BOUNDS ON DEGREE SQUARE SUM DISTANCE SQUARE ENERGY OF GRAPHS

Sudhir R. Jog and Jeetendra R. Gurjar

Abstract

The degree square sum distance square matrix $\operatorname{DSSDS}(\mathrm{G})$ of a graph G is a square matrix whose $(i, j)^{t h}$ entry is $\left(d_{i}^{2}+d_{j}^{2}\right) d_{i j}^{2}$ whenever $i \neq$ j, and otherwise zero, where d_{i} is the degree of $i^{t h}$ vertex of G and $d_{i j}=$ $d\left(v_{i}, v_{j}\right)$ is distance between v_{i} and v_{j}. In this paper, we define degree square sum distance square energy $E_{D S S D S}(G)$ as sum of absolute eigenvalues of $D S S D S(G)$. Also we obtain some bounds on degree square sum distance square eigenvalue and energy.

1. Introduction

The energy of the graph was introduced by I.Gutman in 1978 [6] which is having direct connection with total π-electron energy of a molecule in the quantum chemistry as calculated with the Huckel molecular orbital method. Recently several results on energy related with matrices dealing with degree of vertices and distance between vertices have been studied such as distance energy $[\mathbf{8}, \mathbf{1 2}]$, degree sum energy $[\mathbf{7}]$, degree exponent energy $[\mathbf{1 4}, \mathbf{1 3}]$, degree exponent sum energy $[\mathbf{1 0}, \mathbf{3}]$, degree square sum energy $[\mathbf{2}, \mathbf{1}, \mathbf{4}]$ etc.

In continuation with this, in order to upgrade, we now introduce concept of degree square sum distance square energy of connected graph. The purpose of this paper is to compute bounds on largest eigenvalue and energy of the new matrix associated with graph, called degree square sum distance square matrix denoted by $\operatorname{DSSDS}(\mathrm{G})$.

[^0]
2. Degree Square Sum Distance Square Energy

Let G be a connected graph of order n with vertex set $V(G)=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.We denote by $d\left(v_{i}\right)$ as the degree of a vertex v_{i} which is the number of edges incident on it and the distance between two vertices v_{i} and v_{j} as $d_{i j}$, the length of the shortest path joining them. Motivated from previous research, we now define the degree square sum distance square matrix of a connected graph G as, $D S S D S(G)=\left[d s s d_{i j} s\right]$ where,

$$
\begin{align*}
d s s d_{i j} s & =\left(d\left(v_{i}\right)^{2}+d\left(v_{j}\right)^{2}\right) d_{i j}^{2} \text { if } i \neq j \tag{2.1}\\
& =0 \text { if } i=j
\end{align*}
$$

Properties: The following hold for $\operatorname{DSSDS}(G)$,

1. $\operatorname{DSSDS}(G)$ is real symmetric.
2. The eigenvalues of $\operatorname{DSSDS}(G)$ are real.
3. The sum of the eigenvalues of $\operatorname{DSSDS(G)\text {iszero,sincetrace}}$

$$
D S S D S(G)]=0
$$

4. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the eigenvalues of $\operatorname{DSSDS}(G)$ then, they can be arranged in a non-increasing order as $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{n}$.

Analogous to the energy of a graph defined by I. Gutman [6] with respect to adjacency matrix, we define the degree square sum distance square energy of a graph as,

$$
E_{D S S D S}(G)=\sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

Example 2.1. For the graph $K_{4}-e$ with suitable labeling we have

Degrees	DSSDS Matrix	Eigenvalues and Energy
$\operatorname{deg}\left(v_{1}\right)=2$		
$\operatorname{deg}\left(v_{2}\right)=2$		
$\operatorname{deg}\left(v_{3}\right)=3$		
and		
$\operatorname{deg}\left(v_{4}\right)=3$		

13 \& 0 \& 8 \& 20

13 \& 8 \& 0 \& 20

10 \& 20 \& 20 \& 0\end{array}\right) .\)| |
| :--- |
| $\alpha_{1}=51.9258, \alpha_{2}=-32$ |
| $\alpha_{3}=-18$ and $\alpha_{4}=-1.9258$. |
| $E_{D S S D S}\left(K_{4}-e\right)=103.8516$. |

3. Bounds on Degree Square Sum Distance Square Energy

Lemma 3.1. Let G be a graph of order n. Then we have

$$
\sum_{i=1}^{n} \alpha_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i}^{2}=2 M
$$

where is $M=\sum_{i=1, i<j}^{n}\left(\left(d_{i}^{2}+d_{j}^{2}\right) d_{i j}^{2}\right)^{2}$.

