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POSITIVE SOLUTION

FOR THIRD-ORDER SINGULAR SEMIPOSITIVE BVPs

ON THE HALF LINE WITH FIRST-ORDER

DERIVATIVE DEPENDANCE

Abdelhamid Benmezai and El-Djouher Sedkaoui

Abstract. In this paper, we investigate the existence of a positive solution
to the singular third-order boundary value problem{

−u′′′(t) + k2u′(t) = f(t, u(t), u′(t)), a.e. t > 0

u(0) = u′(0) = u′(+∞) = 0,

where k is a positive constant and the function f : (0,+∞)3 → R is continuous
and may be singular at t = 0, u = 0 and at u′ = 0.

The main existence result is proved by means of Guo-Krasnoselskii’s ver-
sion of expansion and compression of a cone principal in a Banach space.

1. Introduction

This article deals with existence of positive solutions to the third-order bound-
ary value problem (bvp for short),

(1.1)

{
−u′′′(t) + k2u′(t) = f(t, u(t), u′(t)), a.e. t ∈ I
u(0) = u′(0) = u′(+∞) = 0,

where k is a positive constant, I = (0,+∞) and f : I3 → R is a Carathéodory

function, that is

• f(·, u, v) is a measurable function for all u, v ∈ I, and
• f(t, ·, ·) is continuous for a.e. t ∈ I.
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270 A. BENMEZAI AND E. SEDKAOUI

Throughout, we assume that

(1.2)

{
There exists a measurable function q : I → R+ such that∫ +∞
0

eksq(s)ds <∞ and f(t, u, v) + q(t) > 0 for all t, u, v > 0,

(1.3)



for all ρ > 0 there exist two functions ωρ : (0,+∞) → R+

and Ψρ : (0,+∞)× (0,+∞) → (0,+∞) such that
Ψρ is nonincreasing following its two variables,∣∣f(t, ektw, ektz)∣∣ 6 ωρ (t)Ψρ (w, z) for all t, w, z > 0 with |(w, z)| 6 ρ,
for all r ∈ (0, ρ] , lims→+∞ ωρ (s)Ψρ

(
re−ksγ(s), re−ksγ̃(s)

)
= 0 and∫ +∞

0
ωρ (s)Ψρ

(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞,

where

γ1(t) = (e2kt − 1)e−4kt,

γ̃(t) = k∗ektγ1(t) = k∗
(
1− e−kt

)
(1 + e−kt)e−kt,

γ(t) =
∫ t

0
γ̃(s)ds =

k∗

3k

(
2− 3e−kt + e−3kt

)
=
k∗

3k

(
1− e−ks

)2
(2 + e−ks),

and k∗ = min(1, k)/2.

By positive solution to the bvp (1.1), we mean a function u ∈ C2 (R+) ∩
W 3,1 (I) such that u > 0 in I and u(0) = u′(0) = limt→+∞ u′(t) = 0, satisfying the
differential equation in (1.1).

Notice that the nonlinearity f may exhibit singular at the solution and at its
derivative. It is well known that the bvp (1.1) is called positone if q(t) = 0 a.e.
t ∈ I , and semipositone if q(t) > 0 a.e. t in some interval of I.

BVPs for third-order differential equation originate from many applications in
physics and engineering. For example, the deflection of a curved beam having a
constant or varying cross section, a three layer beam, electromagnetic waves, gravity
driven flows produce third-order boundary-value problems. During the last two
decades, there has been many works dealing with several aspects of such BVPs, see,
[1, 4, 12, 14, 19, 23] and the references therein. Often, for physical considerations,
the positivity of the solution is required and many authors established existence and
multiplicity results for positive solutions to such bvps posed on bounded intervals,
where the nonlinear term is positive and satisfies either superlinear or sublinear
growth conditions, see [5, 11, 13, 20, 22, 24, 25, 26, 27] and the references
therein.

Because of a lack of compactness, the case where such bvps are posed on un-
bounded intervals is somewhat complicated and they has not been so extensively
investigated. This case have been considered in [2, 3, 4, 7, 8, 9, 10, 15, 16,
17, 18, 21] and, to the authors’ knowledge, there are no papers in the literature
consedering the singular semipositone version of such bvps. Thus, the purpose of
this paper is to fill in the gap in this area.

