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Abstract. An edge geodetic set S of a connected graph G is said to be a
complement connected edge geodetic set ofG if S = V orG[V −S] is connected.
The minimum cardinality of a complement connected edge geodetic set is the
complement connected edge geodetic number and is denoted by gcce(G). Some

general properties satisfied by this concept are studied Connected graphs of
order p > 3 with gcce(G) to be p − 1 is given. Connected graphs of order p
with gcce(G) to be 2 or p are characterized. It is shown that for every pair a

and b of integers 2 6 a 6 b, there exists a connected graph G with ge(G) = a
and gcce(G) = b, where ge(G) is the edge geodetic number of G.

1. Introduction

By a graph G = (V,E), we mean a finite,undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q respec-
tively. For basic graph theoretic terminology, we refer to [1]. N(v) = {u ∈ V (G) :
uv ∈ E(G)} is called the neighborhood of the vertex v in G. The degree of a vertex
of a graph is the number of edges that are incident to the vertex and is denoted
deg(v). The maximum degree of a graph G, denoted by △(G), and the minimum
degree of a graph denoted by δ(G) are the maximum and minimum degree of its
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vertices. Let S ⊂ V be any subset of vertices of G. Then the induced subgraph G[S]
is the graph whose vertex set is S and whose edge set consists of all of the edges in
E that have both endpoints in S. A vertex v is called an extreme vertex if G[N(v)]
is complete. A vertex v ∈ V (G) in a connected graph G is said to be semi-extreme
vertex of G if △(G[N(v)]) = |N(v)| − 1. A graph G is said to be semi-complete
graph if every vertex of G ia a semi-extreme vertex of G.

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u-v path in G. An u-v path of length d(u, v) is called an
u-v geodesic. A vertex x is said to lie on an u-v geodesic P if x is a vertex of
P including the vertices u and v. The eccentricity e(v) of a vertex v in G is the
maximum distance from v and a vertex of G,(i.e) e(v) = max{d(v, u) : u ∈ V }. The
minimum eccentricity among the vertices of G is the radius, radG and the maximum
eccentricity is its diameter, diamG. We denote rad(G) by r and diamG by d. Two
vertices u and v of G are antipodal vertex if d(u, v) = d. A vertex v is called a
peripheral vertex of G, if e(v) = d. For two vertices u and v, the closed interval
I[u, v] consists of u and v together with all edges lying in an u-v geodesic. If u and v
are adjacent, then I[u, v] = {u, v}. For a set S of vertices, let I[S] = ∪u,v∈SI[u, v].
Then certainly S ⊆ I[S]. A set S ⊆ V (G) is called a geodetic set of G if I[S] = V .
The geodetic number g(G) of G is the minimum order of its geodetic sets and any
geodetic set of order g(G) is a geodetic basis or a g-set of G. The geodetic number of
a graph was studied in [1, 3, 4, 6, 7] . For two vertices u and v, the closed interval
Ie[u, v] consists of all edges lying in a u-v geodesic. If u and v are adjacent, then
Ie[u, v] = {uv}. For a set S of vertices, let Ie[S] = ∪u,v∈SIe[u, v]. A set S ⊆ V (G)
is called an edge geodetic set of G if Ie[S] = E. The edge geodetic number ge(G) of
G is the minimum order of its edge geodetic sets and any edge geodetic set of order
ge(G) is an edge geodetic basis or a ge-set of G. The edge geodetic number was
studied in [2, 5, 6, 9, 10, 11, 12, 13, 14, 15]. A graph G is said to be geodetic
graph if there exists exactly one geodesic between every pair of vertices.

In an application point of view, a computer network is a collection of computers
where each one acts as a message sender and receiver in the network. In a computer
network, leading computers are a set of computers, which cover the entire edge of
the network with the property of message passing through the shortest communi-
cation path. Even though these set of leading computers fail, in order to make the
network fault-tolerant, the rest of the computers are still able to communicate with
each other. Consider a computer network as a graph model and each computer as
a vertex. Then the minimum cardinality of a set of leading computers is a mini-
mum complement connected edge geodetic set for the graph representing computer
network. The following theorems are used in the sequel.

Theorem 1.1 ([8]). Each semi extreme vertex of a connected graph belongs to
every edge geodetic set of G.

Theorem 1.2 ([8]). For a non-trivial tree T ,

ge(T ) = number of end vertices of T.
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Theorem 1.3 ([8]). For the complete graph G = Kp (p > 3),

ge(G) = p.

