BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **11**(2)(2021), 249-253 DOI: 10.7251/BIMVI2102249A

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

A NOTE ON POSITIVE PLURIHARMONIC FUNCTIONS IN THE UNIT BALL IN \mathbb{C}^n

Miloš Arsenović¹ and Jelena Gajić

ABSTRACT. We prove Schwarz-Pick lemma for strictly positive pluriharmonic functions in the unit ball in \mathbb{C}^n . We give a distance estimate in terms of Bergman metric as well as an estimate on the gradient of such functions.

1. Introduction

We use standard notation: the open unit ball in \mathbb{C}^n is denoted by \mathbb{B}^n , the Hermitian inner product of $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$ is denoted by

$$\langle z, w \rangle = \sum_{i=1}^{n} z_i \overline{w_i}$$

This inner product induces the standard Euclidean norm $|z| = (\sum_{j=1}^{n} |z_j|^2)^{\frac{1}{2}}$ of a vector z in \mathbb{C}^n . The operator norm is denoted by $\|\cdot\|$. The open unit disc in the complex plane is denoted by \mathbb{D} and the right half-plane $\{z \in \mathbb{C} : \Re z > 0\}$ in \mathbb{C} is denoted by \mathbb{K} .

Let $\Omega \subset \mathbb{C}^n$ be a domain (an open, connected and nonempty set). A function $u \in C^2(\Omega, \mathbb{C})$ is said to be pluriharmonic if for every complex line

 $l = l_{a,b} = \{ a + \xi b : \xi \in \mathbb{C} \}, \qquad a \in \mathbb{C}^n, \quad b \in \mathbb{C}^n, \quad b \neq 0$

the function $\xi \mapsto u(a + \xi b)$ is harmonic on the set $\Omega_l = \{\xi \in \mathbb{C} : a + \xi b \in \Omega\}.$

²⁰¹⁰ Mathematics Subject Classification. Primary 31C10.

Key words and phrases. pluriharmonic functions, Bergman distance, Schwarz-Pick lemma. ¹ Supported by Ministry of Science, Serbia, project OI 174017.

Communicated by Duško Bogdanić.

The set of all holomorphic maps between domains $\Omega_1 \subset \mathbb{C}^n$ and $\Omega_2 \subset \mathbb{C}^m$ is denoted by $H(\Omega_1, \Omega_2)$. The following proposition establishes connection between real valued pluriharmonic functions and holomorphic functions.

PROPOSITION 1.1 ([2]). A function $u \in C^2(\mathbb{B}^n, \mathbb{R})$ is pluriharmonic if and only if it is the real part of a holomorphic function on \mathbb{B}^n .

Let, for a in \mathbb{B}^n , P_a be the orthogonal projection of \mathbb{C}^n onto the subspace [a] generated by a and let $Q_a = I - P_a$ be the projection onto the orthogonal complement of [a]. Set $s_a = (1 - |a|^2)^{\frac{1}{2}}$ and define

(1.1)
$$\phi_a(z) = \frac{a - P_a(z) - s_a Q_a(z)}{1 - \langle z, a \rangle}, \qquad z \in \mathbb{B}^n.$$

Then $\phi'_a(0) = -s_a^2 P_a - s_a Q_a$ and $\phi'_a(a) = -\frac{1}{s_a^2} P_a - \frac{1}{s_a} Q_a$. More details about these automorphisms of the unit ball \mathbb{B}^n can be found in [6]. Note that for n = 1 they are well known automorphisms of the unit disc.

Regarding Bergman metrics, we refer the reader to [1]. The Bergman distance on a domain $\Omega \subset \mathbb{C}^n$ is denoted by $d_{\Omega}(z, w)$, the Bergman norm of a (tangent) vector $\xi \in T_z \Omega \cong \mathbb{C}^n$ is denoted by $|\xi|_{B,\Omega,z}$ or, when there is no ambiguity, by $|\xi|_{B,z}$. The following proposition is a fundamental invariance property of the Bergman distance.

