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ON SOLVABILITY OF A PARABOLIC

THIRD-ORDER DIFFERENTIAL EQUATION SET

ON SINGULAR DOMAIN

Belkacem Chaouchi and Marko Kostić

Abstract. We give regularity results for solutions of a third order parabolic
equation set in nonsmooth domain. the existence and uniqueness of solutions
is discussed via an abstract point of view via the study of a third order abstract
differential equation with variable operator coefficients.

1. Introduction

Recently, many works have dealt with the resolution of the complete abstract
differential equation of third order

d3u (t)

dt3
+A

d2u (t)

dt2
+B

du (t)

dt
+ Cu (t) = h(t),

set on unbounded intervals with variable operator coefficients A,B,C in a Hilbert

space H. For example, in [1], we found a complete study of the following problem

(1.1)

(
d

dt
+A

)3

u (t) +A1
d2u (t)

dt2
+A2

du (t)

dt
= h(t),

some optimal results about the existence and uniqueness have been established,
where

• h ∈ L2 (R,H),
• (A,D(A)) is a self-adjoint positive definite in some Hilbert space H,
• (A1, D(A1)) , (A2, D(A2)) are in general linear unbounded operators.
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224 B. CHAOUCHI AND M. KOSTIĆ

In [2], problem(
d

dt
+A

)3

u (t) +A1
d2u (t)

dt2
+A2

du (t)

dt
+A3u (t) = h(t),

was considered but under the following assumptions

• h ∈ L2 (R+,H),
• (A,D(A)) is an a self-adjoint positive definite in some Hilbert space H,
• (A1, D(A1)) , (A2, D(A2)) (A3, D(A3)) are in general linear unbounded

operators.

• d2u (t)

dt2
=
du (t)

dt
= u(0) = 0.

The techniques of investigation are based essentially on the use of some classical
tools of harmonic analysis such the Fourier transform and the well known variational
method.

In this work, we moved away from the classical hilbertian framework. The
starting point of our study is a concrete problem set on non smooth cylindrical
domain Π ⊂ R3. This problem will be written later as a third order abstract
differential equation involving the principal part of (1.1). To be more precise, we
consider a cylinderical domain

Π = R+ × Ω,

but its base is a cusp domain defined by the set

(1.2) Ω =
{
(x, y) ∈ R2 : 0 < x < a, − ψ (x) < y < ψ (x)

}
,

where ψ (x) = xα, 1 < α 6 2 and a is a given positive number small enough.
This work deals with the following equation

(1.3)

(
∂

∂t
+∆

)3

u (t, x, y) = h (t, x, y) , (t, x, y) ∈ Π,

where ∆ =
∂2

∂x2
+
∂2

∂y2
is the standard Laplace operator. We note that this equation

appears in several interesting applications like heat conductivity in viscoelastic
materials and problems of world population growth; see [13, 14]. This equation is
viewed as a parabolic differential equations according to [11].

The right hand term h of (1.3) is taken in the anisotropic Lebesgue space

Lp
(
R+;h2σ (Ω)

)
, 1 < p < +∞,

endowed with its natural norm

∥f∥Lp(R+;h2σ(Ω)) =

 +∞∫
0

∥f (t)∥ph2σ(Ω) dt

1/p

.

Throughout this work, we assume that for ω > 0

(1.4) f (t, ., .) = f (t+ ω, ., ) .



ON SOLVABILITY OF THIRD-ORDER DIFFERENTIAL EQUATION 225

For the reader convenience, we recall here that h2σ (Ω) denotes the subset of C2σ (Ω)
consisting of the functions ϕ such that

lim
δ→0+

sup
0<∥(x,y)−(x′,y′)∥6δ

|ϕ (x, y)− ϕ (x′, y′)|
∥(x, y)− (x′, y′)∥2σ

= 0.

In the sequel, we assume also that

(1.5) h|R+×(a,±ψ(a)) = 0.

The solvability of (1.3) is discussed under the following boundary conditions

(1.6)
u|R+×(Γ1∪Γ2)

= 0,

u|R+×Γ3
= 0.

Here

Γ1 = {(x, y) ∈ ∂Ω : y = ψ (x)} ,
Γ2 = {(x, y) ∈ ∂Ω : y = −ψ (x)} ,
Γ3 = {(a, y) : −ψ (a) < y < ψ (a)} .

Our purpose is to establish some results about the existence and uniqueness of a
ω-periodic solution

(1.7) u (t, ., .) = u (t+ ω, ., .) ,

to (1.3)-(1.6).
Our strategy is based on the same argument used in [4, 5, 6, 7] and [8].