Our approach in this work is based on a fixed point formulation of the bvp (1.1)
and the main existence result in this work is then proved by the Guo-Krasnoselskii’s
version of expansion and compression of a cone principal in a Banach space. Let
us recall some basic facts related to the use of this principal.
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Let (E, ||.||) be a real Banach space. A nonempty closed convex subset C in E
is said to be a cone in E, if C ∩ (−C) = {0E} and tC ⊂ C for all t > 0.

Let Ω be a nonempty subset in E, a mapping A : Ω → E is said to be compact
if it is continuous and A (Ω) is relatively compact in E.

Theorem 1.1. Let P be a cone in E and let Ω1, Ω2 be open bounded subsets
of E such that 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2. If T : P ∩

(
Ω̄2\Ω1

)
→ P is a compact operator

such that, either

(1) ∥Tu∥ 6 ∥u∥ for u ∈ P ∩ ∂Ω1, and ∥Tu∥ > ∥u∥ for u ∈ P ∩ ∂Ω2, or
(2) ∥Tu∥ > ∥u∥ for u ∈ P ∩ ∂Ω1, and ∥Tu∥ 6 ∥u∥ for u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩
(
Ω̄2\Ω1

)
.

2. Fixed point formulation

In all this paper, we let

E = {u ∈ C1(R+,R) : limt→+∞ e−ktu(t) = 0, limt→+∞ e−ktu′(t) = 0}.

Endowed with the norm ∥u∥ = ∥u∥k + ∥u′∥k where ∥u∥k = supt>0 e
−kt|u(t)|, E

becomes a Banach space.
The following lemma is an adapted version to the case of the space E of Cor-

duneanu’s compactness criterion ([6], p. 62). It will be used in this work to prove
that some operator is compact.

Lemma 2.1. A nonempty subset M of E is relatively compact if the following
conditions hold:

(a) M is bounded in E,
(b) the sets {u : u(t) = e−ktx(t), x ∈ M} and {u : u(t) = e−ktx′(t), x ∈ M}

are locally equicontinuous on [0,+∞), and
(c) the sets {u : u(t) = e−ktx(t), x ∈ M} and {u : u(t) = e−ktx′(t), x ∈ M}

are equiconvergent at +∞.

Throughout, P denotes the cone in E defined by

P = {u ∈ E : u′(t) > γ̃(t)||u|| and u(t) > γ(t)||u|| for all t > 0}

Let G, G̃ : R+ × R+ → R+ be the functions defined by

G(t, s) =
1

k2

{
e−ks (cosh (kt)− 1) if t 6 s,
−e−kt sinh (ks) +

(
1− e−ks

)
if s 6 t,

G̃(t, s) =
∂G

∂t
(t, s) =

1

k

{
e−ks sinh (kt) if t 6 s,
e−kt sinh (ks) if s 6 t.

Lemma 2.2. The functions G and G̃ satisfy:

(a): For all t, s ∈ R+ we have G(t, s) > 0 and G̃(t, s) > 0.

(b): The functions G and G̃ are continuous and for all s > 0, we have

(2.1) G(0, s) = G̃(0, s) = 0.
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(c): For all t, s > 0, we have

G(t, s) 6 1

k2
(1− e−ks) 6 1

k2
, G̃(t, s) 6 G̃(s, s) 6 1

2k
.

(d): For all s, t, τ > 0, we have

e−ksG̃(s, s) > G̃(t, s)e−kt > γ̃(t)G̃(τ, s)e−kτ .

(e): For all t2, t1 > 0, we have

(2.2)
∣∣e−kt2G(t2, s)− e−kt1G(t1, s)

∣∣ 6 3

2k
|t2 − t1|

(2.3)
∣∣∣e−kt2G̃(t2, s)− e−kt1G̃(t1, s)

∣∣∣ 6 |t2 − t1|

Proof. Assertions (a), (b) and (c) are easy to prove, Assertion (d) is proved
in [9]. Assertion (e) is obtained by the mean value theorem. �

Lemma 2.3. Assume that Hypothesis (1.2) holds, then the function ϕ where for

t ∈ I, ϕ(t) =
∫ +∞
0

G(t, s)q(s)ds, satisfies the following upper bound:

ϕ(t) 6 ϕ∗γ (t) , ϕ′(t) 6 ϕ∗γ̃ (t) for all t ∈ I

where

ϕ∗ = max

(
sup
t>0

ϕ(t)

γ (t)
, sup
t>0

ϕ′(t)

γ̃ (t)

)
.