PROPOSITION 1.2 ([1]). Let $\Omega_1, \Omega_2 \subset \mathbb{C}^n$ be domains and let $f : \Omega_1 \to \Omega_2$ be a biholomorphic mapping. Then f induces an isometry of Bergman metrics:

$$|\xi|_{B,z} = |(J_{\mathbb{C}}f)\xi|_{B,f(z)}, \qquad z \in \Omega_1, \quad \xi \in \mathbb{C}^n.$$

Equivalently, f induces an isometry with respect to Bergman distances:

(1.2)
$$d_{\Omega_2}(f(z), f(w)) = d_{\Omega_1}(z, w), \qquad z, w \in \Omega_1.$$

The Bergman distance on \mathbb{B}^n is given by

(1.3)
$$d_{\mathbb{B}^n}(z,w) = \ln \frac{1 + |\phi_w(z)|}{1 - |\phi_w(z)|}, \qquad z, w \in \mathbb{B}^n,$$

where ϕ_w denotes automorphism of \mathbb{B}^n introduced in (1.1). A multiplicative factor often appears in literature in the above formula; we choose to drop it in order to conform to [4]. The upshot is that we can use Theorem 1.1 without modifications.

Applying Proposition 1.2 to a conformal map $z \mapsto (z-1)/(z+1)$ of \mathbb{K} onto \mathbb{D} after a simple calculation one obtains Bergman distance on \mathbb{K} :

(1.4)
$$d_{\mathbb{K}}(z,w) = d_{\mathbb{D}}\left(\frac{z-1}{z+1}, \frac{w-1}{w+1}\right) = \ln \frac{|w+\bar{z}| + |z-w|}{|w+\bar{z}| - |z-w|}, \qquad z, w \in \mathbb{K}.$$

In particular, for real x, y > 0 we have

(1.5)
$$d_{\mathbb{K}}(x,y) = \left| \ln \frac{x}{y} \right|.$$

In general, $f \in H(\Omega_1, \Omega_2)$ does not imply that

(1.6)
$$d_{\Omega_2}(f(z), f(w)) \leq d_{\Omega_1}(z, w) \quad \text{for all} \quad z, w \in \Omega_1$$

However, in some special cases the above contraction property does hold. This is the content of the following theorem.

THEOREM 1.1 ([4]). Every holomorphic function $f : \mathbb{B}^n \to \mathbb{D}$ is a contraction with respect to Bergman metric on \mathbb{B}^n and \mathbb{D} .

For a function $f \in C^1(\mathbb{B}^n)$ \mathcal{M} -invariant real gradient is defined by

$$\tilde{\nabla}f(z) = \nabla(f \circ \phi_z)(0),$$

where ϕ_z denotes automorphism of \mathbb{B}^n . Then $|\tilde{\nabla}f(0)| = |\nabla f(0)|$ and $|\tilde{\nabla}f(z)| =$ $|\nabla(f \circ \phi_z)(0)|$. More details about \mathcal{M} - invariant real gradient can be found in [5].

2. Main results

We begin with an elementary lemma.

LEMMA 2.1. For all
$$z_1$$
 and z_2 in \mathbb{K} we have

(2.1)
$$\left|\frac{\Re z_1 - \Re z_2}{\Re z_1 + \Re z_2}\right| \leqslant \left|\frac{z_1 - z_2}{\overline{z_1} + z_2}\right|.$$

Equality holds if and only if $\Im z_1 = \Im z_2$.

PROOF. We have $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, where $x_1, x_2 > 0$. Our inequality is equivalent to $|x_1 - x_2| \cdot |\overline{z}_1 + z_2| \leq |x_1 + x_2| \cdot |z_1 - z_2|$ and therefore to

$$(x_1 - x_2)^2((x_1 + x_2)^2 + (y_2 - y_1)^2) \le (x_1 + x_2)^2((x_1 - x_2)^2 + (y_1 - y_2)^2).$$

The last inequality is equivalent to an obviously valid inequality

$$(y_1 - y_2)^2((x_1 + x_2)^2 - (x_1 - x_2)^2) \ge 0.$$

Clearly, equality holds if and only if $y_1 = y_2$.

