A NOTE ON POSITIVE PLURIHARMONIC FUNCTIONS IN THE UNIT BALL IN \mathbb{C}^{n}

Miloš Arsenović ${ }^{1}$ and Jelena Gajić

Abstract

We prove Schwarz-Pick lemma for strictly positive pluriharmonic functions in the unit ball in \mathbb{C}^{n}. We give a distance estimate in terms of Bergman metric as well as an estimate on the gradient of such functions.

1. Introduction

We use standard notation: the open unit ball in \mathbb{C}^{n} is denoted by \mathbb{B}^{n}, the Hermitian inner product of $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ is denoted by

$$
\langle z, w\rangle=\sum_{i=1}^{n} z_{i} \overline{w_{i}}
$$

This inner product induces the standard Euclidean norm $|z|=\left(\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)^{\frac{1}{2}}$ of a vector z in \mathbb{C}^{n}. The operator norm is denoted by $\|\cdot\|$. The open unit disc in the complex plane is denoted by \mathbb{D} and the right half-plane $\{z \in \mathbb{C}: \Re z>0\}$ in \mathbb{C} is denoted by \mathbb{K}.

Let $\Omega \subset \mathbb{C}^{n}$ be a domain (an open, connected and nonempty set). A function $u \in C^{2}(\Omega, \mathbb{C})$ is said to be pluriharmonic if for every complex line

$$
l=l_{a, b}=\{a+\xi b: \xi \in \mathbb{C}\}, \quad a \in \mathbb{C}^{n}, \quad b \in \mathbb{C}^{n}, \quad b \neq 0
$$

the function $\xi \mapsto u(a+\xi b)$ is harmonic on the set $\Omega_{l}=\{\xi \in \mathbb{C}: a+\xi b \in \Omega\}$.

[^0]The set of all holomorphic maps between domains $\Omega_{1} \subset \mathbb{C}^{n}$ and $\Omega_{2} \subset \mathbb{C}^{m}$ is denoted by $H\left(\Omega_{1}, \Omega_{2}\right)$. The following proposition establishes connection between real valued pluriharmonic functions and holomorphic functions.

Proposition $1.1([\mathbf{2}])$. A function $u \in C^{2}\left(\mathbb{B}^{n}, \mathbb{R}\right)$ is pluriharmonic if and only if it is the real part of a holomorphic function on \mathbb{B}^{n}.

Let, for a in \mathbb{B}^{n}, P_{a} be the orthogonal projection of \mathbb{C}^{n} onto the subspace [a] generated by a and let $Q_{a}=I-P_{a}$ be the projection onto the orthogonal complement of $[a]$. Set $s_{a}=\left(1-|a|^{2}\right)^{\frac{1}{2}}$ and define

$$
\begin{equation*}
\phi_{a}(z)=\frac{a-P_{a}(z)-s_{a} Q_{a}(z)}{1-\langle z, a\rangle}, \quad z \in \mathbb{B}^{n} \tag{1.1}
\end{equation*}
$$

Then $\phi_{a}^{\prime}(0)=-s_{a}^{2} P_{a}-s_{a} Q_{a}$ and $\phi_{a}^{\prime}(a)=-\frac{1}{s_{a}^{2}} P_{a}-\frac{1}{s_{a}} Q_{a}$. More details about these automorphisms of the unit ball \mathbb{B}^{n} can be found in $[\mathbf{6}]$. Note that for $n=1$ they are well known automorphisms of the unit disc.

Regarding Bergman metrics, we refer the reader to [1]. The Bergman distance on a domain $\Omega \subset \mathbb{C}^{n}$ is denoted by $d_{\Omega}(z, w)$, the Bergman norm of a (tangent) vector $\xi \in T_{z} \Omega \cong \mathbb{C}^{n}$ is denoted by $|\xi|_{B, \Omega, z}$ or, when there is no ambiguity, by $|\xi|_{B, z}$. The following proposition is a fundamental invariance property of the Bergman distance.

