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A GENERAL COINCIDENCE AND

FIXED POINT THEOREM FOR TWO PAIRS

OF SELF MAPPINGS SATISFYING

A COMMON COINCIDENCE RANGE PROPERTY

IN PARTIAL METRIC SPACES

Valeriu Popa and Dan Popa

Abstract. In this paper a new type of common coincidence range property
in partial metric space is introduced and a general fixed point theorem is
proved. As applications, new results for the mappings satisfying a contractive
condition of integral type and for the mappings satisfying a ϕ − contractive

condition are obtained.

1. Introduction and Preliminaries

In 1994, Matthews [16] introduced the concept of partial metric spaces as a
part of study of denotational semantics of dataflow networks and proved the Banach
contraction principle in such spaces. Many authors have studied some contractive
conditions in complete partial metric spaces in [1, 4, 6, 13] and other papers like
[2, 3].

Definition 1.1. Let X be a nonempty set. A function p : X×X → ℜ+ is said
to be a partial metric on X, if for any x, y, z ∈ X the following conditions hold:

(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y ;
(P2) : p(x, x) 6 p(x, y) ;
(P3) : p(x, y) = p(y, x);
(P4) : p(x, z) 6 p(x, y) + p(y, z)− p(y, y).
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The pair,(X, p) is called a partial metric space ([16]).

If p(x, y) = 0, then (P1) and (P2) imply x = y, but the converse does not
always hold.

In 2011, Sintunavarat and Kumam [25] introduced the notion of common limit
range property for a pair of mappings. Also, Imdad et all [11], introduced the
notion of joint common limit range property for two pairs of mappings. Other
results for pairs of mappings satisfying common limit range property are obtained
in [9, 10, 22] and other papers.

In all these papers and others on this topic, there exists some convergent se-
quences inX. We will introduce a new type of range property without sequences.

Definition 1.2. Let (X, p) be a partial metric space and A,S, T be self map-
pings on (X, p). A pair (A,S) is said to have a coincidence range property with
respect to T , denoted CRP(A,S)T -property, if there exists z = Ax = Sx for some
x ∈ X, with z ∈ T (X) and p(z, z) = 0.

Example 1.1. Let X = [0,∞) be a partial metric space with

p(x, y) = max {x, y} and Ax = 0, Sx = x
x+1 , Tx = x.

If Ax = Sx then x = 0 and z = 0 ∈ T (X) = [0,∞) and p(z, z) = p(0, 0) = 0
Hence, (A,S) and T satisfy the CRP(A,S)T -property.

Definition 1.3. An altering distance, [14] is a mapping ψ : [0,∞) → [0,∞)
which satisfies

(ψ1) : ψ is increasing and continuous,
(ψ2) : ψ(t) = 0 if and only if t = 0.

Fixed point theorems involvings alterings distance have been studied in [20, 25]
and other papers.

Definition 1.4. A weak altering distance is a mapping ψ : [0,∞) → [0,∞)
which satisfies

(ψ1) : ψ is increasing,
(ψ2) : ψ(t) = 0 if and only if t = 0.

Example 1.2. ψ(t) =

{
t if t ∈ [0, 1),

et if t ∈ [1,∞),
is a weak altering distance and is

not an altering distance.

Let X be a nonempty set and A,S : X → X two self mappings on X . A point
x ∈X is a coincidence point of A and S if w = Ax = Sx for some x ∈ X. The set
of all coincidence points of A and S is denoted by C(A,S), and w is said to be a
point of coincidence of A and S.

Definition 1.5. Let X be a nonempty set and A and S be two self mappings
on X. A and S are weakly compatible if ASu = SAu for all u ∈ C(A,S).
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2. Implicit relations

Several fixed point theorems and common fixed point theorems have been uni-
fied considering a general condition by an implicit function in [17, 18, 19] and
other papers.

Some fixed point theorems for pairs of mappings satisfying implicit relations in
partial metric spaces are proved in [7, 8, 21, 22, 26] and other papers.

Definition 2.1. We define FCP being the set of all functions F (t1, .., t6) :
ℜ6

+ → ℜ satisfying the following conditions:
(F1) : F is non increasing in t3, t4,
(F2) : F (t, 0, 0, t, t, 0) > 0,∀t > 0,
(F3) : F (t, t, 0, t, t, t) > 0, ∀t > 0,
(F4) : F (t, t, t, 0, t, t) > 0, ∀t > 0.

Example 2.1. F (t1, ..., t6) = t1 − k max {t2, t3, ..., t6} , where k ∈ [0, 1).

Example 2.2. F (t1, ..., t6) = t1 − k max {t2, t3, t4, t5+t6
2 } , where k ∈ [0, 1).

Example 2.3. F (t1, ..., t6) = t1 − k max {t2, t3+t4
2 , t5+t6

2 }, where k ∈ [0, 1).