The main idea to solve Problem (1.3)-(1.6) consists in transforming the original
problem set non-regular domain Π to a new one set on regular domain. Next, the
transformed problem is written as an abstract differential equation set on some
suitable Banach spaces. This approach needs the use of the sum’s operator theory
as in [5]. As consequence, we establish some interesting regularity results for our
problem (1.3)-(1.7).

2. Change of variables

We use the following natural change of variables

T : Π → Q, (t, x, y) 7→ (t, ξ, η) =

(
t,
x1−α

α− 1
,

y

ψ (x)

)
,

where

(2.1) Q = R+ ×D,

with

D = ]ξ0,+∞[× ]−1, 1[ ,

and

ξ0 =
1

α− 1
a1−α > 0.

One has
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(2.2) T−1 : Q→ Π (t, ξ, η) 7→ (x, y) =
(
t, e

ln[(α−1)ξ]
1−α , ηe

α ln[(α−1)ξ]
1−α

)
.

Note that for any x ∈]0, a[

Π(t, x, ψ (x)) =

(
t,
x1−α

α− 1
, 1

)
, Π(t, x,−ψ (x)) =

(
t,
x1−α

α− 1
,−1

)
,

then

(2.3)


Π(Γ1) = {(ξ, 1) : ξ ∈ ]ξ0,+∞[} ,
Π(Γ2) = {(ξ,−1) : ξ ∈ ]ξ0,+∞[} ,
Π(Γ3) = {(ξ0, η) : η ∈ ]−1,+1[} ,

and

lim
x→0+

Π(t, x, ψ (x)) = lim
x→0+

(
t,
x1−α

α− 1
, 1

)
= (t,+∞, 1) ,

lim
x→0+

Π(t, x,−ψ (x)) = lim
x→0+

(
t,
x1−α

α− 1
,−1

)
= (t,+∞,−1) ,

which means that the axis {t ∈ R+ : (t, 0, 0)} is transformed in

D∞ = {(t,+∞, η) : η ∈ ]−1,+1[} = R+ × {+∞}× ]−1,+1[ .

Now, define the following change of functions

(2.4)


v (t, ξ, η) := (v ◦Π)(t, x, y) = u(t, x, y) = u

(
t, e

ln[(α−1)ξ]
1−α , ηe

α ln[(α−1)ξ]
1−α

)
g (t, ξ, η) := (g ◦Π)(t, x, y) = h(t, x, y) = h

(
t, e

ln[(α−1)ξ]
1−α , ηe

α ln[(α−1)ξ]
1−α

)
.

Put

(2.5) β = α/ (α− 1) and θ = (α− 1)
β
.

Then, Equation (1.3) becomes

(2.6)

(
∂

∂t
+∆

)3

v (t, ξ, η) +
1

ξ
[Pv] (t, ξ, η) = f (t, ξ, η) , (t, ξ, η) ∈ Q

where

(2.7) f (t, ξ, η) = θ−2ξ−2βg (t, ξ, η) ,

and

(2.8) Pv =
3∑
k=1

1

ξk−1

∂3−k

∂t3−k
Lkv.
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Here L is the second differential operator with C∞-bounded coefficients on Q given
by

[Lv] (t, ξ, η)

= α2θ−2/β η
2

ξ

∂2v

∂η2
(t, ξ, η) + 2αθ−1/βη

∂2v

∂ξ∂η
(t, ξ, η)

+αθ−1/β ∂v

∂ξ
(t, ξ, η) + α (α+ 1)

2
θ−2/β η

ξ

∂v

∂η
(t, ξ, η) .

Since the solvability of our problem (1.3) is discussed near the singular part of our
domain, the operator P defined (2.8) is viewed in the sequel as a perturbation of
the following one given by

(2.9)



(
∂

∂t
+∆

)3

v (t, ξ, η) = f (t, ξ, η) , (t, ξ, η) ∈ Q,

v (t+ ω, ξ, η) = v (t, ξ, η) , (t, ξ, η) ∈ Q,

v (t, ξ0, η) = 0, (t, η) ∈ R+ × ]−1, 1[ ,

v (t, ξ,−1) = v (t, ξ, 1) = 0, (t, ξ) ∈ R+ × ]ξ0,+∞[ .

At this level, we note that condition (1.5) becomes

(2.10) f(.,+∞, .) = 0 and f (., 0,±1) = 0.

Now, it is necessary to specify the impact of the change of variables on the
functional framework of our study:

Lemma 2.1. Let 0 <σ < 1
2 and 1 < α 6 2. Then

(1) h ∈ Lpω
(
R+;h2σ (Ω)

)
⇒ f ∈ Lpω

(
R+;h2σ (D)

)
(2) f ∈ Lpω

(
R+;h2σ (D)

)
⇒ h ∈ Lpω

(
R+;h2σα,σ (Ω)

)
with

h2σα,σ (Ω) =
{
ϕ ∈ h2σ (Ω) : x2α(σ+1)ϕ ∈ h2σ (Ω)

}
.