Proposition 1.2 ([1]). Let $\Omega_{1}, \Omega_{2} \subset \mathbb{C}^{n}$ be domains and let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a biholomorphic mapping. Then f induces an isometry of Bergman metrics:

$$
|\xi|_{B, z}=\left|\left(J_{\mathbb{C}} f\right) \xi\right|_{B, f(z)}, \quad z \in \Omega_{1}, \quad \xi \in \mathbb{C}^{n}
$$

Equivalently, f induces an isometry with respect to Bergman distances:

$$
\begin{equation*}
d_{\Omega_{2}}(f(z), f(w))=d_{\Omega_{1}}(z, w), \quad z, w \in \Omega_{1} \tag{1.2}
\end{equation*}
$$

The Bergman distance on \mathbb{B}^{n} is given by

$$
\begin{equation*}
d_{\mathbb{B}^{n}}(z, w)=\ln \frac{1+\left|\phi_{w}(z)\right|}{1-\left|\phi_{w}(z)\right|}, \quad z, w \in \mathbb{B}^{n} \tag{1.3}
\end{equation*}
$$

where ϕ_{w} denotes automorphism of \mathbb{B}^{n} introduced in (1.1). A multiplicative factor often appears in literature in the above formula; we choose to drop it in order to conform to [4]. The upshot is that we can use Theorem 1.1 without modifications.

Applying Proposition 1.2 to a conformal map $z \mapsto(z-1) /(z+1)$ of \mathbb{K} onto \mathbb{D} after a simple calculation one obtains Bergman distance on \mathbb{K} :

$$
\begin{equation*}
d_{\mathbb{K}}(z, w)=d_{\mathbb{D}}\left(\frac{z-1}{z+1}, \frac{w-1}{w+1}\right)=\ln \frac{|w+\bar{z}|+|z-w|}{|w+\bar{z}|-|z-w|}, \quad z, w \in \mathbb{K} . \tag{1.4}
\end{equation*}
$$

In particular, for real $x, y>0$ we have

$$
\begin{equation*}
d_{\mathbb{K}}(x, y)=\left|\ln \frac{x}{y}\right| . \tag{1.5}
\end{equation*}
$$

In general, $f \in H\left(\Omega_{1}, \Omega_{2}\right)$ does not imply that

$$
\begin{equation*}
d_{\Omega_{2}}(f(z), f(w)) \leqslant d_{\Omega_{1}}(z, w) \quad \text { for all } \quad z, w \in \Omega_{1} \tag{1.6}
\end{equation*}
$$

However, in some special cases the above contraction property does hold. This is the content of the following theorem.

THEOREM 1.1 ([4]). Every holomorphic function $f: \mathbb{B}^{n} \rightarrow \mathbb{D}$ is a contraction with respect to Bergman metric on \mathbb{B}^{n} and \mathbb{D}.

For a function $f \in C^{1}\left(\mathbb{B}^{n}\right) \mathcal{M}$-invariant real gradient is defined by

$$
\tilde{\nabla} f(z)=\nabla\left(f \circ \phi_{z}\right)(0)
$$

where ϕ_{z} denotes automorphism of \mathbb{B}^{n}. Then $|\tilde{\nabla} f(0)|=|\nabla f(0)|$ and $|\tilde{\nabla} f(z)|=$ $\left|\tilde{\nabla}\left(f \circ \phi_{z}\right)(0)\right|$. More details about \mathcal{M} - invariant real gradient can be found in [5].

2. Main results

We begin with an elementary lemma.
Lemma 2.1. For all z_{1} and z_{2} in \mathbb{K} we have

$$
\begin{equation*}
\left|\frac{\Re z_{1}-\Re z_{2}}{\Re z_{1}+\Re z_{2}}\right| \leqslant\left|\frac{z_{1}-z_{2}}{\overline{z_{1}}+z_{2}}\right| . \tag{2.1}
\end{equation*}
$$

Equality holds if and only if $\Im z_{1}=\Im z_{2}$.
Proof. We have $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, where $x_{1}, x_{2}>0$. Our inequality is equivalent to $\left|x_{1}-x_{2}\right| \cdot\left|\bar{z}_{1}+z_{2}\right| \leqslant\left|x_{1}+x_{2}\right| \cdot\left|z_{1}-z_{2}\right|$ and therefore to $\left(x_{1}-x_{2}\right)^{2}\left(\left(x_{1}+x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right) \leqslant\left(x_{1}+x_{2}\right)^{2}\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)$.
The last inequality is equivalent to an obviously valid inequality

$$
\left(y_{1}-y_{2}\right)^{2}\left(\left(x_{1}+x_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}\right) \geqslant 0 .
$$

Clearly, equality holds if and only if $y_{1}=y_{2}$.
The method of using estimates for analytic functions to obtain results of Schwarz-Pick type for harmonic functions was developed by M. Mateljević and his collaborators, see [3].