Proof. For all t > 0, we have

ϕ′(t)

γ̃ (t)
=

3k

k∗

∫ +∞
0

G̃(t, s)q(s)ds

(1− e−kt) (1 + e−kt) e−kt
6 3k

k∗

∫ +∞
0

G̃(t, s)q(s)ds

(1− e−kt) e−kt

=
3

2k∗

(∫ t

0
sinh (ks) q(s)ds

(1− e−kt)
+

sinh (kt)
∫ +∞
t

e−ksq(s)ds

(1− e−kt) e−kt

)

=
3

2k∗

(∫ t

0
sinh (ks) e−kseksq(s)ds

(1− e−kt)
+

sinh (kt)
∫ +∞
t

e−2kseksq(s)ds

(1− e−kt) e−kt

)

6 3

2k∗
sinh (kt) e−kt

(1− e−kt)

∫ +∞

0

eksq(s)ds =
3

2k∗
(
1 + e−kt

) ∫ +∞

0

eksq(s)ds

6 3

k∗

∫ +∞

0

eksq(s)ds := ϕ.

This proves that supt>0 (ϕ
′(t)/γ̃ (t)) <∞.

Therefore, we have

ϕ(t)

γ (t)
=

∫ t

0
ϕ′(s)ds

γ (t)
6
∫ t

0
ϕγ̃(s)ds

γ (t)
= ϕ,

leading to supt>0 (ϕ(t)/γ (t)) <∞. The proof is complete. �
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Lemma 2.4. Assume that Hypoheses (1.2) and (1.3) hold. Then for all r,R ∈ R
with R > r > ϕ∗ there exists a compact operator Tr,R : P∩

(
B (0, R)rB (0, r)

)
→ P

such that if v is a fixed point of Tr,R then u = v − ϕ is a positive solution to the
bvp (1.1).

Proof. Let r,R be two real numbers such that R > r > ϕ∗ and set
Ω = P ∩

(
B (0, R)rB (0, r)

)
. In all this proof, we let by Φ the function defined by

Φ(s) = ωR (s)ΨR

(
(r − ϕ∗) e−ksγ(s), (r − ϕ∗) e−ksγ̃(s)

)
,

where ωR and ΨR are the functions given by Hypothesis (1.3) for ρ = R and ϕ∗ is
the constant given by Lemma 2.3. The proof is divided into four steps.

Step 1. In this step we prove the existence of the operator Tr,R. We have from
the definition of the cone P and Lemma 2.3 that, for all v ∈ Ω and all t > 0,

v(t)− ϕ (t) > (∥v∥ − ϕ∗) γ (t) > (r − ϕ∗) γ (t) > 0.

v′(t)− ϕ′ (t) > (∥v∥ − ϕ∗) γ̃ (t) > (r − ϕ∗) γ̃ (t) > 0.

Therefore, for all v ∈ Ω the expression

(2.4) fr,Rv (t) = f (t, v (t)− ϕ (t) , v′(t)− ϕ′ (t)) + q (t)

is well defined.
Let v ∈ Ω, for all s > 0 we have

fr,Rv (s) = f(s, eks
(
e−ks (v(s)− ϕ (s))

)
, eks

(
e−ks (u′(s)− ϕ′ (s))

)
) + q (s)

6 Φ(s) + q(s),

then∫ +∞

0

G(t, s)fr,Rv (t) ds 6
1

k2

∫ +∞

0

fr,Rv (s) ds 6
1

k2

∫ +∞

0

(Φ(s) + q(s)) ds <∞

and∫ +∞

0

G̃(t, s)fr,Rv(s)ds 6
1

2k

∫ +∞

0

fr,Rv(s)ds 6
1

2k

∫ +∞

0

(Φ(s) + q(s)) ds <∞.

