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ON THE ROMAN DOMINATION POLYNOMIAL

OF GRAPHS

Deepak Gangabylaiah, Indiramma M. H., Nandappa D. Soner,
and Anwar Alwardi

Abstract. A Roman dominating function on a graph G = (V,E) is a function

f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which
f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight
of a Roman dominating function is the value

W (f(V )) =
∑

u∈V (G)

f(u).

The minimum weight of a Roman dominating function on a graph G is called
the Roman domination number of G and is denoted by γR(G). In this paper,
we introduce the Roman domination polynomial of a graph G as

R(G, x) =

2n∑
j=γR(G)

r(G, j)xj ,

where r(G, j) is the number of Roman dominating functions of G of weight
j. We establish new and interested results on this domination polynomial by

studying some of its properties and obtain its formulas for some specific graphs
and some graph operations.

1. Introduction

All graphs considered here are finite, undirected without loops and multiple
edges. For a graph G, let V (G) and E(G) denote the set of all vertices and edges of
G, respectively. The open neighborhood and the closed neighborhood of a vertex
v ∈ V (G) are defined by
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N(v) = {u ∈ V (G) : uv ∈ E} and N [v] = N(v) ∪ {v},

respectively. The cardinality of N(v) is called the degree of the vertex v and
denoted by deg(v) in G. For more terminology and notations about graph, we refer
the reader to [6, 8].

A subset D of V (G) is called dominating set if for every vertex v ∈ V −D,
there exists a vertex u ∈ D such that v is adjacent to u. The minimum cardinality
of a dominating set in G is called the domination number of G and denoted by
γ(G). For more details about domination of graphs, we refer to [9].

The domination polynomial D(G, x) of a graph G is defined by

D(G, x) =
n∑

j=γ(G)

d(G, j)xj ,

where d(G, j) is the number of all the dominating sets of G of size j [5]. The domi-
nating sets and the domination polynomial of graphs have been studied extensively
in [5, 3, 4, 2]. Recently, the injective domination polynomial of graphs has been
studied in [1].

The Roman domination of graph has been suggested in [11]. A Roman dom-
inating function of a graph G = (V,E) (or in brief RDF of G ) is a function
f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0
is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman
dominating function is the value

W (f(V )) =
∑

u∈V (G)

f(u).

The minimum weight of a Roman dominating function of a graph G is called the
Roman domination number of G which is denoted by γR(G). For more details
about Roman domination and its properties, we refer to [7].

The join G1 ∨G2 of two graphs G1 and G2 with disjoint vertex sets |V (G1)| =
n1, |V (G2)| = n2 is the graph obtained by connecting each vertex of G1 to each
vertex of G2, while keeping all edges of both graphs.

The corona product G1 ◦ G2 of two graphs G1 and G2, where |V (G1)| = n1,
|V (G2)| = n2 is the graph obtained by taking n1 copies of G2 and joining the ith
vertex of G1 to each vertex of the i-th copy of G2.

There are many graph polynomials have been introduced and studied exten-
sively like Characteristic polynomial, Chromatic polynomial, Matching polynomial,
Tutte polynomial...etc. The graph polynomial is one of the ways for algebraic graph
representation. By the analysis of graph polynomial and studying its properties we
get some information about the graph, which motivated us to introduce this new
type of graph polynomial. In this paper, we introduce the Roman domination poly-
nomial of graphs. Some properties of R(G, x) are obtained and exact formulas for
some specific graphs and graph operations are computed.
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2. Definition and Properties

In this section, we define the Roman domination polynomial of a graph G and
study some of its properties.

Definition 2.1. Let G be a graph on n vertices. The Roman domination
polynomial of G is denoted by R(G, x) and defined as

R(G, x) =
2n∑

j=γR(G)

r(G, j)xj ,

where γR(G) is the Roman domination number of G and r(G, j) is the number of
Roman dominating functions of G of weight j. The roots of R(G, x) are called the
Roman dominating roots of the graph G.

To illustrate Definition 2.1, consider the cycle graph C4. The cycle C4 has four
Roman dominating functions of weight three (γR(G) = 3), fifteen Roman dominat-
ing functions of weight four, sixteen Roman dominating functions of weight five, ten
Roman dominating functions of weight six, four Roman dominating functions of
weight seven and one Roman dominating function of weight eight, then the Roman
domination polynomial of C4 is

R(C4, x) = x8 + 4x7 + 10x6 + 16x5 + 15x4 + 4x3.

It is easy to see that, if a graph G consists of m components G1, . . . , Gm, then
R(G, x) = R(G1, x) . . . R(Gm, x).

