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GRAPHS WITH SMALL AND

LARGE HOP DOMINATION NUMBERS

D. Anusha, J. John and S. Joseph Robin

Abstract. A set S ⊆ V (G) of a graph G is a hop dominating set of G if for
every v ∈ V (G) r S, there exists u ∈ S such that d(u, v) = 2. The minimum
cardinality of a hop dominating set of G is called the hop domination number

and is denoted by γh(G). Any hop dominating set of order γh(G) is called
γh-set of G. In this paper necessary and sufficient conditions for the hop
domination number to be 2, n− 1 and n are given.

1. Introduction

For notation and graph theory terminology we in general, follow [4]. Specif-
ically, let G = (V,E) be a graph with vertex set V of order n = |V | and edge
set E of size m = |E|. Let v be a vertex in V (G). Then the open neighborhood
of v is the set N(v) = {u ∈ V (G)|uv ∈ E}, and the closed neighborhood of v is
N [v] = {v} ∪N(v). The degree of a vertex v is deg(v) = |N(v)|. If e = {u, v} is an
edge of a graph G with deg(u) = 1 and deg(v) > 1, then e is called a pendant edge
or end edge, u is a leaf or end vertex and v is a support vertex of u. A vertex of
degree n− 1 is called a universal vertex.

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u-v path in G. A u-v path of length d(u, v) is called a u-v
geodesic. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P including
the vertices u and v. The eccentricity e(v) of a vertex v in G is the maximum
distance from v and a vertex of G. e(v) = max{d(v, u) : u ∈ V (G)}. The minimum
eccentricity among the vertices of G is the radius, radG or r(G) and the maximum
eccentricity is its diameter, diamG. We denote rad(G) by r and diamG by d.

2010 Mathematics Subject Classification. 05C12,05C69.
Key words and phrases. distance, domination number, hop domination number.
Communicated by Daniel A. Romano.

483



484 D. ANUSHA, J. JOHN AND S. JOSEPH ROBIN

The center of a graph is the set of all vertices of minimum eccentricity, that is,
the set of all vertices u where the greatest d to other vertices v is minimal. A
quadrilateral book consists of r quadrilaterals sharing a common edge uv. That is,
it is a cartesian product of a star and a single edge. It is denoted by Qr,2.

A set D ⊆ V (G) is a dominating set of G if every vertex v ∈ V (G) r D
is adjacent to some vertex in D. A dominating set D is said to be minimal if
no subset of D is a dominating set of G. The minimum cardinality of a minimal
dominating set of G is called the domination number of G and is denoted by γ(G).
The domination number of a graph was studied in [5]. A set S ⊆ V (G) of a graph G
is a hop dominating set of G if for every v ∈ V (G)rS, there exists u ∈ S such that
d(u, v) = 2. The minimum cardinality of a hop dominating set of G is called the
hop domination number and is denoted by γh(G). Any hop dominating set of order
γh(G) is called γh-set of G. The hop domination number of a graph was studied in
[1, 2, 3, 6, 7, 8, 9, 10]. Hop domination has applications in social networks. In
a cable network transport system, each person will stand with each vertex with a
rope. Cable vehicle will travel, through that network. If a person want to travel in
that vehicle, he/she want to stand at a distance two. If each person in the network
want to travel in the cable vehicle the minimum hop dominating set is the desired
set.

Figure 1

In this paper we have given some necessary and sufficient condition for the the
hop domination to be 2, n− 1 and n.

2. Graphs with small and large hop domination numbers

Theorem 2.1. Let G be a connected graph with γh(G) = 2 and S = {u, v} be
a γh-set of G. If

(i) uv ∈ E(G), then d 6 5, and
(ii) uv ̸∈ E(G),

then d 6 4.
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Proof. (i) Suppose uv ∈ E(G). Let S = {u, v} be a γh-set of G. If G = Kn

(n > 2), then n = 2. Hence d = 1 so we assume that G is non-complete. Let
P : u0, u1, u2, ..., ud be any shortest path in G such that either u or v or both
belongs to V (P ).