Lemma $3.2([\mathbf{9}])$. Let $a_{1}, a_{2}, . ., a_{n}$ be non negative numbers. Then

$$
\begin{aligned}
& n\left[\frac{1}{n} \sum_{i=1}^{n} a_{i}-\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}\right] \leqslant \\
& \quad n \sum_{i=1}^{n} a_{i}-\left(\sum_{i=1}^{n} \sqrt{a_{i}}\right)^{2} \leqslant n(n-1)\left[\frac{1}{n} \sum_{i=1}^{n} a_{i}-\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}\right]
\end{aligned}
$$

Lemma 3.3 ([5]). Let a_{i} and $b_{i}, 1 \leqslant i \leqslant n$, be non-negative real numbers. Then

$$
\sum_{i=1}^{n} b_{i}^{2}+r R \sum_{i=1}^{n} \alpha_{i}^{2} \leqslant(r+R)\left(\sum_{i=1}^{n} a_{i} b_{i}\right)
$$

where r and R are real constants, such that for each $i, 1 \leqslant i \leqslant n, r a_{i} \leqslant b_{i} \leqslant R a_{i}$ holds.

Lemma $3.4([\mathbf{1 1}])$. Let a_{i} and $b_{i}, 1 \leqslant i \leqslant n$ non negative real numbers. Then

$$
\sum_{i}^{n} a_{i}^{2} \sum_{i}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
$$

where
$M_{1}=\max _{1 \leqslant i \leqslant n} a_{i}, M_{2}=\min _{1 \leqslant i \leqslant n} b_{i}, m_{1}=\max _{1 \leqslant i \leqslant n} a_{i}$ and $m_{2}=\min _{1 \leqslant i \leqslant n} b_{i}$.
Lemma 3.5. The CauchySchwartz inequality: Let a_{i} and $b_{i}, 1 \leqslant i \leqslant n$ be any real numbers, then

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Theorem 3.1. If α_{1} is the index (largest degree square sum distance square eigenvalue) of a connected graph G of order n, then $\alpha_{1} \leqslant \sqrt{\frac{2 M(n-1)}{n}}$, where M is defined above.

$$
\sum_{i=1}^{n} \alpha_{i}=0 \text { i.e, } \sum_{i=2}^{n} \alpha_{i}=-\alpha_{1} .
$$

Further $\sum_{i=1}^{n} \alpha_{i}^{2}=\operatorname{trace} \operatorname{DSSDS}(G)^{2}=2 M$, where M is as defined above. With $a_{i}=1$ and $b_{i}=\alpha_{i} i=2,3, \ldots, n$ and substituting in Lemma 3.5 we get

$$
\left(\sum_{i=2}^{n} \alpha_{i}\right)^{2} \leqslant(n-1) \sum_{i=2}^{n} \alpha_{i}^{2} \leqslant(n-1)\left(2 M-\alpha_{1}^{2}\right)
$$

Therefore $\left(-\alpha_{1}\right)^{2} \leqslant(n-1)\left(2 M-\alpha_{1}^{2}\right)$. Hence bound for the index α_{1} follows.
Theorem 3.2. Let G be a graph of order $n \geqslant 2$ and M is the quantity defined above. Then

$$
\sqrt{2 M} \leqslant E_{D S S D S}(G) \leqslant \sqrt{2 M n} .
$$

Proof. With $a_{i}=1, b_{i}=\left|\alpha_{i}\right|$ using Lemma 3.5 we get

$$
\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right)^{2} \leqslant n \sum_{i=1}^{n}\left(\alpha_{i}\right)^{2} \text { that is, } E_{D S S D S}(G)^{2} \leqslant 2 n M
$$