Thus, let w and z be the function defined by

w(t) =
∫ +∞
0

G(t, s)fr,Rv(s)ds , z(t) =
∫ +∞
0

G̃(t, s)fr,Rv(s)ds.

Since for all t > 0,

w(t) = −e
−kt

k2

∫ t

0

sinh(ks)fr,Rv(s)ds+
1

k2

∫ t

0

(1− e−ks)fr,Rv(s)ds

+
cosh(kt)− 1

k2

∫ t

0

e−ksfr,Rv(s)ds,

we see that w is differentiable on R+ and for all t > 0

w′(t) =
e−kt

k

∫ t

0

sinh(ks)fr,Rv(s)ds+
sinh(kt)

k

∫ +∞

t

e−ksfr,Rv(s)ds

=

∫ +∞

0

G̃(t, s)fr,Rv(s)ds = z(t)
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with z continuous on R+.
At this stage, we have proved that w belongs to C1(R+,R) and we need to prove

that w ∈ E. Thus, we have to prove that limt→+∞ e−ktv(t) = limt→+∞ e−ktw′(t) =
0.. Clearly for all t > 0, w(t), w′(t) > 0 and we have

e−ktw(t) = e−kt

∫ +∞

0

G(t, s)fr,Rv(s)ds 6
e−kt

k2

∫ +∞

0

(Φ(s) + q(s)) ds

e−ktw′(t) = e−kt

∫ +∞

0

G̃(t, s)fr,Rv(s)ds 6
e−kt

2k

∫ +∞

0

(Φ(s) + q(s)) ds.

The above two estimates show that limt→+∞ e−ktw(t) = limt→+∞ e−ktw′(t) = 0.
Now for all t, τ > 0, we have from Assertion (c) in Lemma 2.2

w′(t) = ekt
∫ +∞

0

e−ktG̃(t, s)fr,Rv(s)ds

> ektγ1(t)

∫ +∞

0

e−kτ G̃(τ, s)fr,Rv(s)ds

= ektγ1(t)e
−kτw′(τ).

Passing to the supremum on τ , we obtain

(2.5) w′(t) > ektγ1(t) ∥w′∥k for all t > 0.

Since for all t > 0

w(t) =

∫ t

0

ekξ
(
e−kξw′(ξ)

)
dξ 6

∫ t

0

ekξdξ ∥w′∥k 6 ekξ

k
∥w′∥k

we have

(2.6) ∥w′∥k > k ∥w∥k .
Therefore, (2.5) Combined with (2.6) leads to

w′(t) > kektγ1(t) ∥w′∥k for all t > 0

then to

(2.7) w′(t) > γ̃(t) ∥w∥ for all t > 0.

Integrating (2.7), yields w(t) > γ(t) ∥w∥ for all t > 0.
Thus, we have proved that w ∈ P and the operator Tr,R : Ω → P where for

v ∈ Ω

Tr,Ru(t) =

∫ +∞

0

G(t, s)fr,Rv(s)ds,

is well defined.

Step 2. In this step we prove that the operator Tr,R is continuous. Let (vn)
be a sequence in Ω such that limn→∞ vn = v in E. For all n > 1, we have

∥Tr,Rvn − Tr,Rv∥k = sup
t>0

e−kt |Tr,Rvn (t)− Tv (t)|

6 1

k2

∫ +∞

0

|fr,Rvn(s)− fr,Rv(s)| ds
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and ∥∥(Tr,Rvn)′ − (Tr,Rv)
′∥∥

k
= sup

t>0
e−kt

∣∣(Tr,Rvn)′ (t)− (Tr,Rv)
′
(t)
∣∣

6 1

2k

∫ +∞

0

|fr,Rvn(s)− fr,Rv(s)| ds.

Because of
|fr,Rvn(s)− fr,Rv(s)| → 0, as n→ +∞

for all s > 0 and

|fr,Rvn(s)− fr,Rv(s)| 6 2Φ (s) with

∫ +∞

0

Φ(s) ds <∞,

Lebesgue dominated convergence theorem guarantees that
limn→∞ ∥Tr,Rvn − Tr,Rv∥ = 0. Hence, we have proved that T is continuous.