Example 2.4. F (t1, ..., t6) = t1−a t2−b t3−c t4−d t5−e t6, where a, b, c, d, e > 0
and a+ b+ c+ d+ e < 1.

Example 2.5. F (t1, ..., t6) = t1− max {c t2, c t3, c t4, a t5 + b t6}, where c ∈
(0, 1). a, b > 0 and a+ b < 1.

Example 2.6. F (t1, ..., t6) = t1 − a t2 − b max {t3, t4}− c max {t5, t6}, where
a, b, c > 0 and a+ b+ c < 1.

Example 2.7. F (t1, ..., t6) = t1−α max {t2, t3, t4}− (1−α)(a t5+ b t6) where
α ∈ (0, 1), a, b > 0 and a+ b < 1.

Example 2.8. F (t1, ..., t6) = t21−a t2 t3−b t3t4−c t4t5−d t5t6, where a, b, c, d >
0 and a+ b+ c+ d < 1.

The purpose of this paper is to prove a common fixed point theorem in partial
metric spaces for two pairs (A,S) and (B, T ) of self mapping satisfying some implicit
relations having CRP(A,S)T -property. As applications we obtain some results for
mappings satisfying an integral condition and ϕ-contractive conditions.

3. Main results

Theorem 3.1. Let (X, p) be a partial metric space and A,B, S, T be self map-
pings on X such that for all x, y ∈ X
(3.1)

F (ψ(p(Ax,By)), ψ(p(Sx, Ty)), ψ(p(Sx,Ax)), ψ(p(Ty,By)), ψ(p(Sx,By)), ψ(p(Ty,Ax)) 6 0

for some F ∈ FCP and ψ is a weakly altering distance. If (A,S) and T satisfy
CRP(A,S)T -property, then C(B, T ) ̸= Ø. Moreover, if (A,S) and (B, T ) are weakly
compatibles then A,B, S, T have a unique common fixed point.
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Proof. Since (A,S) and T satisfies CR(A,S)T -property, then there exists z =
Av = Sv fo some v ∈ X, z ∈ T (X) and p(z, z) = 0. Since z ∈ T (X) there exists
u ∈ X such that z = Tu. Then, by (3.1)

F (ψ(p(Av,Bu)), ψ(p(Sv, Tu)), ψ(p(Sv,Av)), ψ(p(Tu,Bu)), ψ(p(Sv,Bu)),
ψ(p(Tu,Av))) 6 0
F (ψ(p(z,Bu)), 0, 0, ψ(p(z,Bu)), ψ(p(z,Bu)), 0) 6 0 contradiction with (F2)

if ψ(p(z,Bu)) > 0. Hence, ψ(p(z,Bu)) = 0 which implies z = Bu = Tu and
C(T,B) ̸=Ø.

Therefore, z = Sv = Av = Tu = Bu. Moreover, if (A,S) and (B, T ) are
weakly compatible, then Sz = SAv = ASv = Az and Tz = TBu = BTu = Bz.
By (3, 1) we obtain

F (ψ(p(Av,Bz)), ψ(p(Sv, Tz)), ψ(p(Sv,Av)), ψ(p(Tz,Bz)), ψ(p(Sv,Bz)),
ψ(p(Tz,Av))) 6 0,
F (ψ(p(z,Bz)), ψ(p(z,Bz)), 0, ψ(p(Bz,Bz)), ψ(p(z,Bz)), ψ(p(z,Bz)) 6 0.
By (F1) we have
F (ψ(p(z,Bz)), ψ(p(z,Bz)), 0, ψ(p(z,Bz)), ψ(p(z,Bz)), ψ(p(z,Bz)) 6 0,
a contradiction with (F3) if ψ(p(z,Bz)) > 0. Hence, ψ(p(z,Bz)) = 0 which

implies z = Bz = Tz and z is a common fixed point of T and B.
Similarly, by (3.1) we obtain
F (ψ(p(Az,Bu)), ψ(p(Sz, Tu)), ψ(p(Az, Sz)), ψ(p(Tu,Bu)), ψ(p(Sz,Bu)),
ψ(p(Tu,Az)) 6 0.
F (ψ(p(Az, z)), ψ(p(Az, z)), ψ(p(Az,Az)), 0, ψ(p(z,Az)), ψ(p(z,Az)) 6 0.
By (P2), p(Az,Az) 6 p(z,Az). By (F1) we obtain
F (ψ(p(Az, z)), ψ(p(Az, z)), ψ(p(Az, z)), 0,ψ(p(Az, z)), ψ(p(Az, z))) 6 0, a con-

tradiction with (F4) if ψ(p(z,Az)) > 0, hence, ψ(p(z,Az)) = 0. Which implies
z = Az = Sz = Bz = Tz. Therefore, z is a common fixed point of A,S,B and T .