THEOREM 2.1. Let \boldsymbol{u} be a pluriharmonic function from \mathbb{B}^{n} to $(0,+\infty)$. Then we have

$$
\begin{equation*}
d_{\mathbb{K}}(u(z), u(w)) \leqslant d_{\mathbb{B}^{n}}(z, w), \quad z, w \in \mathbb{B}^{n} \tag{2.2}
\end{equation*}
$$

Proof. By Proposition 1.1 there is a holomorphic function $f: \mathbb{B}^{n} \rightarrow \mathbb{K}$ such that $u=\Re f$. Therefore $g(z)=\frac{f(z)-1}{f(z)+1} \in H\left(\mathbb{B}^{n}, \mathbb{D}\right)$.

By Proposition 1.2 and Theorem 1.1 we have

$$
\begin{equation*}
d_{\mathbb{K}}(f(z), f(w))=d_{\mathbb{D}}(g(z), g(w)) \leqslant d_{\mathbb{B}^{n}}(z, w) \quad z, w \in \mathbb{B}^{n} \tag{2.3}
\end{equation*}
$$

Since $\frac{1+x}{1-x}, 0<x<1$, and $\ln x, x>0$, are increasing functions we have, by Lemma 2.1

$$
d_{\mathbb{K}}(u(z), u(w))=d_{\mathbb{K}}(\Re f(z), \Re f(w)) \leqslant d_{\mathbb{K}}(f(z), f(w)),
$$

which, combined with (2.3), gives (2.2).
In view of (1.5) inequality (2.2) can be written in the following form

$$
\begin{equation*}
e^{-d_{\mathbb{B}^{n}}(z, w)} \leqslant \frac{u(z)}{u(w)} \leqslant e^{d_{\mathbb{B}} n(z, w)}, \quad z, w \in \mathbb{B}^{n} \tag{2.4}
\end{equation*}
$$

Corollary 2.1. If f is a holomorphic function on \mathbb{B}^{n} and $0<|f(z)|<1$, then

$$
\begin{equation*}
|f(w)|^{e^{d_{\mathbb{B}} n(z, w)}} \leqslant|f(z)| \leqslant|f(w)|^{e^{-d_{\mathbb{B}} n(z, w)}}, \quad z, w \in \mathbb{B}^{n} . \tag{2.5}
\end{equation*}
$$

Proof. Let $u(z)=\ln \frac{1}{|f(z)|}$. Then u is a pluriharmonic function from \mathbb{B}^{n} into $(0,+\infty)$ and according to (2.4) we have

$$
\ln \left(\frac{1}{|f(w)|}\right)^{e^{-d_{\mathbb{B}} n(z, w)}} \leqslant \ln \frac{1}{|f(z)|} \leqslant \ln \left(\frac{1}{|f(w)|}\right)^{e^{d_{\mathbb{B}} n(z, w)}}
$$

which gives (2.5).
THEOREM 2.2. If u is a pluriharmonic function from \mathbb{B}^{n} to $(0,+\infty)$, then

$$
|\nabla u(z)| \leqslant \frac{2 u(z)}{1-|z|^{2}}, \quad z \in \mathbb{B}^{n}
$$

Proof. As in the proof of Theorem 2.1, there exists a holomorphic function $f \in H\left(\mathbb{B}^{n}, \mathbb{K}\right)$ such that $u=\Re f$. Using Cauchy-Riemann equations we obtain

$$
\begin{equation*}
\left|f^{\prime}(z)\right|=\sqrt{\sum_{i=1}^{n}\left|\frac{\partial f}{\partial z_{i}}(z)\right|^{2}}=\sqrt{\sum_{i=1}^{n}\left|\frac{\partial u}{\partial x_{i}}(z)\right|^{2}+\sum_{i=1}^{n}\left|\frac{\partial u}{\partial y_{i}}(z)\right|^{2}}=|\nabla u(z)| \tag{2.6}
\end{equation*}
$$