Proposition 2.1. Let G be the empty graph Kn on n vertices. Then

R(G, x) =
n∑

j=0

(
n

j

)
xn+j = xn

(
1 + x

)n
.

The following proposition is an easy consequence from the definition of the
Roman domination polynomial of graphs.

Proposition 2.2. Let G be a non trivial graph on n vertices. Then

(1) R(G, x) has no constant term.
(2) R(G, x) has no term of degree one.
(3) Zero is a root of R(G, x), with multiplicity γR(G).
(4) R(G, x) never equal xp for any 2 6 p 6 2n.
(5) For any graph G, r(G, 2n) = 1 and r(G, 2n− 1) = n.
(6) r(G, j) = 0 if and only if j < γR(G) or j > 2n.
(7) R(G, x) is a strictly increasing function in [0,∞).
(8) The only polynomial of degree two can R(G, x) be equal is x2 + x if and

only if G ∼= K1.
(9) Let H be any induced subgraph of G. Then

deg
(
R(G, x)

)
> deg

(
R(H,x)

)
.
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In the next theorem, we show that using a Roman domination polynomial of a
graph G, we can obtain the number of isolated vertices, the number of vertices of
degree one, the number of vertices of degree two and the number of K2-components
in the graph G.

Theorem 2.1. Let G be a graph on n vertices with i isolated vertices, t vertices

of degree one and l vertices of degree two. Suppose R(G, x) =
2n∑

j=γR(G)

r(G, j)xj is

the Roman domination polynomial of G. Then the following hold

(1) r(G, 2n− 1) = n.

(2) i =
n(n+ 1)

2
− r(G, 2n− 2).

(3) r(G, 2n− 3) = 2

(
n

2

)
+

(
n

3

)
− i(n− 1)− t.

(4) If G has s K2-components, then

r(G, 2n− 4) =

(
n

2

)
+ 3

(
n

3

)
+

(
n

4

)
− i(n− 1) +

(
i

2

)
− t(n− 1) + s− l.

(5) If G ̸= K2, then r(G, 2) = |{v ∈ V (G) : |deg(v) = n− 1}|.

Proof.
(1) It is clear that, for any vertex v ∈ V (G) the function f : V (G) → {0, 1, 2}

with f(v) = 1 and weight W (f(V )) = 2n − 1 is a Roman dominating function of
G. Hence, r(G, 2n− 1) = |V (G)| = n.

(2) Suppose I ⊆ V (G) is the set of all isolated vertices in G. Then |I| = i (by
assumption). If G is connected, it is easy to see that

r(G, 2n− 2) =

(
n

1

)
+

(
n

2

)
=

n(n+ 1)

2
.

But since G has i isolated vertices, then each function f : V (G) → {0, 1, 2} with
weight 2n − 2 in which f(v) = 0, where v ∈ I is not Roman dominating function

of G. Hence, r(G, 2n− 2) =
n(n+ 1)

2
− i.

(3) The number of all functions f : V (G) → {0, 1, 2} with W (f(V )) = 2n − 3

is 2

(
n

2

)
+

(
n

3

)
, but some of them are not Roman dominating functions of G. To

determine the number of non Roman dominating functions of G in this situation,
we have two cases:

Case 1. Suppose v ∈ I ⊆ V (G) is an isolated vertex of G. Then each function
f : V (G) → {0, 1, 2} with W (f(V )) = 2n−3 having f(v) = 0 and f(w) = 1 for any
vertex w ∈ V (G)r {v} is not RDF of G. Therefore, we have i(n− 1) non RDFs of
G.

Case 2. Suppose u,w ∈ V (G) are any two adjacent vertices such that deg(u) =
1. Then any function f : V (G) → {0, 1, 2} with W (f(V )) = 2n−3 having f(u) = 0
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and f(w) = 1 is not RDF of G. Thus, we have t non RDFs of G. This complete
the proof.

(4) Clearly, the number of all functions f : V (G) → {0, 1, 2} with weight

W (f(V )) = 2n − 4 is

(
n

2

)
+ 3

(
n

3

)
+

(
n

4

)
. We have the graph G with i isolated

vertices, t vertices of degree one, l vertices of degree two and here also G has s
K2-components. To determine the number of non RDFs of G in this situation, we
have three cases:

Case 1. Suppose v ∈ I ⊆ V (G). If f(v) = 0 and any other vertex w ∈
V (G)r{v} has the value f(w) = 0 under a function f : V (G) → {0, 1, 2} of weight
W (f(V )) = 2n−4, then f is not RDF of G. Therefore, we have i(n−1) non RDFs

of G, but if w ∈ I, we need to reduce

(
i

2

)
because v and w counted twice. Hence,

we have i(n− 1)−
(
i

2

)
non RDFs of G.