Suppose that w ̸= z is another common fixed point of A,B, S and T . Then by
(3.1) we obtain

F (ψ(p(Az,Bw)), ψ(p(Sz, Tw)), ψ(p(Sz,Az)), ψ(p(Tw,Bw)), ψ(p(Sz,Bw)),
ψ(p(Az, Tw))) 6 0.
F (ψ(p(z, w)), ψ(p(z, w)), 0, ψ(p(w,w)), ψ(p(z, w)), ψ(p(z, w))) 6 0.
By (P2) p(w,w) 6 p(w, z) which implies ψ(p(w,w)) 6 ψ(p(w, z)).
By (F1) we obtain
F (ψ(p(z, w)), ψ(p(z, w)), 0, ψ(p(z, w)), ψ(p(z, w)), ψ(p(z, w))) 6 0, a contra-

diction with (F3) if ψ(p(z, w)) > 0, which implies ψ(p(z, w)) = 0 hence, z = w.
Therefore, z is the unique common fixed point of A,B, S, T . �

If ψ(t) = t by Theorem 3.1 we obtain

Theorem 3.2. Let (X, p) be a partial metric space and A,B, S, T be four self-
mappings on X such that for for all x, y ∈ X

(3.2) F (p(Ax,By), p(Sz, Ty), p(Sx,Ax), p(Ty,By), p(Sx,By), p(Ax, Ty)) 6 0,

for some F ∈ FCP . If (A,S) and T satisfy CRP(A,S)T -property then C(B, T ) ̸=Ø.
Moreover, if A,S and B, T are weakly compatible, then A,S,B, T , have a unique
common fixed point.
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In order to apply this theorem we have to do the followings steps:
Step 1. Solve the equation Sx = Ax on X and establish C(A,S). If C(A,S) =

Ø the theorem is not applicable.

Step 2. If C(A,S) ̸= Ø we have to select z from C(A,S) such that z ∈ T (X)
As a consequence, A,S, T satisfy the CRP(A,S)T property.

Step 3. Verify if the pairs (A,S) and (B, T ) are weakly compatible. i.e., if one
of those pairs are not weakly compatible, the theorem can not be applied. Stop.

Step 4. If the Relation 3.1 is satisfied then, by Theorem 3.1, A,S,B, T have
a unique fixed point: z.

Example 3.1. Let X = [0,∞) and p(x, y) = max {x, y}, then (X, p) is a p-
metric space. Let A,B, S, T be four self mappings on X: Ax = 0, Sx = x

x+2 , Bx =
x
3 , Tx = x. If Ax = Sx = z then x = 0 and C(A,S) = {0}. Then, z = 0,
z ∈ T (X) = X with p(0, 0) = 0. Hence,(A,S) and T satisfy CRP(A,S)T -property.

Moreover, AS0 = SA0 = 0, and BT0 = TB0 = 0 hence, (A,S) and (B, T ) are
weakly compatible. On the other hand, p(Ax,By) = max {0, y3} = y

3 , p(Ty,By) =
max {y, y3} = y , which implies, p(Ax,By) 6 k p(Ty,By). The fact that k ∈
[ 13 , 1) implies p(Ax,By) 6 k max {p(Sx, Ty), p(Sx,Ax), p(Ty,By), p(Sx,By),
p(Ax, Ty)}, with k ∈ [ 13 , 1).

By Theorem 3.2, and Example 2.1, A,B, S and T have a unique common fixed
point z = 0 with p(z, z) = p(0, 0) = 0.

By Theorem 3.2 and Examples 2.2-2.8 we can obtain new particular results.

4. Applications

4.1. Coincidence and common fixed point for the mappings satisfy-
ing contractive conditions of integral type. In [5], Branciari extablished the
folowing theorem which opened the way of the study of fixed point for the mappings
satisfying a contractive condition of integral type.

Theorem 4.1. Let (X, d) be a complete metric space, c ∈ (0, 1), and f : X →
X a mapping such that for all x, y ∈ X

(4.1)

∫ d(fx,fy)

0

h(t)dt 6 c

∫ d(x,y)

0

h(t)dt

where h : [0,∞) → [0,∞) is a Lebesgue measurable mapping which is summable,
(i.e. with finite integral) on each compact subset of [0,∞) such that for ϵ > 0,∫ ϵ

0
h(t)dt > 0. Then, f has a unique fixed point such that for all x ∈ X,

(4.2) z = lim
n→∞

fn(x)

Lemma 4.1. Let h : [0,∞) → [0,∞) as in Theorem 4.1 then ψ(t) =
∫ t

0
h(x)dx

is a weakly altering distance.