Hence $E_{D S S D S}(G) \leqslant \sqrt{2 M n}$. Now for the other part

$$
E_{D S S D S}(G)^{2}=\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right)^{2} \geqslant \sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}=2 M
$$

so that, $E_{D S S D S}(G) \geqslant \sqrt{2 M}$. Combining these two, inequality follows.
Theorem 3.3. Let G be a connected graph of order n and Δ be the absolute value of the determinant of $\operatorname{DSSDS}(G)$. Then

$$
\sqrt{2 M+n(n-1) \Delta^{2 / n}} \leqslant E_{D S S D S}(G) \leqslant \sqrt{2(n-1) M+n \Delta^{2 / n}}
$$

where M is defined as above.
Proof. Let $a_{i}=\alpha_{i}^{2}, i=1,2, \ldots, n$. Then from Lemma 3.1 and Lemma 3.2 we obtain

$$
n\left[\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}-\left(\prod_{i=1}^{n} \alpha_{i}^{2}\right)^{1 / n}\right] \leqslant n \sum_{i=1}^{n} \alpha_{i}^{2}-\left(\sum_{i=1}^{n} \alpha_{i}\right)^{2} \leqslant n(n-1)\left[\frac{1}{n} \sum_{i=1}^{n} \alpha_{i}^{2}-\left(\prod_{i=1}^{n} \alpha_{i}^{2}\right)^{1 / n}\right]
$$

That is

$$
2 M-n \Delta^{2 / n} \leqslant 2 n M-\left[E_{D S S D S}(G)\right]^{2} \leqslant 2(n-1) M-n(n-1) \Delta^{2 / n}
$$

Thus

$$
2 M+n(n-1) \Delta^{2 / n} \leqslant\left[E_{D S S D S}(G)\right]^{2} \leqslant 2(n-1) M+n \Delta^{2 / n}
$$

We get the desired result.
Theorem 3.4. If G is any graph of order n and Δ is the absolute value of the determinant of $D S S D S(G)$ then

$$
\sqrt{2 M+n(n-1) \Delta^{\frac{2}{n}}} \leqslant E_{D S S D S}(G) \leqslant \sqrt{2 M n}
$$

where M is defined as above.
Proof. For lower bound consider,

$$
\left[E_{D S S D S}(G)\right]^{2}=\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right)^{2}=\sum_{i=1}^{n}\left(\alpha_{i}\right)^{2}+2 \sum_{i<j}\left|\alpha_{i}\right|\left|\alpha_{j}\right|=2 M+\sum_{1 \neq j}\left|\alpha_{i}\right|\left|\alpha_{j}\right| .
$$

Since Arithmetic Mean $(A M) \geqslant$ Geometric Mean (GM) we have,

$$
\begin{aligned}
& \frac{1}{n(n-1)} \sum_{i \neq j}\left|\alpha_{i}\right|\left|\alpha_{j}\right| \geqslant\left(\prod_{i \neq j}\left|\alpha_{i}\right|\left|\alpha_{j}\right|\right)^{\frac{1}{n(n-1)}} \\
& =\prod_{i=1}^{n}\left(\left|\alpha_{i}\right|^{2 n-2}\right)^{\frac{1}{n(n-1)}}=\left(\prod_{i=1}^{n}\left|\alpha_{i}\right|^{\frac{2}{n}}\right)=\Delta^{\frac{2}{n}}
\end{aligned}
$$

therefore we have

$$
\sum_{i \neq j}\left|\alpha_{i}\right|\left|\alpha_{j}\right| \geqslant n(n-1) \Delta^{\frac{2}{n}}
$$