2. The complement connected edge geodetic number of a graph

Definition 2.1. An edge geodetic set S of a connected graph G is said to be
a complement connected edge geodetic set of G if S = V or G[V −S] is connected.
The minimum cardinality of a complement connected edge geodetic set is the com-
plement connected edge geodetic number of G is denoted by gcce(G). A complement
connected edge geodetic set of minimum cardinality is called the gcce-set of G.

Example 2.1. For the graph G given in Figure 1, S = {v1, v3, v4, v6} is a
ge-set of G and so ge(G) = 4. Since the subgraph G[V − S] is disconnected, S
is not a complement connected edge geodetic set of G and so gcce(G) > 5. Let
S1 = {v1, v3, v4, v5, v6}. Then S is a complement connected edge geodetic set of G
so that gcce(G) = 5.

1.eps 1.eps

Figure 1. Graph 1

Theorem 2.1. For a connected graph G of order p > 2,

2 6 ge(G) 6 gcce(G) 6 p.

Proof. Any edge geodetic set needs at least two vertices and so ge(G) > 2.
Since every complement connected edge geodetic set is also an edge geodetic set,
ge(G) 6 gcce(G). Also, since V (G) is a complement connected edge geodetic set, it
is clear that gcce(G) 6 p. Thus

2 6 ge(G) 6 gcce(G) 6 p.

�
Remark 2.1. The bounds in Theorem 2.1 are sharp. For any non-trivial path

Pp, the set of two end vertices is the unique edge geodetic set so that ge(Pp) = 2. For
any non-trivial tree T , the set of all end vertices is the unique geodetic set as well as
unique edge complement connected edge geodetic set and so ge(T ) = gcce(T ). For
the complete graph G = Kp, gcce(Kp) = p. Also the inequalities in the Theorem
2.1 are strict. For the graph G given in Figure 1,
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ge(G) = 4 and gcce(G) = 5 and p = 6.

Thus 2 < ge(G) < gcce(G) < p.

Theorem 2.2. Each semi extreme vertex of a graph G belongs to every com-
plement connected edge geodetic set of G.

Proof. Since every complement connected edge geodetic set is an edge geo-
detic set, the result follows from Theorem 1.1. �

Observation 2.1. (i). For the complete graph Kp (p > 2), gcce(Kp) = p.
(ii). For a semi-complete graph G, gcce(Kp) = p.

Theorem 2.3. For any tree T with k end vertices, gcce(T ) = k.

Proof. Let S be the set of all end vertices of T . By Theorem 2.2, gcce(T ) >
| S |. Since the subgraph G[V − S] is connected, S is the unique complement
connected edge geodetic set of T . Therefore gcce(T ) =| S |= k. �

Theorem 2.4. For the cycle G = Cp (p > 3),

gcce(Cp) =


p

2
+ 1 if p is even⌈p
2

⌉
+ 1 if p is odd

Proof. Let us assume that p is even. Let p = 2k. Let C2k = v1, v2, ...v2k, v1.
Let S = {x, y} be a set of antipodal vertices of Cp. Since Ie(S) = E(Cp), S is an
edge geodetic set of G. Since G[V − S] is not connected, S is not a complement
connected edge geodetic set of Cp. Let S1 = {v1, v2, ..., vk+1}. Then G[V − S1] is
complement connected edge geodetic set of Cp and so gcce(G) 6 k + 1. We prove
that gcce(Cp) = k + 1. On the contrary suppose that gcce(Cp) 6 k. Then there

exists a gcce-set S
′
such that |S′ | 6 k. Since |S′ | 6 k, S

′
contains no antipodal

vertices of Cp. Therefore Ie[S
′
] ̸= E(Cp). Hence it follows that S

′
is not a gcce-set

of G, which is a contradiction. Therefore

gcce(G) = k + 1 =
p

2
+ 1.

Let us assume that p is odd. Let p = 2k + 1. Let C2k+1 = v1, v2, ..., v2k+1, v1.
Let x be a vertex of Cp and y, z be the two antipodal vertices of x. Then M =
{x, y, z} is an edge geodetic set of G. G[V − M ] is not connected, M is not a
complement connected edge geodetic set of Cp. Let M1 = {v1, v2, ..., vk+1, vk+2}.
Then G[V −M1] is complement connected edge geodetic set of Cp and so gcce(Cp) <
k+2. We prove that gcce(Cp) = k+2. Suppose that gcce(Cp) 6 k+2. Then there

exists an edge geodetic set M
′
such that |M ′ | < k + 1. Let x

′ ∈ M
′
and y

′
, z

′

be the antipodal vertices of x
′
. Since |M ′ | 6 k + 1, {y′

, z
′} * M

′
. Therefore

Ie[M
′
] ̸= E(Cp). Hence it follows that M

′
is not a complement connected edge

geodetic set of Cp, which is a contradiction. Therefore

gcce(G) = k + 2 =
⌈p
2

⌉
+ 1.