The method of using estimates for analytic functions to obtain results of Schwarz-Pick type for harmonic functions was developed by M. Mateljević and his collaborators, see [3].

THEOREM 2.1. Let \boldsymbol{u} be a pluriharmonic function from \mathbb{B}^n to $(0, +\infty)$. Then we have

(2.2)
$$d_{\mathbb{K}}(u(z), u(w)) \leqslant d_{\mathbb{B}^n}(z, w), \qquad z, w \in \mathbb{B}^n.$$

PROOF. By Proposition 1.1 there is a holomorphic function $f : \mathbb{B}^n \to \mathbb{K}$ such that $u = \Re f$. Therefore $g(z) = \frac{f(z)-1}{f(z)+1} \in H(\mathbb{B}^n, \mathbb{D})$. By Proposition 1.2 and Theorem 1.1 we have

 $d_{\mathbb{K}}(f(z), f(w)) = d_{\mathbb{D}}(g(z), g(w)) \leqslant d_{\mathbb{B}^n}(z, w)$ $z, w \in \mathbb{B}^n$. (2.3)Since $\frac{1+x}{1-x}$, 0 < x < 1, and $\ln x$, x > 0, are increasing functions we have, by Lemma 2.1

$$d_{\mathbb{K}}(u(z), u(w)) = d_{\mathbb{K}}(\Re f(z), \Re f(w)) \leqslant d_{\mathbb{K}}(f(z), f(w)),$$

251

which, combined with (2.3), gives (2.2).

In view of (1.5) inequality (2.2) can be written in the following form

(2.4)
$$e^{-d_{\mathbb{B}^n}(z,w)} \leqslant \frac{u(z)}{u(w)} \leqslant e^{d_{\mathbb{B}^n}(z,w)}, \qquad z, w \in \mathbb{B}^n$$

COROLLARY 2.1. If f is a holomorphic function on \mathbb{B}^n and 0 < |f(z)| < 1, then $\int_{\mathbb{B}^n} \int_{\mathbb{B}^n} \int_{\mathbb{B}^n}$

(2.5)
$$|f(w)|^e \leq \cdots \leq |f(z)| \leq |f(w)|^e \leq \cdots , \quad z, w \in \mathbb{B}^n.$$

PROOF. Let $u(z) = \ln \frac{1}{|f(z)|}$. Then u is a pluriharmonic function from \mathbb{B}^n into $(0, +\infty)$ and according to (2.4) we have

$$\ln\left(\frac{1}{|f(w)|}\right)^{e^{-d_{\mathbb{B}^n}(z,w)}} \leq \ln\frac{1}{|f(z)|} \leq \ln\left(\frac{1}{|f(w)|}\right)^{e^{d_{\mathbb{B}^n}(z,w)}}$$

which gives (2.5).

THEOREM 2.2. If u is a pluriharmonic function from \mathbb{B}^n to $(0, +\infty)$, then

$$|\nabla u(z)| \leqslant \frac{2u(z)}{1-|z|^2}, \qquad z \in \mathbb{B}^n.$$

PROOF. As in the proof of Theorem 2.1, there exists a holomorphic function $f \in H(\mathbb{B}^n, \mathbb{K})$ such that $u = \Re f$. Using Cauchy-Riemann equations we obtain

$$(2.6) \qquad |f'(z)| = \sqrt{\sum_{i=1}^{n} \left| \frac{\partial f}{\partial z_i}(z) \right|^2} = \sqrt{\sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_i}(z) \right|^2} + \sum_{i=1}^{n} \left| \frac{\partial u}{\partial y_i}(z) \right|^2} = |\nabla u(z)|.$$