Case 2. Suppose u,w ∈ V (G) are any two adjacent vertices such that deg(u) =
1. Then for any function f : V (G) → {0, 1, 2} with W (f(V )) = 2n − 4 having
f(u) = 0, we characterize the following:

• If f(w) = 0, then f is not RDF of G, and since G has s K2-components,
then we have t− s non RDFs of G in this case.

• If f(w) = 1, again f is not RDF of G and therefore, we have t(n− 2) non
RDFs of G.

Case 3. Suppose that v ∈ V (G) is a vertex of G with deg(v) = 2 and
u,w ∈ V (G) are adjacent to v. Then any function f : V (G) → {0, 1, 2} of weight
W (f(V )) = 2n − 4 with f(v) = 0 and f(u) = f(w) = 1 is not RDF of G. Hence,
in this case we have l non RDFs of G and the proof is complete.

(5) From the definition of domination in a graph G on n vertices, any vertex
v ∈ V (G) of degree n − 1 form a dominating set of G. Therefore, any function
f : V (G) → {0, 1, 2} with f(v) = 2 and f(w) = 0 for all w ∈ V (G)r {v} is a RDF
of G of weight W (f(V )) = 2. In case of K2 graph, we can get one more RDF of
K2 of weight 2 by labeling the both vertices by 1. �

3. Roman domination polynomial for some specific graphs

In this section, we obtain the Roman domination polynomial for some families
of graphs and graph operations. We will start by the complete graph Kn.

Theorem 3.1. For any complete graph Kn, with n > 2,

R(Kn, x) = xn +

2n∑
j=2

[ ⌊ j
2 ⌋∑

r=1

(
n

r

)(
n− r

j − 2r

)]
xj .
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Proof. It is easy to see that, γR(Kn) = 2. Therefore, we have

⌊ j
2 ⌋∑

r=1

(
n

r

)(
n− r

j − 2r

)
RDFs of Kn with weight j, where j = 2, 3, . . . , 2n (note that r denotes to the
number of vertices that have chosen from n whose taking the value 2 under a RDF
f : V (G) → {0, 1, 2} of Kn with W (f(V )) = j), and also, we have one more
function with weight n when all the vertices of Kn taking the value 1. �

In the next theorem, we obtain the Roman domination polynomial of the star
graph Sn.

Theorem 3.2. For any star graph Sn, with n > 3,

R(Sn, x) =xn +
2n∑
j=2

[ ⌊ j−2
2 ⌋∑

r=1

(
n− 1

r

)(
n− r − 1

j − 2(r + 1)

)
+

(
n− 1

j − 2

)]
xj

+

n−1∑
r=1

(
n− 1

r

)(
xn+r + xn+r−1

)
.

Proof. We have here γR(Sn) = 2. Thus, we can characterize the RDFs of
Sn into three types (note that as in the proof of Theorem 3.1, r denotes to the
number of vertices that have chosen from n whose taking the value 2 under a RDF
f : V (G) → {0, 1, 2} of Sn with W (f(V )) = j):

Type 1. RDFs of Sn with weight j in which the center vertex takes value 2,

and they are

⌊ j−2
2 ⌋∑

r=1

(
n− 1

r

)(
n− r − 1

j − 2(r + 1)

)
+

(
n− 1

j − 2

)
functions.

Type 2. RDFs of Sn with weight n + r in which the center vertex takes the

value 1, and they are

(
n− 1

r

)
functions, where r starting from zero (note that in

this type no vertex can take the value 0 under any RDFs of Sn).

Type 3. RDFs of Sn with weight n + r − 1 in which the center vertex takes

the value 0, and they are

(
n− 1

r

)
functions, where r starting from one (note that

in this type also no vertex can take the value 0 under any RDFs of Sn except the
center vertex). This complete the proof. �

The next theorem give us the formula of the Roman domination polynomial of
the wheel graph Wn.