�
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Theorem 2.5. For the complete bipartite graph G = Km,n (2 6 m 6 n),

gcce(G) = m+ n.

Proof. Let X = {x1, x2, .., xm}, and Y = {y1, y2, .., yn} be the bipartition of
G. Then S = X and S1 = Y are the edge geodetic sets of G. Since G[V − S] and
G[V − S1] are not connected, S and S1 are not connected edge geodetic sets of G.
Hence it follows that V (G) is the unique complement connected edge geodetic set
of G so that gcce(G) = m+ n. �

Theorem 2.6. For any graph G, no cut vertex of G belongs to any minimum
complement connected edge geodetic set of G.

Proof. Let S be gcce-set of G and v ∈ S be a vertex of G. We have to prove
that v is not a cut vertex of G. On the contrary suppose that v is a cut vertex of
G. Let G1, G2, ..., Gr (r > 2) be the components of G− v. Then v is a adjacent to

at least one element of each Gi (1 6 i 6 r). Let S
′
= S−{v} and uw be an edge of

G. Since S and S
′
are complement connected edge geodetic sets of G, uw ∈ Ie[x, v]

where x ∈ S. Without loss of generality, let x ∈ G1. Let us assume the x − v
geodesic be P . Let us assume that y ∈ Gk (k ̸= 1). Since S is a gcce-set of G,
vy ∈ Ie[v, z] where z ∈ S. Hence it follows that z ̸= v. Since v is a cut vertex of

G, P ∪ Q is a x − z geodesic of G. Thus the edge uw ∈ Ie[x, z], where x, z ∈ S
′
.

Therefore S
′
is a complement connected edge geodetic set of G with |S′ | = |S| − 1,

which is a contradiction to S is a gcce-set of G. Therefore v ∈ S. Hence no cut
vertex of G belongs to any edge gcce-set of G. �

Theorem 2.7. For a connected graph G, gcce(G) = 2 if and only if there exists
peripheral vertices u and v such that every edge of G is on a diametral path joining
u and v and S = {u, v} is not a cut-set of G.

Proof. Let u and v be peripheral vertices of G such that every edge of G is
on a diametral path joining u and v and S = {u, v} is not a cut-set of G. Then S is
an edge geodetic set of G and G[V −S] is connected. Therefore S is a complement
connected edge geodetic set of G so that gcce(G) = 2. Conversely let gcce(G) = 2.
Let S = {u, v} be a gcce-set of G. Then G[V −S] is connected. Therefore S = {u, v}
is not a cut-set of G. Since S is a complement connected edge geodetic set of G,
e ∈ Ie[S] for every e ∈ E(G). Hence it follows that v ∈ Ie[S] for every v ∈ V . We
show that d(u, v) = d(G). If d(u, v) < d(G), then let x and y be two vertices of
G such that d(x, y) = d(G). Now, it follows that x and y lie on distinct geodesics
joining u and v. Hence

d(u, v) = d(u, x) + d(x, v) ... (1) and d(u, v) = d(u, y) + d(y, v)...(2).

By the triangle inequality, d(x, y) 6 d(x, u)+d(u, y) (3). Since d(u, v) < d(x, y),(3)
becomes d(u, v) < d(x, u) + d(u, y) ... (4). Using (4) in (1), we get d(x, v) <
d(x, u)+ d(u, y)− d(u, x) = d(u, y). Thus d(x, v) < d(u, y) ... (5). Also, by triangle
inequality, we have d(x, y) 6 d(x, v) + d(v, y) ... (6). Now, using (5) and (2),(6)
becomes d(x, y) < d(u, y) + d(v, y) = d(u, v). Thus, d(G) < d(u, v), which is a
contradiction. Hence d(u, v) = d(G) and since S = {u, v} is an edge geodetic
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minimum for G, It follows that each edge of G is on diametral path joining u and
v. �

Theorem 2.8. Let G be a connected graph with △(G) = p− 1. If G contains
only one universal vertex say v. Then N(v) ⊆ S where S is a complement connected
edge geodetic set of G.

Proof. Let N(v) = {v1, v2, ..., vp−1}. We prove that N(v) ⊆ S. Suppose this
is not the case. Then there exists at least one vl ∈ N(v) such that vl ̸∈ S. Then
vvl ̸∈ Ie[S]. Hence S is not a complement connected edge geodetic set of G, which
is a contradiction. Therefore N(v) ⊆ S. �

Theorem 2.9. Let G be a connected graph with △(G) = p− 1. If G contains
only one universal vertex. Then gcce(G) = p− 1.

