@gmail.com