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ENERGY OF MONAD GRAPHS

Ali Shukur and Ivan Gutman

Abstract. Let G be a digraph of order n. The energy of G is the sum of
absolute values of the real parts of the eigenvalues of its adjacency matrix.

The monad graph is a digraph pertaining to the finite group G, where every

vertex of the elements g of G is adjacent to its image by a directed edge under
the action of the map f(g) = g2. In this paper, we compute the energy of

monad graphs.

1. Introduction

Since 1978, when the concept of graph energy based on the eigenvalues of the
adjacency matrix was conceived [5], a large number of other “graph energies” has
been put forward. Nowadays, their number is near to 200 [6, 7]. Almost all of these
“graph energies” are based on the eigenvalues of various graph matrices, different
from the adjacency matrix. In the present paper we consider one more “graph
energy”, which – in contrast to the earlier ones – has its roots from group theory
and uses the eigenvalues of the adjacency matrix.

Let G be a digraph (directed graph) of order n. Let V (G) = {v1, v2, . . . , vn} be
the vertex set and E(G) the edge set of G. By eij is denoted the directed edge of
G starting at vertex vi and ending at vertex vj . The adjacency matrix of G is the
n× n matrix A(G) defined by

aij =

{
1 if eij ∈ E(G)

0 otherwise.

The characteristic polynomial of G is defined as

φ(G,λ) = det(λ In −A(G))
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where In is the unit matrix of order n. Its zeros λ1, λ2, . . . , λn are the eigenvalues
of A(G). In the case of digraphs, some of the eigenvalues may be complex numbers.
Therefore, the energy of digraphs is defined as the sum of absolute values of the
real parts of the eigenvalues [8, 9, 10], i.e.,

E(G) =

n∑
i=1

|Reλi| .

In this paper, we are interested in the energy of the so-called monad graphs.
Dynamical systems defined by finite groups are one of the most active areas of

research in group theory, allowing us to understand the behavior of each element of
the given group. In 2003, Arnold introduced a very interesting new concept, that
he named monad [1].

Let Gn be finite group of order n. A monad map is a mapping of each element
of Gn into itself, i.e., f : Gn → Gn for all g ∈ Gn, where f(g) = g2. The monad is
a digraph in which the vertices correspond to the elements of the group Gn. The
(directed) edges of the monad connect a vertex with its image under the action of
monad map. Thus, a monad is a dynamical system containing a finite action group
G, the monad map f , and a respective digraph, denoted by Γ(Gn).

In [1], Arnold considered the combinatorics of squaring monad graph, i.e.
f(g) = g2, and showed that even the simplest choice of the map f leads to non-
trivial topological structures. A characteristic result of this kind is the following:

Theorem 1.1. [1] Each connected component of a monad graph consists of a
directed cycle to which rooted trees are attached, directed towards their roots.

Details on the structure of monad graphs are seen from the below Table 1.
A directed cycle On of size n is formed by the directed edges

e1,2, e2,3, . . . , en−1,n, en,1.

The edge eii, represented by a loop on the vertex vi, is considered as a cycle of
size 1. The two edges eij and eji are considered to form a directed cycle of size 2.

In Table 1 we use additive notation for the group operation and show the monad
graphs of the first few residue class cyclic groups.

2. Spectral properties of monad graphs

In order to obtain our main results, we present here some necessary definitions
and auxiliary results.

Lemma 2.1. Let G be a digraph.
(a) If the directed edge e does not belong to any cycle of G, then e does not

contribute to the spectrum of G. In other words, by deleting e from G, neither the
spectrum nor the energy of G will change.