Proof. Let v be the only one universal vertex of G. Then by Theorem 2.8,
gcce(G) > p− 1. Let S be a complement connected edge geodetic set of G. If v is a
cut vertex of G. Then v ̸∈ S. Then S = N(v) is the unique minimum complement
connected edge geodetic set of G so that gcce(G) = p− 1. If v is not a cut vertex of
G, then let S = N(v). Let x ∈ N(v). Then xv ∈ Ie[S]. Let x, y ∈ N(v) such that
xy ∈ E(G). Then xy ∈ Ie[x, y] with x, y ∈ S. Therefore S is an edge geodetic set
of G, Since G[S−V ] is connected, S is the unique minimum complement connected
edge geodetic set of G so that gcce(G) = p− 1. �

Remark 2.2. The converse of the Theorem 2.9 need not be true. For the graph
G given in Figure 2, gcce(G) = 4 = p− 1. But G contains no universal vertices.

2.eps 2.eps

Figure 2. Graph 2

Corollary 2.1. For the graph

G = K1 + (m1K1 ∪m2K2 ∪ ... ∪mkKk),

where m1 +m2 + ...+mk > 2, gcce(G) = p− 1.

Proof. This follows from Theorem 2.9. �
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Corollary 2.2. For the wheel Wp = K1 + Cp−1 (p > 3), gcce(Wp) = p− 1.

Proof. This follows from Theorem 2.9. �

Corollary 2.3. For the Fan graph Fp = K1 + Pp−1, gcce(G) = p− 1.

Proof. This follows from Theorem 2.9. �

Theorem 2.10. For a connected graph G, gcce(G) = p if and only if G is semi
complete.

Proof. Let G be semi-complete. Then by Observation 2.1(ii), gcce(G) = p.
Conversely, let gcce(G) = p. We show that G is semi-complete. Suppose this is

not the case. Then there exists u ∈ V such that v is not a semi extreme vertex of
G. Then for each u ∈ N(v), there exists xu ∈ N(v)\u such that uxu ̸∈ E(G). Let
S = V −{v}. Consider the edge uv. Since u, xu ∈ S, the edge uv lies on the geodesic
u, v, xu. Therefore S is an edge geodetic set of G. Since G[V − S] is connected, S
is a complement connected edge geodetic set of G so that gcce(G) 6 p− 1, which is
a contradiction. Therefore, G is a semi complete. �

Theorem 2.11. Let G be a connected graph with at least two universal vertices.
Then gcce(G) = p.

Proof. Since G contains at least two universal vertices, G is semi complete.
Then the result follows from Theorem 2.10. �

Corollary 2.4. For the graph G = Kp − {e}, p > 4, gcce(G) = p.

Proof. Since G contains at least two universal vertices, the result follows from
Theorem 2.11. �

Theorem 2.12. Let G be a geodetic graph with diameter d. Then

gcce(G) 6 p− d+ 1.

Proof. If G = Kp (p > 2), then gcce(G) = p so the result is trivial. So
assume that G ̸= Kp. Let u and v be two antipodal vertices of G. Then d =
d(u, v) > 2. Let P : u = u0, u1, u2, ..., ud−1, ud = v be a diametral path of G.
Let S = V − {u1, u2, ..., ud−1}. We prove that S is a complement connected edge
geodetic set of G. Let e ∈ E. If e ∈ E(P ), then e ∈ Ie[u, v]. If e is not incident with
any vertex of P , then e ∈ Ie[S]. Now let e = vix (1 6 i 6 d−1) such that x ̸∈ P . We
claim that either u = u0, u1, ..., ui−1, uix or xui, ui+1, ..., ud−1, ud = v is geodesic.
Suppose that both of them are not geodesics. Let P1 : u = u0, v1, v2, ..., vl = x and
P2 : u = vd, w1, w2, ..., wk = x be two geodesics. Then P1 does not contain at least
one edge from P . Similarly P2 does not contain at least one edge from P . Also
we have l 6 i and k 6 d − i. Now P1 ∪ P2 is an u-v walk of length 6 l + k 6 d
such that does not contain at least one edge from P . Hence it follows that P1 ∪P2

contains an u-v path P
′
of length 6 d such that P

′ ̸= P . If | P ′ | < d, then it is a

contradiction to d(u, v) = d. If | P ′ |= d, then since P
′ ̸= P , we have two different
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u-v geodesics, which is a contradiction to G a geodetic graph. Thus we see that
either u = u0, u1, ..., ui−1, uix or xui, ui+1, ..., ud−1, ud = v is the geodesic. Hence
it follows that either e ∈ Ie[u, x] or e ∈ Ie[x, v]. Thus S is an edge geodetic set of
G. Since G[V − S] = G[P ], which is a connected. Therefore S is a complement
connected edge geodetic set of G so that gcce(G) 6 p− d+ 1. �

Example 2.2. The bounds in Theorem 2.12 is sharp. For the geodetic graph
given in Figure 3 as the ’Graph 3’,

3 and 4.eps 3 and 4.eps

Figure 3. Graph 3 and Graph 4

d = 2, p = 4, p− d+ 1 = 3 and gcce(G) = 3 so that gcce(G) = p− d+ 1.

Also the bound in Theorem 2.12 can be strict. For the geodetic graph G given
in Figure 3 as the ’Graph 4’, d = 3, p = 6, p − d + 1 = 4 and gcce(G) = 3. Thus
gcce(G) < p− d+ 1.

Remark 2.3. The Theorem 2.12 is not true if G is not a geodetic graph. For
the graph G given in Figure 4 as the ’Graph 5’, p = 6, d = 3, p − d + 1 = 4 and
gcce(G) = 6 so that gcce(G) > p− d+ 1.

5.eps 5.eps

Figure 4. Graph 5
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Remark 2.4. The converse of the Theorem 2.12 need not be true. For the
graph G given in Figure 5 as the ’Graph 6’, p = 7, d = 4,gcce(G) = 3 and p−d+1 =
4. Thus gcce(G) 6 p− d+ 1. However G is not a geodetic graph.

6.eps 6.eps

Figure 5. Graph 6

Theorem 2.13. Let G be a geodetic graph. Then gcce(G) = p if and only if
G = Kp.

Proof. If G = Kp, then by Observation 2.1 (i), gcce(G) = p. Conversely let
gcce(G) = p. Suppose that G ̸= Kp. Then d > 2. By Theorem 2.12, gcce(G) 6 p−1,
which is a contradiction. Therefore G = Kp. �

In view of Theorem 2.1, We have the following realization result.

Theorem 2.14. For every pair a and b of integers a and b with 2 6 a 6 b,
there exists a connected graph G with ge(G) = a and gcce(G) = b.

Proof. Case 1. Let a = b, For a = 2, let G = Pp (p > 3). Then by Theorems
1.2 and 2.3, ge(G) = gcce(G) = 2 = a. For 3 6 a = b, let G = Ka. Then by
Theorem 1.3 and Observation 2.1(i), ge(G) = gcce(G) = a.

Case 2. 3 6 a < b, Let P : x, y, z be a path on three vertices. Let G be
the graph given in Figure 6 as the ’Graph 7’ obtained from P by adding the new
vertices v1, v2, ..., va−2 and u1, u2, ..., ub−a and introducing the edges uix, viy for all
i (1 6 i 6 a− 2) and xui, zvi (1 6 i 6 b− a).

First we show that ge(G) = a. Let Z = {v1, v2, ..., va−2} be the set of all
extreme vertices of G. Then by Theorem 1.1, Z is a subset of every edge geodetic
set of G and so ge(G) > a − 2. Since Ie[Z] ̸= E, Z is not an edge geodetic set of
G. It is easily verified that Z ∪ {u}, where u ̸∈ Z is not an edge geodetic set of G

and so ge(G) > a. Z
′
= Z ∪ {x, z}. Then Ie[Z

′
] = E and so Z

′
is an edge geodetic

set of G so that ge(G) = a.

Next we prove that gcce(G) = b. Since G[V − Z
′
] is disconnected, Z

′
is not a

complement connected edge geodetic set of G. By Theorem 2.2, Z is a subset of
every complement connected edge geodetic set of G. Also it is easily observed that
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every complement connected edge geodetic set of G contains each ui (1 6 i 6 b−a)
and so gcce(G) > a − 2 + b − a = b − 2. Let S = Z ∪ {u1, u2, ..., ub−a}. Then
Ie[Z] ̸= E, and so S is not a complement connected edge geodetic set of G. The

edges xy and yz lies only on x− z geodesic. S
′
= S ∪ {x, z}. Then Ie[S

′
] = E and

so S
′
is an edge geodetic set of G. Since G[V −S

′
] is connected, S

′
is a complement

connected edge geodetic set of G so that gcce(G) = b. �

7.eps 7.eps

Figure 6. Graph 7
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