Step 3. In this step, we prove that Tr,R is compact. For all v ∈ Ω, we have

∥Tr,Ru∥ 6 max

(
1

k2
,
1

2k

)∫ +∞

0

(Φ (s) + q(s)ds) <∞,

proving that T (Ω) is bounded in E.
Now, let t1, t2 ∈ [η, ξ] ⊂ R+, for all v ∈ Ω, we have from (2.2) and (2.3) the

estimates

|e−kt1Tr,Rv(t1)− e−kt2Tr,Rv(t2)| 6
∫ +∞

0

|e−kt1G(t1, s)− e−kt2G(t2, s)|Φ(s) ds

6 3

2k
|t2 − t1|

∫ +∞

0

Φ (s) ds

and
|e−kt1(Tr,Rv)

′(t1)− e−kt2(Tr,Rv)
′(t2)|

6
∫ +∞
0

|e−kt1G̃(t1, s)− e−kt2G̃(t2, s)|Φ(s) ds

6 |t2 − t1|
∫ +∞
0

Φ(s) ds.

Proving the equicontinuity on bounded intervals of T (Ω) .
For all v ∈ Ω and t > 0, we have

|e−ktTv(t)| 6 e−kt

k2

∫ +∞

0

(Φ (s) + q(s)) ds

and

|e−kt (Tu)
′
(t)| 6 e−kt

k

∫ +∞

0

(Φ (s) + q(s)) ds.

Thus, the equiconvergence of T (Ω) follows from the fact that limt→∞ e−kt = 0.
In view of Lemma 2.1, the operator is compact.

Step 4. In this step we prove that if v is a fixed point of T then u = v − ϕ is
a positive solution to the bvp (1.1). Let v ∈ Ω be a fixed point of T , then for all
t > 0

u(t) = v(t)− ϕ (t) > (∥v∥ − ϕ∗) γ (t) > (r − ϕ∗) γ (t) > 0,
u′(t) = v′(t)− ϕ′ (t) > (∥v∥ − ϕ∗) γ̃ (t) > (r − ϕ∗) γ̃ (t) > 0,
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and u = v − ϕ satisfies

u(t) = −ϕ (t) +
∫ +∞

0

G(t, s) (f((s, u(s), u′(s)) + q(s)) ds

= −
∫ +∞

0

G(t, s)q(s)ds+

∫ +∞

0

G(t, s) (f((s, u(s), u′(s)) + q (s)) ds

=

∫ +∞

0

G(t, s)f((s, u(s), u′(s))ds

and

u′(t) =

∫ +∞

0

G̃(t, s)f((s, u(s), u′(s))ds.

These with (2.1) lead to u(0) = u′(0) = 0.
Differentiating twice in

u′(t) =

∫ +∞

0

G̃(t, s)ϕ (s) f((s, u(s), u′(s))ds

=
e−kt

k

∫ t

0

sinh(ks)ϕ (s) f(s, u(s), u′(s))ds

+
sinh(kt)

k

∫ +∞

t

e−ksϕ (s) f(s, u(s), u′(s))ds,

we see that −u′′′ (t) + ku′(t) = f(t, u(t), u′(t)) for all t > 0.
It remains to prove that lim

t→+∞
u′(t) = 0. We have

u′(t) 6
1

kekt

∫ t

0
sinh(ks) |f(s, u(s), u′(s))| ds+ sinh(kt)

k

∫ +∞
t

e−ks |f(s, u(s), u′(s))| ds 6
1

kekt

∫ t

0
sinh(ks)ΦR (s) ds+ sinh(kt)

k

∫ +∞
t

e−ksΦR (s) ds,

lim
t→+∞

sinh(kt)

k

∫ +∞

t

e−ksΦR (s) ds 6 1

k
lim

t→+∞

sinh(kt)

e−kt

∫ +∞

t

ΦR (s) ds = 0

and the L’Hopital’s rule leads to

lim
t→+∞

1

kekt

∫ t

0

sinh(ks)ΦR (s) ds = lim
t→+∞

sinh(kt)

kekt

∫ +∞
t

e−ksΦR (s) ds

e−kt

=
1

k
lim

t→+∞

sinh(kt)

kekt
lim

t→+∞
ΦR (t) = 0.

