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BOUNDS ON DEGREE SQUARE SUM DISTANCE
SQUARE ENERGY OF GRAPHS

Sudhir R. Jog and Jeetendra R. Gurjar

ABSTRACT. The degree square sum distance square matrix DSSDS(G) of a
graph G is a square matrix whose (i, §)*" entry is (d% + d?)d%j whenever i #
j, and otherwise zero,where d; is the degree of it" vertex of G and dij =
d(v;,v;) is distance between v; and v;. In this paper, we define degree square
sum distance square energy Epssps(G) as sum of absolute eigenvalues of
DSSDS(G). Also we obtain some bounds on degree square sum distance
square eigenvalue and energy.

1. Introduction

The energy of the graph was introduced by I.Gutman in 1978 [6] which is
having direct connection with total 7 -electron energy of a molecule in the quantum
chemistry as calculated with the Huckel molecular orbital method. Recently several
results on energy related with matrices dealing with degree of vertices and distance
between vertices have been studied such as distance energy[8, 12], degree sum
energy [7], degree exponent energy [14, 13], degree exponent sum energy [10, 3],
degree square sum energy[2, 1, 4] etc.

In continuation with this, in order to upgrade, we now introduce concept of
degree square sum distance square energy of connected graph. The purpose of this
paper is to compute bounds on largest eigenvalue and energy of the new matrix
associated with graph, called degree square sum distance square matrix denoted by

DSSDS(G).
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2. Degree Square Sum Distance Square Energy

Let G be a connected graph of order n with vertex set V(G) = (v, ve, ..., v, ). We
denote by d(v;) as the degree of a vertex v; which is the number of edges incident on
it and the distance between two vertices v; and v; as d;;,the length of the shortest
path joining them. Motivated from previous research, we now define the degree
square sum distance square matrix of a connected graph G as,

DSSDS(G) = [dssd;;s] where,
(2.1) dssdigs = (d(v;)® +d(v;)?)ds; if i # j
= 0ifi=yjy

Properties: The following hold for DSSDS(G),

1. DSSDS(G) is real symmetric.

2. The eigenvalues of DSSDS(G) are real.

3. The sum of the eigenvalues of DSSDS(G) is zero, since trace

DSSDS(G)] =0.
4. If oy, 9,...,ap are the eigenvalues of DSSDS(G) then, they can be ar-
ranged in a non-increasing order as a; = g = ... = Q.

Analogous to the energy of a graph defined by I. Gutman [6] with respect to
adjacency matrix, we define the degree square sum distance square energy of a
graph as,

n

Epssps(G) =Y |ail.

i=1

EXAMPLE 2.1. For the graph K4 — e with suitable labeling we have

Degrees DSSDS Matrix Eigenvalues and Energy
deg(vy) = 2 0 13 13 10

ol = 213 0 s 0 | | = S e s o
deg(vs) = 3 . a3 = —18 and oy = —1. .
and 13 8 0 20 Epssps(Ki —e) = 103.8516.
deg(vy) = 3 10 20 20 O

3. Bounds on Degree Square Sum Distance Square Energy

LEMMA 3.1. Let G be a graph of order n. Then we have

zn:ai =0 and zn:a? =2M,
i=1 i=1

where 1s M = Z?:LK]'((d? + d?)dgj)2'
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LEMMA 3.2 ([9]). Let a1, az, .., an be non negative numbers. Then
n|a S - [T )] <
nyiciai = (i v@)® <n(n—1) [711 Yicyai = (Ihizy e

LEMMA 3.3 ([5]). Let a; and b; , 1 < i < n, be non-negative real numbers.

Then
Zb2+rRZa (r+ R)( Zall

where r and R are real constants, such that for each i, 1 <1< n, ra; <b; < Ra;
holds.

LEMMA 3.4 ([11]). Let a; and b; , 1 < i < n non negative real numbers. Then

iafib? Zaz i)” < % (M1 Mz — myms)®

[ V)

where

My = mazi<ign@i, Ma = minigi<nbi, m1 = mazi<icni and mao = minigignbi-

LEMMA 3.5. The CauchySchwartz inequality: Let a; and b; , 1 < i < n be any

real numbers, then
n 2 n n
(Se) <(54) (5%)
i=1 i=1 i=1

THEOREM 3.1. If oy is the index (largest degree square sum distance square

eigenvalue) of a connected graph G of order n, then ay < 4/ %, where M is
defined above.

PRrROOF. The trace of DSSDS(G) being zero we have

S a;=01e Y a; =—a.

Further Y 7 , a2=traceDSSDS(G)* = 2M, where M is as defined above. With

a; =1and b; = a; = 2,3,...,n and substituting in Lemma 3.5 we get
Zal n—lZa <(n—1)(2M —a?).
=2 =2

Therefore (—a1)? < (n —1)(2M — o2). Hence bound for the index a; follows. [J

THEOREM 3.2. Let G be a graph of order n > 2 and M 1is the quantity defined
above. Then

V2M g EDSSDS(G) g 2Mn.
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PrROOF. With a; = 1, b; = || using Lemma 3.5 we get
n

n
(Z |O¢i‘)2 < nZ(ai)Q that is, EDSSDS(G)2 < 2nM.
=1

i=1

Hence Epssps(G) < vV2Mn. Now for the other part
Epssps(G)? = (O _lei)* 2 ) |ou* =2M
i=1 i=1

so that, Fpssps(G) = v2M. Combining these two, inequality follows. O

THEOREM 3.3. Let G be a connected graph of order n and A be the absolute
value of the determinant of DSSDS(G). Then

\/2M + n(n — 1)A2/n < EDSSDS(G) < \/2(71 — 1)M + TLAQ/",
where M is defined as above.