Since $g(z) = \frac{f(z)-1}{f(z)+1} \in H(\mathbb{B}^n, \mathbb{D})$ we can apply classical Schwarz lemma to $h_{\xi}(\lambda) = g(\lambda\xi)$, where $\xi \in \mathbb{C}^n$ and $|\xi| = 1$, to obtain $|g'(0)\xi| \leq 1 - |g(0)|^2$. Since this is valid for all $|\xi| = 1$, we obtain $|g'(0)| \leq 1 - |g(0)|^2$. Therefore

$$|\nabla u(0)| = |f'(0)| = \frac{2}{|1 - g(0)|^2} |g'(0)| \le 2\frac{1 - |g(0)|^2}{|1 - g(0)|^2}$$

This, combined with $1 - |g|^2 = \frac{4u}{|f+1|^2}$ and $|1 - g|^2 = \frac{4}{|f+1|^2}$, gives $|\nabla u(0)| \leq 2u(0)$,

which is desired estimate at the origin. The function $v = u \circ \phi_z$ is also pluriharmonic, see [6], so we can apply the obtained estimate at the origin and get

(2.7)
$$|\nabla v(0)| = |\nabla (u \circ \phi_z)(0)| \leq 2(u \circ \phi_z)(0) = 2u(z).$$

Since $\nabla v(0) = \nabla u(z) \cdot \phi'_z(0)$ and $\phi'_z(z)\phi'_z(0) = I$, we have $\nabla u(z) = \nabla v(0)\phi'_z(z)$. Using $\|\phi'_z(z)\| = \frac{1}{1-|z|^2}$ and (2.7) we obtain

$$|\nabla u(z)| = |\nabla v(0)\phi'_{z}(z)| \leq |\nabla v(0)| \cdot ||\phi'_{z}(z)|| \leq \frac{2u(z)}{1-|z|^{2}}$$

and complete the proof.

252

253

At the origin, based on the previous theorem, we have $|\tilde{\nabla}u(0)| \leq 2u(0)$. Then,

$$|\nabla(u \circ \phi_z)(0)| \leq 2(u \circ \phi_z)(0) = 2u(z).$$

Since $|\tilde{\nabla}u(z)| = |\tilde{\nabla}(u \circ \phi_z)(0)|$ we have obtained the following corollary.

COROLLARY 2.2. If u is a pluriharmonic function from \mathbb{B}^n to $(0, +\infty)$, then

 $|\tilde{\nabla}u(z)| \leq 2u(z), \qquad z \in \mathbb{B}^n.$

Acknowledgements. The second author would like to thank Dragana Grujić, Slobodan Stupar, Vera and Brane Gajić for their support.

References

- S. G. Krantz. Geometric analysis of the Bergman kernel and metric. Springer Science + Bussines Media, New York 2013.
- [2] S. G. Krantz. Function teory of several complex variables, 2nd ed. American Mathematical Society, Providence, Rhode Island 2001.
- [3] M. Mateljević. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl., 464(1)(2018), 78–100.
- [4] P. Melentijević. Invariant gradient in refinements of Schwarz lemma and Harnack inequalities. Ann. Acad. Sci. Fenn., Math., 43(2018), 391–399.
- [5] M. Pavlović. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag. Math., 2(1)(1991), 89–98.
- [6] W. Rudin. Function theory in the unit ball of \mathbb{C}^n . Springer-Verlag, New-York 1980.

Received by editors 22.10.2020; Revised version 29.10.2020; Available online 09.11.2020.

Faculty of mathematics, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia

E-mail address: arsenovic@matf.bg.ac.rs

Faculty of natural sciences and mathematics, Mladen Stojanović Street 2, 78000 Banja Luka, The Republic of Srpska, Bosnia and Herzegovina

E-mail address: jelena.gajic.mm@gmail.com