Case (1): u, v ∈ V (P ). Since uv ̸∈ E(G) for any w ∈ V − S, d(u,w) =
d(v, w) = 2, it follows that d(u0, u) 6 2 and d(u, ud) 6 2. Now

d(u0, ud) 6 d(u0, u) + d(u, ud)
6 d(u0, u) + d(u, v) + d(v, ud)
= 2 + 1 + 2 = 5

Therefore d(u0, ud) 6 5. Since this is true for every shortest path P in G, we have
that d 6 5.

Case (2): u ∈ V (P ) and v ̸∈ V (P ). Since for any w ∈ V − S, d(u,w) = 2, it
follows that d(u0, u) 6 2 and d(u0, ud) 6 2. Now

d(u0, ud) 6 d(u0, u) + d(u, ud)
= 2 + 2 = 4 6 5.

Therefore d(u0, ud) 6 5. Since this is true for every shortest path P in G, we have
that d 6 5.

Case (3): v ∈ V (P ) and u ̸∈ V (P ). By the similar argument as in Case (2),
we can prove that d 6 5.

(ii) uv ̸∈ E(G).
Case (1): u, v ∈ V (P ). Since uv ̸∈ E(G), both u and v are end vertices of P .

Without loss of generality, let us assume that u = u0 and v = ud. By definition of
hop dominating set, there must be only two internal vertices in P . Hence it follows
that d(u, v) = 3. Since this is true for all shortest path in G,we have that d = 3.

Case(2): u ∈ V (P ) and v ̸∈ V (P ).
Case(2a): u is an end vertex of P . Without loss of generality, let us assume

that u = u0. Then by definition of hop dominating set ud = u2. Since this is true
for all the shortest path in G. We have that d = 2.

Case(2b): u is not an end vertex of P . Then it follows that u is either u1 or
u2, or u is either ud−1 or ud−2. Suppose that u = u1, d(u0, v) = d(u2, v) = 2. Also
since u = u1, d(u1, u3) = 2. Hence it follows that u3 = ud. Therefore

d(u0, ud) = d(u0, u1) + d(u1, ud)
= 1+2 = 3

Suppose that u = u2. Then d(v, u1) = d(v, u3) = 2. Also since u = u2, d(u0, u2) =
d(u2, u4) = 2. Hence it follows that u4 = ud. Therefore

d(u0, ud) = d(u0, u2) + d(u2, ud)
= 2+2 = 4.

Case(3): v ∈ V (P ) and u ̸∈ V (P ). By the similar argument as in Case 2, we
can prove that d 6 4. �

Theorem 2.2. Let G be a connected graph with order n > 3. Then γh(G) = 2
if and only if any one the following conditions hold.

(i) If ⟨S⟩ is connected, then ⟨S⟩ contains no triangles and d 6 5, where S is a
γh-set of G.
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(ii) If ⟨S⟩ is independent, then ⟨S⟩ contains no triangles and d 6 4, where S is
a γh-set of G.

Proof. (i) Let γh(G) = 2. Let S = {u, v} be a γh-set of G. Let ⟨S⟩ be
connected. Then uv ∈ E(G). By Theorem 2.1, d 6 5. Since S contains two
elements, S has no triangles. Conversely, let ⟨S⟩ be connected and d 6 5, ⟨S⟩
contains no triangles. We prove that |S| = 2. On the contrary, suppose that
| S |> 3. Since ⟨S⟩ is connected, let u, v, w ∈ S such that ⟨u, v, w⟩ is connected.
Then there exists an edge u1u2 such that u2u ∈ E(G) and u1u ̸∈ E(G). Also there
exists end edge w1w2 such that w2w ∈ E(G) and w1w ̸∈ E(G). Since ⟨u, v, w⟩
is a path and | S |> 3, we have that d(u1, v) > 3 and d(w1, v) > 3. This implies
d(u1, w1) > 6. Hence it follows that d > 6, which is a contradiction. Hence | S |= 2.