Combining we get

$$
\left[E_{D S S D S}(G)\right]^{2} \geqslant 2 M+n(n-1) \Delta^{\frac{2}{n}}
$$

i.e,

$$
E_{D S S D S}(G) \geqslant \sqrt{2 M+n(n-1) \Delta^{\frac{2}{n}}}
$$

For upper bound define

$$
\begin{aligned}
X & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\alpha_{i}\right|+\left|\alpha_{j}\right|\right)^{2} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left|\alpha_{i}\right|^{2}+\left|\alpha_{j}\right|^{2}\right)+2\left(\sum_{i, j=1, i \neq j}^{n}\left|\alpha_{i}\right|\left|\alpha_{j}\right|\right) \\
& =n \sum_{i=1}^{n}\left(\alpha_{i}\right)^{2}+n \sum_{i=1}^{n}\left(\alpha_{j}\right)^{2}-2\left(\sum_{i=1}^{n}\left|\alpha_{i} \| \alpha_{j}\right|\right) \\
& =2 n M+2 n M-2\left[E_{D S S D S}(G)\right]^{2}=4 n M-2\left[E_{D S S D S}(G)\right]^{2} .
\end{aligned}
$$

Since $X \geqslant 0$, we get $E_{D S S D S}(G) \leqslant \sqrt{2 M n}$. Combining lower bound and upper bound, we arrive at the desired result.

Theorem 3.5. Let G be a graph of order n. Then

$$
E_{D S S D S}(G) \geqslant \sqrt{2 M n-\frac{n^{2}}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2}}
$$

where α_{p}, α_{q} are maximum and minimum absolute value of $\alpha_{i}^{\prime} s$, and M as defined above.

Proof. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the eigenvalues of $\operatorname{DSSDS}(G)$. We assume that $a_{i}=1$ and $b_{i}=\left|\alpha_{i}\right|$, by Lemma 3.4 we have

$$
\begin{gathered}
\sum_{i=1}^{n} 1 \sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}-\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|\right)^{2} \leqslant \frac{n^{2}}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2} \\
2 M n-\left(E_{D S S D S(G)}\right)^{2} \leqslant \frac{n^{2}}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2} .
\end{gathered}
$$

Now

$$
2 M n>\frac{n^{2}}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2}
$$

and

$$
n \sum_{i=1}^{n} \alpha_{i}^{2}>\frac{n^{2}}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2}
$$

Then

$$
\alpha_{1}^{2}+\alpha_{2}^{2}+\ldots+\alpha_{p}^{2}+\alpha_{q}^{2}>\frac{n}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2} \text { giving } \alpha_{1}^{2}+\alpha_{2}^{2}+\ldots>\frac{n}{4}\left(-2 \alpha_{p} \alpha_{q}\right)
$$

which is true. Hence

$$
E_{D S S D S}(G) \geqslant \sqrt{2 M n-\frac{n^{2}}{4}\left(\alpha_{p}-\alpha_{q}\right)^{2}} .
$$

Theorem 3.6. Let G be a graph of order n. Let $\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant \alpha_{n}$ be a non-increasing arrangement of $\operatorname{DSSDS}(G)$. Then

$$
E_{D S S D S}(G) \geqslant \frac{\alpha_{p} \cdot \alpha_{q} n+2 M}{\alpha_{p}+\alpha_{q}}
$$

where α_{p}, α_{q} are maximum and minimum absolute value of $\operatorname{DSSDS}(G)$, and M as defined above.

Proof. Suppose $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, are the eigenvalues of $\operatorname{DSS} D S(G)$. We assume that $b_{i}=\left|\alpha_{i}\right|, a_{i}=1, r=\alpha_{q}$, and $R=\alpha_{p}$, then by using Lemma 3.3 we have,

$$
\sum_{i=1}^{n}\left|\alpha_{i}^{2}\right|+\alpha_{p} \alpha_{q} \sum_{i=1}^{n} 1 \leqslant\left(\alpha_{p}+\alpha_{q}\right) \sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

also we have, $E_{D S S D S}(G) \leqslant \sqrt{2 M n}$. Since $E_{D S S D S}(G)=\sum_{i=1}^{n}\left|\alpha_{i}\right|, \sum_{i=1}^{n}\left|\alpha_{i}^{2}\right|=$ $2 M$. Hene the theorem.

Theorem 3.7. Suppose zero is not an eigenvalue of $\operatorname{DSSDS}(G)$. Then

$$
E_{D S S D S}(G) \geqslant \frac{2 \sqrt{2 M n} \sqrt{\alpha_{p} \alpha_{q}}}{\alpha_{p}+\alpha_{q}}
$$

where α_{p}, α_{q} are maximum and minimum absolute value of $\alpha_{i}^{\prime} s$, and M as defined above.