PROOF. Let a; = a2, i=1,2,...,n. Then from Lemma 3.1 and Lemma 3.2 we
obtain

n

n |::L zn:af - (H Oé?)l/n:| < nzn:a? — (zn: Oéi)Q < n(n — 1) |::L zn:a? _ (ﬁa?)l/n
i=1 i—1 = Pt

i=1 i=1
That is
IM — nAY" < 2nM — [Epssps(G)]? < 2(n —1)M — n(n — 1)A%/",
Thus
2M +n(n —1)A%" < [Epssps(G)]2 < 2(n — 1)M +nA?/™,
We get the desired result. O

THEOREM 3.4. If G is any graph of order n and A is the absolute value of the
determinant of DSSDS(G) then

V2M +n(n— 1)A% < Epssps(G) < V2Mn,
where M is defined as above.

PRrROOF. For lower bound consider,

n n

[Epssps(G)? = (O lail)® =) (i) + 2 lollay| = 2M + > |al]a].

i=1 i=1 i<j 15
Since Arithmetic Mean (AM) > Geometric Mean (GM) we have,

1
n(n—1)

n 1 n R R
_ H (|ai|2n—2) nn-1) _ H lag| 7 | = A
i=1
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therefore we have

> laillag] = n(n —1)A
i#]
Combining we get
2
[EDssps(G)]Q > 2M + n(n — 1)AW,

i.e,

Epssps(G) > \/2M +n(n— 1A%,
For upper bound define

X =300 2 (el + ag))?
= i1 E; Ll + Jag ?) "‘2(2” 1,ij lail|aj])
=n3is () +n 30 () — 202551 failleg))
=2nM + 2nM — 2[Epssps(G)|* = 4nM — 2[Epssps(G)]?.

Since X > 0, we get Epssps(G) < vV2Mn. Combining lower bound and upper
bound, we arrive at the desired result. O

THEOREM 3.5. Let G be a graph of order n. Then

3
n
Epssps(G) = \/2Mn - Z(ap — )2,

where oy, og are mazimum and minimum absolute value of ofs, and M as defined
above.

PROOF. Suppose aq, @, ..., o, are the eigenvalues of DSSDS(G). We assume
that a; = 1 and b; = |o;]|, by Lemma 3.4 we have

Sy il - Z|az| <oy - a)?
i=1 =1
2

n
2Mn — (Epssps(a))’ < Z(% —ay)*.
Now
n? 9
2Mn > —( aq)
and
- 2 n’ 2
n2ai > I(apfaq) .
Then
n o n
F+az+...+ad+al> Z(ap —ag)? giving o + a3 + ... > Z(—Qapaq)

which is true. Hence

2
n
EDSSDS(G) Z \/2MTL - Z(Ozp - th)z.
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THEOREM 3.6. Let G be a graph of order n. Let vy > as > ...
non-increasing arrangement of DSSDS(G). Then

> a, be a

Enssns(G) > ap-agn + 2M
Qap —+ Qg

where o, ag are mazimum and minimum absolute value of DSSDS(G), and M
as defined above.

PROOF. Suppose a1, as, ..., ay, are the eigenvalues of DSSDS(G). We assume
that b; = ||, a; = 1, 7 = a4, and R = «,, then by using Lemma 3.3 we have,

n n n
> ladl+ apag Y 1< (ap +ag) Y o]
=1 =1 =1

also we have, Epssps(G) < vV2Mn. Since Epgsps(G) = Y i, |eul, > a?] =
2M . Hene the theorem. U

THEOREM 3.7. Suppose zero is not an eigenvalue of DSSDS(G). Then

2V 2Mn, /a0

E G) >
DSSDS( ) ap+aq

)

where ap,a are mazimum and minimum absolute value of afs, and M as defined
above.

ProoOF. The AM-GM inequality implies.

apogn + 2M S 2¢/2Mno,ay

=
ap + Oy ap + Oy

Then the theorem follows as a direct consequence of Theorem 3.6. O

For the graph Ky —e, M =2024, n =4, A = 57600, ap, = 51.9258 oy = 1.9258
and Epgssps(K4 — e) = 103.8516, we have the following

Sl.No. Lower bound Upper bound
Theorem 3.1. | .... 55.0999
Theorem 3.2. | 63.62389488 127.24778
Theorem 3.3. | 83.23460819 114.4727142
Theorem 3.4. | 83.23460819 127.24778
Theorem 3.5. | 78.68926229 | ...

Theorem 3.6. | 47.258379 | .....

Theorem 3.7. | 82.59726401 | ......
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