The above calculations show that limt→+∞ u′(t) = 0, completing the proof of
the lemma. �

3. Main result

The main result of this paper needs to introduce the following notations. For
α ∈ L1 (I) with α (t) > 0 a.e. t > 0 and σ > 1, we let

Γ (α) = sup
t>0

e−kt

∫ +∞

0

G (t, s)α (s) ds+ sup
t>0

e−kt

∫ +∞

0

G̃ (t, s)α (s) ds,
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∆(α, σ) = sup
t>0

e−kt

∫ σ

1/σ

G(t, s)α (s) ds+ sup
t>0

e−kt

∫ σ

1/σ

G̃(t, s)α (s) ds.

Theorem 3.1. Suppose that Hypotheses (1.2) and (1.3) hold and

(a): there exist a function α ∈ L1 (I) and R1 > max (ϕ∗,Γ (α)) such that

f(t, ektu, ektv) + q(t) 6 α (t)

for a.e. t > 0 and all u, v ∈ I with |(u, v)| 6 R1,
(b): there exist σ > 1, a function β ∈ L1 (I) and R2 ∈ (ϕ∗,∆(β, σ)) with
R2 ̸= R1 such that

f(t, ektu, ektv) + q(t) > β (t) ,

for a.e. t ∈ [1/σ, σ], all u ∈ [γσ (R2 − ϕ∗) , R2] and all
v ∈ [γ̃σ (R2 − ϕ∗) , R2] , where γσ = mins∈[1/σ,σ]

(
e−ksγ (s)

)
and γ̃σ =

mins∈[1/σ,σ]

(
e−ksγ̃ (s)

)
.

Then, the bvp (1.1) admits a bounded positive solution.

Proof. Without loss of generality, assume that R1 < R2 and let T = TR1,R2

be the operator given by Lemma 2.4. The following estimates hold, for all v ∈
P ∩ ∂B (0, R1) and all t > 0,

e−ktTv(t) =

e−kt
∫ +∞
0

G(t, s)f(s, eks (v(s)− ϕ(s)) e−ks, eks (v′(s)− ϕ′(s)) e−ks)ds

+e−kt
∫ +∞
0

G(t, s)q(s)ds

6 e−kt
∫ +∞
0

G (t, s)α (s) ds

6 supt>0 e
−kt

∫ +∞
0

G (t, s)α (s) ds.

Passing to the supremum in the above estimates, we get

(3.1) ∥Tv∥k 6 sup
t>0

e−kt

∫ +∞

0

G (t, s)α (s) ds.

Similarly, we have

e−kt (Tv)
′
(t) = e−kt

∫ +∞

0

G̃(t, s) (f(s, v(s)− ϕ(s), v′(s)− ϕ′(s)) + q(s)) ds

6 e−kt

∫ +∞

0

G̃ (t, s)α (s) ds 6 sup
t>0

e−kt

∫ +∞

0

G̃ (t, s)α (s) ds,

leading to

(3.2) ∥ (Tv)′ ∥k 6 sup
t>0

e−kt

∫ +∞

0

G̃ (t, s)α (s) ds.

Summing (3.1) with (3.2), we obtain

∥Tv∥ 6 sup
t>0

e−kt

∫ +∞

0

G̃ (t, s)α (s) ds+ sup
t>0

e−kt

∫ +∞

0

G̃ (t, s)α (s) ds

= Γ (α) 6 R1 = ∥v∥ .
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For all v ∈ P ∩ ∂B (0, R2) and s ∈ [1/σ, σ],

(3.3)
R2 > (v(s)− ϕ(s)) e−ks > (R2 − ϕ∗) γ(s)e−ks = (R2 − ϕ∗) γσ
R2 > (v′(t)− ϕ′(s)) e−ks > (R2 − ϕ∗) γ̃(s)e−ks = (R2 − ϕ∗) γ̃σ

Assumption (b) and (3.3) lead to the following estimates

∥Tu∥k >
supt>0

(
e−kt

∫ σ

1/σ
G(t, s)f(s, eks (v(s)− ϕ(s)) e−ks, eks (v′(s)− ϕ′(s)) e−ks)ds

+e−kt
∫ σ

1/σ
G(t, s)q(s)ds

)
> supt>0

(
e−kt

∫ σ

1/σ
G(t, s)β (s) ds

)
and similarly

∥ (Tv)′ ∥k > sup
t∈>0

(
e−kt

∫ σ

1/σ

G̃(t, s)β (s) ds

)
.