(ii) Let γh(G) = 2. Let S = {u, v} be a γh-set of G. Let ⟨S⟩ be independent.
Then uv ̸∈ E(G). By Theorem 2.1, d 6 4. Since ⟨S⟩ contains two elements, ⟨S⟩
has no triangles. Conversely, let ⟨S⟩ be independent, d 6 4 and ⟨S⟩ contains no
triangles. We prove that |S| = 2. On the contrary, suppose that |S| > 3. Since S is
independent, let u, v, w ∈ S such that u, v and w is independent, let u, v, w ∈ S such
that u, v and w are independent. Since S is a γh-set of G, d(u, v) = d(v, w) = 3 and
d(u,w) > 5. Therefore u-w is a shortest path. Then d > 5, which is a contradiction.
Therefore γh(G) = 2. �

Corollary 2.1. For the complete bipartite graph G = Km,n (2 6 m 6 n), the
following holds γh(G) = 2.

Corollary 2.2. For the graph G = K1,n−1 + e (n > 4), holds γh(G) = 2.

Corollary 2.3. Let H = K2 +Kn−2 (n > 4) and V (K2) = {u, v}
(i) Then γh(G) = 2.

(ii) Let H
′
be a graph obtained from H by attaching end vertices in u or v or

both. Then γh(H
′
) = 2.

(iii) Let G be the graph obtained from H
′
by joining u and v. Then γh(G) = 2.

Corollary 2.4. Let H = Qr,2 be the book graph with centre (u, v).
(i) Then γh(H) = 2.
(ii) Let G be the graph obtained from H by attaching end vertices in u or v or

both. Then γh(G) = 2.

Corollary 2.5. Let V (K2) = {u, v}. Let H be the graph obtained from K2

by attaching end vertices in u or v or both.
(i) Then γh(H) = 2.

(ii) Let H
′
be the graph from H by attaching triangles in u or v or both. Then

γh(H
′
) = 2.

(iii) Let G be the graph obtained from H
′
by attaching end vertices to any

triangles of H
′
. Then γh(G) = 2.

(iv) Let G
′
be the graph obtained from H by attaching end vertices to any end

edge of H. Then γh(G
′
) = 2.

(v) Let K be the graph obtained from H
′
by attaching end vertices in u and v

or both. Then γh(K) = 2.
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(vi) Let K
′
be the graph obtained from K by attaching end vertices to end edge

of K. Then γh(K
′
) = 2.

(vii) Let I be the graph obtained from G by attaching end vertices u or v or
both. Then γh(I) = 2.

(viii) Let I
′
be the graph obtained from I by attaching end vertices to any end

edge of I. Then γh(I
′
) = 2.

Corollary 2.6. Let P3 : v1, v2, v3. Let H be the graph obtained from P3 and
Kr by joining each vertex of Kr with v1 and v3.

(i) Then γh(H) = 2, where r = n− 3.

(ii) Let H
′
be a graph obtained from H by attaching end vertices in v1 or v3

or both. Then γh(H
′
) = 2.

(iii) Let H
′′
be the graph obtained from H and Ks where joining each vertex of

Ks with v1 and v2. Then γh(H
′′
) = 2, where r + s = n− 3.

(iv) Let H
′′′

be the graph obtained from H
′′
by attaching end vertices on v1 or

v3 or both. Then γh(H
′′′
) = 2.

(v) Let K be the graph obtained from H
′′
by introducing the edges u2ui, 1 6

i 6 r. Then γh(K) = 2.

(vi) Let K
′
be the graph obtained from K by attaching end vertices on v1 or

v3. Then γh(K
′
) = 2.

Corollary 2.7. Let V (K1) = u. Let Pi : ui, vi, wi (1 6 i 6 r) be a copy on
three vertices. Let G be the graph obtained from K1, Pi (1 6 i 6 r) and Ks by
joining u with each ui and wi (1 6 i 6 r) and joining u with each element of Ks.
Then γh(H) = 2, where r + s = n− 1.