Proof. The AM-GM inequality implies.

$$
\frac{\alpha_{p} \alpha_{q} n+2 M}{\alpha_{p}+\alpha_{q}} \geqslant \frac{2 \sqrt{2 M n \alpha_{p} \alpha_{q}}}{\alpha_{p}+\alpha_{q}}
$$

Then the theorem follows as a direct consequence of Theorem 3.6.
For the graph $K_{4}-e, M=2024, n=4, \Delta=57600, \alpha_{p}=51.9258 \alpha_{q}=1.9258$ and $E_{D S S D S}\left(K_{4}-e\right)=103.8516$, we have the following

Sl.No.	Lower bound	Upper bound
Theorem 3.1.	\ldots.	55.0999
Theorem 3.2.	63.62389488	127.24778
Theorem 3.3.	83.23460819	114.4727142
Theorem 3.4.	83.23460819	127.24778
Theorem 3.5.	78.68926229	$\ldots .$.
Theorem 3.6.	47.258379	$\ldots .$.
Theorem 3.7.	82.59726401	$\ldots .$.

Acknowledgement. The authors thank the reviewers for their purposeful suggestions.

References

[1] B. Basavanagoud and E. Chitra. Degree square sum energy of graphs. nternational Journal of Mathematics And its Applications 6(2-B)(2018), 193-205.
[2] B. Basavanagoud and E. Chitra. Degree square sum polynomial of some special graphs. International Journal of Applied Engineering Research, 13(19)(2018), 14060-14078.
[3] B. Basavanagoud and E. Chitra. Degree exponent sum energy of a graph. Gulf J. Math., 8(1)(2020), 52-70.
[4] B. Basavanagoud and E. Chitra. Degree square sum equienergetic and hyperenergetic graphs. Malaya J. Math., 8(2)(2020), 301-305.
[5] M. Biernacki, H. Pidek, and C. Ryll Nardzewski. Sur une inegalite entre des integrales definies. Ann. Univ. Mariae Curie-Skodowska Sect., A4(1950), 1-4. (French)
[6] I. Gutman. The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz .103(1978), 1-22.
[7] S. M. Hosamani and H. S. Ramane. On degree sum energy of a graph. Eur. J. Pure Appl. Math. 9(3)(2016), 340-345.
[8] G. Indulal, I. Gutman and A. Vijaykumar. On distance energy of graphs. MATCH Commun. Math. Comput. Chem.. 60(2)(2008), 461-472.
[9] H. Kober. On the arithmetic and geometric means and on Holder's inequality. Proc. Am. Math. Soc. 9(3)(1958), 452-459.
[10] P. Mahalank, H. S. Ramane and A. R. Desai. Degree exponent adjacency polynomial of some graphs. Adv. Math., Sci. J 9(3)(2020), 1001-1008.
[11] N. Ozeki. On the estimation of inequalities by maximum and minimum values. J. College Arts Sci. Chiba Univ., 5(1968), 199-203. (in Japanese)
[12] H. S. Ramane, D. S. Revankar, I. Gutman, S. Bhaskara Rao, B. D. Acharya and H. B. Walikar. Bounds for the distance energy of a graph. Kragujevac J. Math. 31(2008), 59-68.
[13] H. S. Ramane and S. S. Shinde. Degree exponent polynomial of graphs obtained by some graph operations. Electron. Notes Discrete Math. 63(2017), 161-168.
[14] H. S. Ramane and S. S. Shinde. Degree exponent polynomial and degree exponent energy of graphs. Indian Journal of Discrete Mathematics 2(1)(2016), 1-7. Received by editors 15.12.2020; Revised version 03.02.2021; Available online 08.02.2021.

Department of Mathematics, Gogte Institute of Technology, Udyambag Belagavi Karnataka, 590008, India.

E-mail address: sudhir@git.edu
Department of Mathematics, Gogte Institute of Technology, Udyambag Belagavi
Karnataka, 590008, India.
E-mail address: jeetendra.g8@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C50,05C12.
 Key words and phrases. Degree square sum distance square eigenvalues, Degree square sum distance square energy.

 Communicated by Igor Milovanović.