Theorem 3.3. Let G ∼= Wn on n > 4 vertices. Then

R(G, x) =
2n∑
j=2

[ ⌊ j−2
2 ⌋∑

r=1

(
n− 1

r

)(
n− r − 1

j − 2(r + 1)

)
+

(
n− 1

j − 2

)]
xj

+ (x+ 1)R(Cn−1, x)− xn−1.
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Proof. For the wheel graph Wn, we know that γR(Wn) = 2. Since Wn =
K1 ∨ Cn−1, we have two cases:

Case 1. RDFs of Wn with weight j in which the center vertex takes the value

2, and they are

⌊ j−2
2 ⌋∑

r=1

(
n− 1

r

)(
n− r − 1

j − 2(r + 1)

)
+

(
n− 1

j − 2

)
functions.

Case 2. In this case, we have two types of RDFs of Wn. In the first types, the
center vertex takes the value 1, and in the second types, the center vertex takes
the value 0 and in both of them any RDF of Cn−1 is also a RDF of Wn except
one function in the second types, when all the vertices of Cn−1 taking the value 1.
Hence, we will obtain the term (x+ 1)R(Cn−1, x)− xn−1. �

In the next theorem, we get the Roman domination polynomial of the complete
bipartite graph Kn,m.

Theorem 3.4. Let G ∼= Kn,m with n,m > 2. Then

R(G, x) =xn+m +
n∑

r=1

(
n

r

)[ n−r∑
t=0

(
n− r

t

)( m∑
s=1

(
m

s

)m−s∑
l=0

(
m− s

l

))]
x2r+t+2s+l

+

n∑
t=0

(
n

t

)[ m∑
s=1

(
m

s

)]
xm+s+t +

m∑
l=0

(
m

l

)[ n∑
r=1

(
n

r

)]
xn+r+l.

Proof. Let G ∼= Kn,m with n,m > 2. Then we have three cases:

Case 1. RDFs of Kn,m with weight 2r + t + 2s + l, where r, s denote to
the number of vertices that have chosen from n, m, respectively, whose taking

the value 2, and they are

(
n

r

)[ n−r∑
t=0

(
n− r

t

)( m∑
s=1

(
m

s

)m−s∑
l=0

(
m− s

l

))]
functions

(note that, in this case at least one vertex of n and one vertex of m taking the value
2).

Case 2. RDFs of Kn,m with weight m + s + t, where t denotes to the num-
ber of vertices that have chosen from n whose taking the value 1, and they are(
n

t

)[ m∑
s=1

(
m

s

)]
functions, where t starting from zero (note that, in this case no

vertex of m takes the value 0).

Case 3. RDFs of Kn,m with weight n + r + l, where l denotes to the num-
ber of vertices that have chosen from m whose taking the value 1, and they are(
m

l

)[ n∑
r=1

(
n

r

)]
functions, where l starting from zero (note that, in this case no

vertex of n takes the value 0).

Finally, there is one more RDF of Kn,m in which all the vertices taking the
value 1, which has the weight n+m. The proof is complete. �
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A firefly graph Fs,t,l on n vertices, where n = 2s+ 2t+ l + 1 such that s > 0,
t > 0 and l > 0, is a graph consists of s triangles, t pendent paths of length 2 and
l pendent edges, sharing a common vertex.

Let Fn be the set of all firefly graphs Fs,t,l. Note that Fn contains the stars Sn

(∼= F0,0,n−1), stretched stars (∼= F0,t,l), friendship graphs (∼= Fn−1
2 ,0,0) and butterfly

graphs (∼= Fs,0,l), [10].
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Figure 1. Firefly graph Fs,t,l

In the following, we obtain the Roman domination polynomial of the firefly
graph in case t = 0. We start with the following lemma.

Lemma 3.1. Let G ∼= Fs,0,l be a firefly graph, where t = 0, s > 0 and n > 2s+1.
Then γR(Fs,0,l) = 2.

Theorem 3.5. For the firefly graph Fs,0,l, where t = 0, s > 0 and n > 2s+ 1,

R(Fs,0,l, x) = R(Sn, x) +

l∑
r=0

(
l

r

) s∑
i=0

(
s

i

)[
xn+r + xn+r−1

]
.

Proof. It is easy to see that, Sn is a spanning subgraph of Fs,0,l. Thus all
types of RDFs of Sn in the proof of Theorem 3.2 are also RDFs of Fs,0,l, it just
remains the RDFs of Types 2 and 3, when the vertices of s taking the values 0 or

2 and they are

(
l

r

) s∑
i=0

(
s

i

)
functions, where r starting from zero. �

In the next theorems, we obtain the Roman domination polynomial of the join
G1 ∨G2 of two connected graphs G1 and G2 and the corona product Kn ◦K1.
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Theorem 3.6. Let G1, G2 be any two connected graphs with |G1| = n1, |G2| =
n2, respectively. Then

R(G1 ∨ G2, x) = R(G1, x)

n2∑
l=0

(
n2

l

)
xl − xn1

n2−1∑
l=0

(
n2

l

)
xl

+

n1∑
r=1

(
n1

r

)[ n1−r∑
t=0

(
n1 − r

t

)( n2∑
s=1

(
n2

s

) n2−s∑
l=0

(
n2 − s

l

))]
x2r+t+2s+l

+R(G2, x)

n1∑
t=0

(
n1

t

)
xt − xn2

n1−1∑
t=0

(
n1

t

)
xt − xn1+n2 .