Summing the above inequalities, we obtain

∥Tv∥ > supt>0

(
e−kt

∫ σ

1/σ
G̃(t, s)β (s) ds

)
+ supt>0

(
e−kt

∫ σ

1/σ
G̃(t, s)β (s) ds

)
= ∆(β, σ) > R2 = ∥v∥ .

Thus, it follows from Assertion 1 in Theorem 1.1 that TR1,R2 admits a fixed
point v such that R1 6 ∥v∥ 6 R2. Then by Lemma 2.4, u = v − ϕ is a positive
solution to the bvp (1.1).

Now, we have to prove that u is bounded. Since for all t > 0,

∥v∥+ ∥ϕ∥ > e−ktu(t) = e−kt (v(t)− ϕ(t)) > (∥v∥ − ϕ∗) e−ktγ(t),
∥v∥+ ∥ϕ∥ > e−ktu′(t) = e−kt (v′(t)− ϕ′(t)) > (∥v∥ − ϕ∗) e−ktγ̃(t),

we obtain from Hypothesis (1.3) for ρ = ∥u∥ ,

u(t) = Tu(t) 6
∫ +∞

0

G(t, s) |f(s, u(s), u′(s))| ds

6 1

k2

∫ +∞

0

ωρ (s)Ψρ(
(
e−ksu(s)

)
,
(
e−ksu′(s)

)
)ds

6 1

k2

∫ +∞

0

ωρ (s)ΨR((∥v∥ − ϕ∗) e−ksγ(s), (∥v∥ − ϕ∗) e−ksγ̃(s))ds <∞.

The proof is complete. �

Set for σ > 1

fσ = lim inf
|(w,z)|→+∞

(
min

t∈[1/σ,σ]

f(t, ektw, ektz)

w + z

)
.

We obtain from Theorem 3.1 the following corlolary:

Corollary 3.1. Suppose that Hypotheses (1.2) and (1.3) hold and

(c): there exists R1 > ϕ∗ such that Γ(α1) < R1 where

α1 = ωR1 (s)ΨR1

(
(R1 − ϕ∗) e−ksγ(s), (R1 − ϕ∗) e−ksγ̃(s)

)
+ q(s),
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(d): there exists σ > 1, such that fσ∆(β0, σ) > 1, where β0(s) = e−ksγ (s) .

Then, the bvp (1.1) admits a positive solution.

Proof. Clearly, Condition (a) of in Theorem 3.1 is satisfied for α = α1. We
have to prove that Condition (b) also is satisfied. Let ε > 0 be such that (fσ −
ε)∆ (β0, σ) > 1. There exists R∞ such that f(t, ektw, ektz) > (fσ − ε) (w + z) for
all t ∈ [1/σ, σ] and all w, z with |(w, z)| > R∞. Let

R2 = 1 + sup

(
R1, ϕ

∗ +
R∞

γσ
,
ϕ∗ (fσ − ε)∆ (β0, σ)

(fσ − ε)∆ (β0, σ)− 1

)
and

β (t) = (fσ − ε) (R2 − ϕ∗) γ (s) e−ks + q(s).

where γσ = mins∈[1/σ,σ]

(
e−ksγ (s)

)
and notice that

(fσ − ε)∆ (β0, σ) (R2 − ϕ∗) > R2.

We have then

∆ (β, σ) = supt>0

(
e−kt

∫ σ

1/σ
G(t, s)

(
(fσ − ε) (R2 − ϕ∗) γ (s) e−ks + q(s)

)
ds
)

+supt>0

(
e−kt

∫ σ

1/σ
G̃(t, s)

(
(fσ − ε) (R2 − ϕ∗) γ (s) e−ks + q(s)

)
ds
)

> (fσ − ε)∆ (β0, σ) (R2 − ϕ∗) > R2.