Since $g(z)=\frac{f(z)-1}{f(z)+1} \in H\left(\mathbb{B}^{n}, \mathbb{D}\right)$ we can apply classical Schwarz lemma to $h_{\xi}(\lambda)=g(\lambda \xi)$, where $\xi \in \mathbb{C}^{n}$ and $|\xi|=1$, to obtain $\left|g^{\prime}(0) \xi\right| \leqslant 1-|g(0)|^{2}$. Since this is valid for all $|\xi|=1$, we obtain $\left|g^{\prime}(0)\right| \leqslant 1-|g(0)|^{2}$. Therefore

$$
|\nabla u(0)|=\left|f^{\prime}(0)\right|=\frac{2}{|1-g(0)|^{2}}\left|g^{\prime}(0)\right| \leqslant 2 \frac{1-|g(0)|^{2}}{|1-g(0)|^{2}}
$$

This, combined with $1-|g|^{2}=\frac{4 u}{|f+1|^{2}}$ and $|1-g|^{2}=\frac{4}{|f+1|^{2}}$, gives

$$
|\nabla u(0)| \leqslant 2 u(0),
$$

which is desired estimate at the origin. The function $v=u \circ \phi_{z}$ is also pluriharmonic, see $[\mathbf{6}]$, so we can apply the obtained estimate at the origin and get

$$
\begin{equation*}
|\nabla v(0)|=\left|\nabla\left(u \circ \phi_{z}\right)(0)\right| \leqslant 2\left(u \circ \phi_{z}\right)(0)=2 u(z) . \tag{2.7}
\end{equation*}
$$

Since $\nabla v(0)=\nabla u(z) \cdot \phi_{z}^{\prime}(0)$ and $\phi_{z}^{\prime}(z) \phi_{z}^{\prime}(0)=I$, we have $\nabla u(z)=\nabla v(0) \phi_{z}^{\prime}(z)$. Using $\left\|\phi_{z}^{\prime}(z)\right\|=\frac{1}{1-|z|^{2}}$ and (2.7) we obtain

$$
|\nabla u(z)|=\left|\nabla v(0) \phi_{z}^{\prime}(z)\right| \leqslant|\nabla v(0)| \cdot\left\|\phi_{z}^{\prime}(z)\right\| \leqslant \frac{2 u(z)}{1-|z|^{2}}
$$

and complete the proof.

At the origin, based on the previous theorem, we have $|\tilde{\nabla} u(0)| \leqslant 2 u(0)$. Then,

$$
\left|\tilde{\nabla}\left(u \circ \phi_{z}\right)(0)\right| \leqslant 2\left(u \circ \phi_{z}\right)(0)=2 u(z) .
$$

Since $|\tilde{\nabla} u(z)|=\left|\tilde{\nabla}\left(u \circ \phi_{z}\right)(0)\right|$ we have obtained the following corollary.
Corollary 2.2. If u is a pluriharmonic function from \mathbb{B}^{n} to $(0,+\infty)$, then

$$
|\tilde{\nabla} u(z)| \leqslant 2 u(z), \quad z \in \mathbb{B}^{n} .
$$

Acknowledgements. The second author would like to thank Dragana Grujić, Slobodan Stupar, Vera and Brane Gajić for their support.

References

[1] S. G. Krantz. Geometric analysis of the Bergman kernel and metric. Springer Science + Bussines Media, New York 2013.
[2] S. G. Krantz. Function teory of several complex variables, $2^{\text {nd }}$ ed. American Mathematical Society, Providence, Rhode Island 2001.
[3] M. Mateljević. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl., 464(1)(2018), 78-100.
[4] P. Melentijević. Invariant gradient in refinements of Schwarz lemma and Harnack inequalities. Ann. Acad. Sci. Fenn., Math., 43(2018), 391-399.
[5] M. Pavlović. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag. Math., 2(1)(1991), 89-98.
[6] W. Rudin. Function theory in the unit ball of \mathbb{C}^{n}. Springer-Verlag, New-York 1980.
Received by editors 22.10.2020; Revised version 29.10.2020; Available online 09.11.2020.
Faculty of mathematics, University of Belgrade,
Studentski Trg 16, 11000 Belgrade, Serbia
E-mail address: arsenovic@matf.bg.ac.rs
Faculty of natural sciences and mathematics, Mladen Stojanović Street 2, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina

E-mail address: jelena.gajic.mm@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 31C10.
 Key words and phrases. pluriharmonic functions, Bergman distance, Schwarz-Pick lemma.
 1 Supported by Ministry of Science, Serbia, project OI 174017.
 Communicated by Duško Bogdanić.