(b) If the vertex v does not belong to any cycle of G, then v contributes to the
spectrum of G by a zero. Therefore, by deleting v from G, the energy of G will not
change.
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Γ(Z2) 01 A1

Γ(Z3) 0 1 2 O1 +O2

Γ(Z4)

02

1

3 T4

Γ(Z5)

0

1 2

34 O1 +O4

Γ(Z6) 01 2 34 5 A1 +A2

Γ(Z7) 01

2

4 3

6

5 O1 + 2O3

Γ(Z8)

04

2

6

1

5

3

7 T8

Table 1. Monad graphs of the residue class cyclic groups for n 6 8. On is the
directed cycle on n vertices. An is the connected graph on 2n vertices, consisting
of a directed cycle of length n to which n one-edge branches are attached, each for
every vertex of the cycle. Dn is the 4n-vertex graph consisting of the cycle On, to
each of its vertices a three-edge branch is attached; for examples see the 16-vertex
digraph on Fig. 1 and the 80-vertex digraph on Fig. 2. T2n is the rooted binary
tree on 2n vertices and n leaves. For more details see [2, 11, 12].

Lemma 2.1 is an immediate consequence of the Sachs coefficient theorem [4].
Recall that for digraphs, this theorem reads:
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Lemma 2.2. Let G be a digraph with characteristic polynomial

φ(G) =

n∑
k=0

ak x
n−k .

Then a0 = 1 and for k > 1,

ak =
∑
S∈Lk

(−1)ω(S)

where Lk denotes the set of k-vertex subgraphs of G, in which every component is
a directed cycle. ω(S) is the number of connected components of S.

According to Lemma 2.2, the characteristic polynomial of the directed cycle
On is

φ(On, λ) = λn − 1 .

Thus the eigenvalues of On are

λj = e2πij/n , j = 0, 1, 2, . . . , n− 1

implying

(2.1) E(On) =

n−1∑
j=0

∣∣∣∣cos
2πj

n

∣∣∣∣ .
By direct calculation we get E(O1) = 1, E(O2) = 2, E(O3) = 2, E(O4) =

2, E(O5) = 1 +
√

5 ≈ 3.236, E(O6) = 4.
By an immediate application of Lemma 2.1 we obtain:

Theorem 2.1. Let An, Dn, and T2n be the digraphs described in the caption
of Table 1. Then

E(An) = E(On)

E(Dn) = E(On)

E(T2n) = 1 .

3. Calculating the energy of monad graphs

Bearing in mind Theorem 2.1 and Eq. (2.1), in order to calculate the energy
of a monad graph, one only has to determine the type and number of its connected
components. In order to achieve this goal, we need some preparation.

Definition 3.1 ([1]). The graph of the product monad will be called the
product of the graphs of the factors. The multiplication of graphs will be denoted
by the same symbol ∗:

[graph(A ∗B)] = [graph(A)] ∗ [graph(B)] .

Lemma 3.1 ([1]). The monad graph of multiplication by 2 (i.e., adding an
element to itself) in an additive cyclic group of odd order is a disjoint union of
directed cycles.



ENERGY OF MONAD GRAPHS 265

Lemma 3.2 ([1]). The monad graph of multiplication by 2 (adding to itself) in
the additive cyclic group of residues modulo 2n is the binary rooted tree T2n .

Directly from Lemma 3.1 we get:

Theorem 3.1. The energy of the monad graph pertaining to an additive cyclic
group Gn of odd order n is given by

E(Γ(Gn)) =
∑
m

Om =
∑
m

m−1∑
j=0

∣∣∣∣cos
2πj

m

∣∣∣∣
for some (not necessarily mutually distinct) values of m, 1 6 m 6 n − 1. For
details see Table 2.

Directly from Theorem 2.1 and Lemma 2.2 we get:

Theorem 3.2. The energy of the monad graph pertaining to an additive cyclic
group of residues modulo 2n is E(Γ(T2n)) = 1.