The proof is complete. �

4. Example

Consider the case of the bvp (1.1) where

f(t, u, v) = e−δt

((
u+ v

ekt

)p

+
B (u+ v)

2

Bekt + u+ v
− 1

)
where δ > (1− p) k, p ∈ (−1, 0) and B > 0.

Clearly, Hypothesis (1.2) is satisfied for q(t) = e−δt and we have

f(t, ektw, ektz) = e−δt

(
(w + z)

p
+
Bekt (w + z)

2

B + w + z
− 1

)
,

leading to∣∣f(t, ektw, ektz)∣∣ =

∣∣∣∣∣e−(δ−k)t

(
e−kt (w + z)

p
+
B (w + z)

2

B + w + z
− e−kt

)∣∣∣∣∣
6 e−(δ−k)t

(
(w + z)

p
+
B (w + z)

2

B + w + z
+ 1

)
.

Therefore, Hypothesis (1.3) is satisfied for all ρ > 0 with

ωρ (s) = e−(δ−k)s and Ψρ (w, z) = (w + z)
p
+

Bρ2

B + ρ
+ 1

for all s > 0 and all w, z > 0 with |(w, z)| = w + z 6 ρ.
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We have then

ωρ (s)ψρ

(
ρe−ksγ (s) , ρe−ksγ̃ (s)

)
= e−(δ−k)s

(
1 + Bρ2

B+ρ

)
+(k∗ρ)

p
e−(δ+pk−2k)s

(
1− e−ks

)p
θ(s)

where

θ(s) =

(
1

3k

(
1− e−ks

) (
2 + e−ks

)
+ e−ks

(
1 + e−ks

))p

and satisfies (
2 +

1

k

)p

6 ρ(s) 6 2p < 1.

Because of δ > (1− p) k and p ∈ (−1, 0) , we have

lims→+∞ ωR(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= 0 and∫ +∞

0
ωR(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds <∞.

For

α1(t) = ωR(t)ψR

(
(R− ϕ∗) e−ksγ (t) , (R− ϕ∗) e−ksγ̃ (t)

)
+ q(t)

straightforward computations lead to

Γ (α1) 6 Λ (R) = k̃

(
λ (p, δ, k) (R− ϕ∗)

p
+ µ (δ, k)

B (R− ϕ∗)
2

B + (R− ϕ∗)
+ η (δ, k)

)
where

k̃ =
1

k2
+

1

2k
, µ (δ, k) =

∫ +∞
0

ωR(s)ds =
1

δ − k
,

η =
∫ +∞
0

(ωR(s) + q(s)) ds =
1

δ − k
+

1

δ
.

and

λ (p, δ, k) = (k∗)
p ∫ +∞

0
e−(δ+pk−k)s

(
1− e−ks

)p
θ(s)ds

6 (k∗)
p ∫ +∞

0
e−(δ+pk−k)s

(
1− e−ks

)p
ds

6 (k∗)
p
(∫ 1/k

0

(
1− e−ks

)p
ds+

(
1− e−1

)p ∫ +∞
1/k

e−(δ+pk−k)sds
)

6 (k∗)
p

(
2−p

∫ 1/k

0
(ks)

p
(2− ks)

p
ds+

(1−e−1)
p

(δ+pk−k)

)
6 (k∗)

p

(
2−pkp

∫ 1/k

0
spds+

(1−e−1)
p

(δ+pk−k)

)
6 (k∗)

p

(
1

2pk(p+1) +
(1−e−1)

p

(δ+pk−k)

)
.

We have

Λ (1 + ϕ∗) = k̃

(
λ (p, δ, k) + µ (δ, k)

B

B + 1
+ η (δ, k)

)
6 k̃ (λ (δ, k) + µ (δ, k) + η (δ, k)) .

The above calculations show that for k large enough we have

Λ (1 + ϕ∗) 6 1 6 1 + ϕ∗

and Condition (c) in Corollary 3.1 is satisfied for R = 1 + ϕ∗.
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Clearly, we have fσ = +∞ for all σ > 1. Therefore, we conclude from Corollary
3.1 and all the above calculations that if k is large enough then this case of the bvp
(1.1) admits a positive solution.
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