Proof. Let G1, G2 be any two connected graphs with |G1| = n1, |G2| = n2,
respectively. Then we have the following cases:

Case 1. RDFs of G1 ∨ G2 with weight 2r + t + 2s + l, where r, s denote to
the number of vertices that have chosen from n1, n2, respectively, whose taking the
value 2, and they are(

n1

r

)[ n1−r∑
t=0

(
n1 − r

t

)( n2∑
s=1

(
n2

s

) n2−s∑
l=0

(
n2 − s

l

))]
functions (note that, in this case at least one vertex of n1 and one vertex of n2

taking the value 2).

Case 2. In this case, we will take all the RDFs of G1 such that no vertex in
G2 take the value 2

[
note that, any RDF of G1 (G2) is also a RDF of G1 ∨ G2

except when all the vertices of G1 (G2) taking the value 1 and there is at least one
vertex in the other side takes value 0

]
. Therefore, we obtain the terms

R(G1, x)

n2∑
l=0

(
n2

l

)
xl − xn1

n2−1∑
l=0

(
n2

l

)
xl,

where l denotes to the number of vertices that have chosen from n2 whose taking
the value 1.

Case 3. Here, we will do the same for G2 as in Case 1, thus we get the terms

R(G2, x)

n1∑
t=0

(
n1

t

)
xt − xn2

n1−1∑
t=0

(
n1

t

)
xt,

where t denotes to the number of vertices that have chosen from n1 whose taking
the value 1.

Note that, the RDF of the term xn1+n2 has been counted twice (once in Case 1
and again in Case 2), thus we have to subtract this term from the formula once. �

Lemma 3.2. Let G ∼= Kn ◦K1 with n > 3. Then γR(G) = n+ 1.

Now, we get our result for Kn ◦K1.
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Theorem 3.7. Let G ∼= Kn ◦K1 with n > 3. Then

R(Kn ◦K1, x) =
n∑

s=1

(
n

s

)
x2n+s +

n−1∑
t=1

(
n− 1

t

)
x2n+t + 2n+1x2n

+
n∑

r=1

(
n

r

) n−r∑
t=0

(
n− r

t

) n−r∑
s=0

(
n− r

s

)[
xn+r+t+s + xn+2r+t+s + xn+3r+t+s

]
.

Proof. We have G ∼= Kn◦K1 with n > 3. To compute the Roman dominating
polynomial of Kn ◦K1 we have the following cases:

Case 1. RDFs of Kn ◦K1 with weights (n + r + t + s), (n + 2r + t + s) and
(n + 3r + t + s), where r, t denote to the number of vertices that have chosen
from Kn whose taking the value 2, 1, respectively, and s denotes to the number
of vertices that have chosen from the join vertices to Kn whose taking the value

2, and they are

(
n

r

) n−r∑
t=0

(
n− r

t

) n−r∑
s=0

(
n− r

s

)
functions (note that in this case at

least one vertex of Kn takes the value 2).

Case 2. RDFs of Kn ◦K1 with weight 2n+ s, where s denotes to the number
of vertices that have chosen from the join vertices to Kn which is taking the value

2, and they are

(
n

s

)
functions (note that in this case all the vertices of Kn taking

the value 1 and at least one vertex from the join vertices to Kn takes the value 2).

Case 3. RDFs of Kn ◦K1 with weight 2n+ t, where t denotes to the number
of vertices that have chosen from Kn which is taking the value 1, and they are(
n− 1

t

)
functions, where t starting from one (note that in this case no vertex of

Kn take the value 2 and all the join vertices to Kn taking the value 2).

Case 4. Finally, the RDFs ofKn◦K1 with weight 2n and they are (in this case)(
n

l

)
functions (l starting from zero), where l denotes to the number of vertices of

Kn which taken the value 1 (note that, in this case when l = 0 all the vertices of
Kn taking the value 0 and all the join vertices to Kn taking the value 2 and in case
l = 1 one vertex of Kn will take the value 1 and its join vertex will take 1 also). �
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