Proof. The proof follows by Lemma 2.5 from [20]. �
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Theorem 4.2. Let (X, p) be a partial metric space and A,B, S and T be self
mappings on X such that for all x, y ∈ X

F (
∫ p(Ax,By)

0
h(t)dt,

∫ p(Sx,Ty)

0
h(t)dt,

∫ p(Sx,Ax)

0
h(t)dt,

∫ p(Ty,By)

0
h(t)dt,∫ p(Sx,By)

0
h(t)dt,

∫ p(Ty,Ax)

0
h(t)dt) 6 0

where h(t) is as in Theorem (4.1), for some F ∈ FCP . If (A,S) and T satisfy
CRP(A,S)T -property, then C(B, T ) ̸=Ø. Moreover, if (A,S) and (B, T ) are weakly
compatible, then, A,B, S, T have a unique common fixed point.

Proof. Let ψ(t) be as in Lemma 4.1, then

ψ(p(Ax,By)) =
∫ p(Ax,By)

0
h(t)dt, ψ(p(Sx, Ty)) =

∫ p(Sx,Ty)

0
h(t)dt,

ψ(p(Sx,Ax)) =
∫ p(Sx,Ax)

0
h(t)dt, ψ(p(By, Ty)) =

∫ p(By,Ty)

0
h(t)dt,

ψ(p(Sx,By)) =
∫ p(Sx,By)

0
h(t)dt, ψ(p(Ax, Ty)) =

∫ p(Ax,Ty)

0
h(t)dt.

Then we obtain

F (ψ(p(Ax,By)), ψ(p(Sx, Ty)), ψ(p(Sx,Ax), ψ(p(Ty,By)), ψ(p(Sx,By),
ψ(p(Ax, Ty))) 6 0

which is Inequality (3.1) hence, the conditions of Theorem 3.1 are satisfied and
Theorem 4.2 follows by Theorem 3.1. �

By Theorem 4.2 and Example 2.1 we obtain

Theorem 4.3. Let (X, p) be a partial metric space, A,B, S, T self mapping on
X and h(t) as in Theorem 4.1 such that for all x, y ∈ X∫ p(Ax,By)

0
6

k max {
∫ p(Sx,Ty)
0 h(t)dt,

∫ p(Sx,Ax)
0 h(t)dt,

∫ p(By,Ty)
0 h(t)dt,

∫ p(Sx,By)
0 h(t)dt,

∫ p(Ax,Ty)
0 h(t)dt}.

If (A,S) and T satisfy CRP(A,S)T -property, then C(B, T ) ̸=Ø. Moreover, if

(A,S) and (B, T ) are weakly compatible, then, A,B, S, T have a unique common
fixed point.

By Theorem 4.2 and Examples 2.2-2.8 we obtain many new particular results.

4.2. Coincidence and common fixed point for the mappings satisfying
φ -contractive condition. As in [15], let Φ be the set of nondecreasing continuous
function φ : [0,∞) → [0,∞) with limn→∞ φn(t) = 0 for t ∈ [0,∞). If φ ∈ Φ then

(Φ1) : φ(t) < t for t > 0,

(Φ2) : φ(0) = 0.

In the following we denote by ΦC the set of all nondecreasing functions satis-
fying condition (Φ1) and (Φ2).

The following function F (t1, ..., t6) : ℜ+ → ℜ satisfying condition (F1)− (F4).

Example 4.1. F (t1, ..., t6) = t1 − φ( max {t2, t3, t4, t5, t6)}).

Example 4.2. F (t1, ..., t6) = t1 − φ( max {t2, t3, t4, t5+t6
2 )}).
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Example 4.3. F (t1, ..., t6) = t1 − φ( max {t2, t3+t4
2 , t5+t6

2 )}).

Example 4.4. F (t1, ..., t6) = t1 − φ( max {t2,
√
t3t4,

√
t3t5,

√
t4t6,

√
t5t6)}).

Example 4.5. F (t1, ..., t6) = t1−φ(at2+bt3+ct4+dt5+et6) where a, b, c, d, e >
0 and a+ b+ c+ d+ e 6 1.

Example 4.6. F (t1, ..., t6) = t1−φ(at2+b max {t3, t4}+c max {t5, t6}) where
a, b, c > 0 and a+ b+ c 6 1.

By Theorem 3.2 and Example 4.1 we obtain:

Theorem 4.4. Let A,B, S, T be self mapping on a partial metric space such
that for all x, y ∈ X

p(Ax,By) 6 φ(max{p(Sx, Ty), p(Sx,Ax), p(Ty,By), p(Sx,By), p(Ax, Ty)} )
where φ ∈ ΦC . If (A,S) and T satisfy CRP(A,S)T -property, then C(B, T ) ̸=Ø.
Moreover, if (A,S) and (B, T ) are weakly compatible, then, A,B, S, T have a unique
common fixed point.

By Theorem 3.2 and Examples 4.2 - 4.6 we obtain new particular results.
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