Corollary 2.8. Let C4 : v1, v2, v3, v4. Let G be the graph obtained from
C4,Km1 ,Km2 ,Km3 ,Km4 and Km5 by joining each element of Km1 with v1 and v2,
each element of Km2

with v2 and v3, each element of Km4
with v1 and v3, each

element of Km5 with v2 and v4. Then γh(G) = 2, where m1+m2+m3+m4+m5 =
n− 4.

Theorem 2.3. Let G be a connected graph having diameter d = 2 with a cut
vertex. Then γh(G) = 2 if and only if δ(G) = 1.

Proof. Let v be a cut vertex of G. Let G1, G2, ..., Gr (r > 2) be the compo-
nents of G − v. First assume that δ(G) = 1. Then G contains at least one end
vertex. Let x be an end vertex of G and S = {v, x}. Then for every y ∈ V − S,
d(x, y) = 2 and so S is a hop dominating set of G so that γh(G) = 2.

Conversely that γh(G) = 2. Suppose that δ(G) > 2. Let u be a vertex of
minimum degree. Therefore deg(u) > 2. Let us assume that u ∈ V (Gs) for some

s; 1 6 s 6 r. Therefore |V (Gs)| > 2. Then S
′
= V (Gs) ∪ {v} is a hop dominating

set and so γh(G) > 3, which is a contradiction. Therefore δ(G) = 1. �

Corollary 2.9. For the star graph G = K1,n−1 holds γh(G) = 2.
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Corollary 2.10. For the graph G = K1+(m1K1∪m1K1 ∪m2K2 ∪...∪mrKr),
where m1 +m2 + ..+mr = n− 1 and r > 2, the following golds γh(G) = 2 if and
if only m1 ̸= 0.

Theorem 2.4. Let G be a non-complete connected graph with order n > 3.
Then γh(G) 6 n− 1.

Proof. On the contrary, suppose that γh(G) = n. Hence it follows that
S = V (G) is the unique γh-set of G. Therefore vertex x in G is adjacent to all
the elements of G. Hence it follows that G = Kn, which is a contradiction. Hence
γh(G) 6 n− 1. �

Remark 2.1. The bound in Theorem 2.4, is sharp. For G = P3, we have
γh(G) = 2 = n− 1.

Corollary 2.11. For a connected graph G of order n > 2, holds γh(G) = n
if and only if G = Kn.

Proof. Let γh(G) = n. We prove that G = Kn. On the contrary, suppose
that G ̸= Kn. By Theorem 2.4, γh(G) 6 n− 1, which is a contradiction. Therefore
γh(G) = n. Converse is clear. �

Theorem 2.5. Let G be a connected graph of order n > 3. Then γh(G) = n−1
if and only if G = P3 or G = Kn − {e}.

Proof. Let γh(G) = n− 1. Let n = 3. Then G is either P3 or K3. If G = K3

then by Corollary 2.11, γh(G) = n, which is a contradiction. If G = P3, then
γh(G) = 2. So, we have done. So let n > 4. Let x ∈ V and S = V − {x} be a
γh-set of G. We prove that G[S] is a clique. On the contrary, suppose that G[S] is
not a clique. Then there exist vertices y, z ∈ G[S] such that dG[S](y, z) > 2. Let
S1 = S − {y}. Then S1 is a hop dominating set of G so that γh(G) 6 n− 2, which
is a contradiction. Therefore G[S] is clique.

Next we prove that x is adjacent to |G[S]|−1 vertices of G[S]. On the contrary,
suppose that x is adjacent to all vertices of G[S]. Then G = Kn. Which implies
γh(G) = n, which is a contradiction. Therefore x is adjacent to n− 2 vertices of G.
Therefore G = Kn − {e}. Converse is clear. �

3. Conclusion

In this article we characterize connected graphs of order n with hop domination
number 2 or n − 1 or n. We will make effort to characterize connected graphs of
order n with hop domination number n− 2 in future study.
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