If γ > 0 and m are odd numbers, then Lemmas 3.1 and 3.2 imply that some
of monad graphs pertaining to finite commutative groups Gn of order n = 2γ ·m
are sums of products of monads of the form T2γ and Om. In this case, for fixed
positive 2γ , we express the energy as

(3.1) E(Γ(Gn)) = E

(∑
m

(T2γ ∗Om)

)
,

for some (not necessarily mutually distinct) values of m, 1 6 m 6 n− 1.
In order to illustrate Eq. (3.1), we calculate the energy of the monad graph

of Z100 = Z4 ∗ Z25. The monad graph of Γ(Z4) is T22 . For Z25, we begin by
calculating the graphs of the factors. Z25 is of odd order and consists of directed
cycles of orders 1, 4, and 20. Hence, Z25 = O1 +O4 +O20. Therefore, the product
is of the form

(3.2) Γ(Z100) = T4 + (T4 ∗O4) + (T4 ∗O20) .

The graphs T4, T4 ∗O4, and T4 ∗O20 are depicted in Figs. 1 and 2.
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Fig. 1. The monad graphs T4 and T4 ∗O4
∼= D4.

Fig. 2. The monad graph T4 ∗O20
∼= D20.

Since T4 ∗ O4
∼= D4, by Theorem 2.1, E(T4 ∗ O4) = E(D4) = E(O4) = 2.

Analogously, E(T4 ∗O20) = E(D20) = E(O20) ≈ 11.728. This finally yields

E(Γ(Z100)) = E(T4) + E(T4 ∗O4) + E(T4 ∗O20) = 1 + 2 + 11.728

and thus
E(Γ(Z100)) ≈ 14.728 .

In Table 2 are displayed the energies of the monad graphs for the squaring
map, of the cyclic groups Gn for n 6 23.

In what follows, for a positive integer n, the Euler group E(n) is the multi-
plicative group of coprime residue classes modulo n. The first few nontrivial Euler
groups are

E(2) = {1}, E(3) ≡ Z2, E(5) ≡ Z4, E(6) ≡ Z2,

E(7) ≡ Z6, E(8) ≡ Z2 × Z2, E(9) ≡ Z6, E(13) ≡ Z12 .

In [3], it was shown that the Euler group E(n) is cyclic whenever n is a prime or a
degree of q prime, in which case

E(pq) ≡ Z(p−1) pq−1 .
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In Table 3 are displayed the energies of the monad graphs pertaining to the
Euler groups E(n) , n 6 23, with multiplication operation.

By comparing the data from Tables 2 and 3, it can be seen that the energies
of the cyclic and Euler groups are related as

E(Γ(Zn)) > E(Γ(E(n))) .

n Γ(Zn) E(Γ(Zn))
2 A1 1
3 O1 +O2 3
4 T4 1
5 O1 +O4 3
6 A1 + A2 3
7 O1 + 2O3 5
8 T8 1
9 O1 +O6 5
10 A1 + A4 3
11 O1 +O10 7.472
12 T4 + (T4 ∗O2) 3
13 O1 +O12 8.464
14 A1 + 2A3 5
15 O1 +O2 + 3O4 9
16 T16 1
17 O1 + 2O8 9.6568
18 A1 + A2 + A6 7
19 O1 +O18 12.517
20 T4 + (T4 ∗O4) 3
21 O1 + 2O3 + 2O6 13
22 A1 + A10 7.472
23 O1 + 2O11 15.0536

Table 2. Energies of monad graphs pertaining to cyclic groups Gn for the first few
values of n.

n Γ(E(n)) E(Γ(E(n)))
2 O1 1
3 A1 1
4 A1 1
5 T4 1
6 A1 1
7 A1 + A2 3
8 D1 1
9 A1 + A2 3
10 T4 1
11 A1 + A4 3
12 D1 1
13 T4 + (T4 ∗O2) 3
14 A1 + A2 3
15 T4 ∗ A1 1
16 T4 ∗ A1 1
17 T16 1
18 A1 + A2 3
19 A1 + A2 + A6 7
20 T4 ∗ A1 1
21 A1 + A2 +D1 +D2 7
22 A1 + A4 3
23 A1 + A10 7.472
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Table 3. Energies of monad graphs pertaining to Euler groups E(n) for the first
few values of n.
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