Proof. See Proposition 3.1 in [4]. �

3. The abstract formulation of the principal problem (2.9)

Set E = h2σ (D) and define the functions :

v : R+ → E ; t −→ v(t) ; v(t)(ξ, η) = v(t, ξ, η),

f : R+ → E ; t −→ f(t) ; f(t)(ξ, η) = f(t, ξ, η).

Consider the operator A defined by

(3.1)

{
D(A) = {v ∈ Lp (R+;E) : v(t) ∈ D(C)},
(Av) (t) = C(v(t)),

with
(3.2){

D (C) =
{
w ∈W 2,p (D) ∩ C2 (D) , p > 2 : w|ξ=ξ0 = 0, w|η=±1 = 0

}
,

(Cw) (ξ, η) = ∆w (ξ, η) .
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The abstract version of the principal problem (2.9) is given by

(3.3)

d3v (t)

dt3
+ 3A

d2v (t)

dt2
+ 3A2 dv (t)

dt
+A3v (t) = f(t), t ∈ R+,

v (t+ ω) = v (t) .

4. Spectral study of the operator (A,D(A))

This section gives some useful spectral properties of the operator (A,D(A))
defined by (3.1). The operator (A,D(A)) has the same properties as its realiza-
tion (C,D(C)) defined by (3.2). Then, in the framework of the little Hölder space
h2σ (D) , we consider the following problem

(4.1)


(∆− λ) v (ξ, η) = f (ξ, η) , (ξ, η) ∈ D, λ > 0,

v (ξ0, η) = 0, v (+∞, η) = 0, −1 < η < 1,

v (ξ,−1) = v (ξ, 1) = 0, ξ > ξ0.

The solvability of (4.1) is discussed by using the commutative version of the sum’s

operator technique developed in [9]. First, let us recall the essential of this method

4.1. On the sum of linear operators. Let X a complex Banach space
and M , N two closed linear operators with domains D(M), D(N). Let C be the
operator defined by {

Cv =Mv +Nv,
v ∈ D(C) = D(M) ∩D(N),

where M and N verify the assumptions

(H.1)



i) ρ(M) ⊃
∑
M = {µ : |µ| > r, |Arg(µ)| < π − ϵM} ,

∀µ ∈
∑
M

∥∥∥(M − µI)
−1

∥∥∥
L(X)

6 CM/ |µ| .

ii) ρ(N) ⊃
∑
N = {µ : |µ| > r, |Arg(µ)| < π − ϵN} ,

∀µ ∈
∑
N

∥∥∥(N − µI)
−1

∥∥∥
L(X)

6 CN/ |µ| .

iii) ϵM + ϵN < π.

iv) D(M) +D(N) = X.

v) σ (−M) ∩ σ (N) = ∅,
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and

(H.2)



∀µ1 ∈ ρ(M), ∀µ2 ∈ ρ(N)

(M − µ1I)
−1

(N − µ2I)
−1 − (N − µ2I)

−1
(A− µ1I)

−1

=
[
(M − µ1I)

−1
; (N − µ2I)

−1
]
= 0,

where ρ(M) and ρ(N) are the resolvent sets of M and N .
The application of the sum’s theory needs to introduce some interpolation spaces.
For any ϱ ∈ ]0, 1[ , and thanks to (H.1), we introduce the two families of real Banach
interpolation spaces between D (M) and E :

DM (ϱ,+∞) =

{
ζ ∈ E : sup

r>0

∥∥∥rϱM (M − rI)
−1
ζ
∥∥∥
X
<∞

}
,

and its subspace

DM (ϱ) =

{
ζ ∈ E : lim

r→+∞

∥∥∥rϱM (M − rI)
−1
ζ
∥∥∥
X

= 0

}
.

Among the main results proved in [9] one has

Theorem 4.1. Let ϱ ∈]0, 1[. Assume (H.1), (H.2) and f ∈ Dϱ (M) (resp. f ∈
Dϱ (N)). Then, the problem

Au+Bu− λu = f,

has a unique strict solution

u ∈ D(M) ∩D(N),

given by

u = − 1

2iπ

∫
γ1

(M + zI)
−1

(N − zI − λI)
−1
fdz

where γ1 is a suitable sectorial curve lying in ρ(−M) ∩ ρ(N).

4.2. The application of the sum’s theory. Set X = C (D) and let us
introduce the two closed linear operators

(4.2)

{
D (M) =

{
w ∈ C2 ([ξ0,+∞[) : w (ξ0) = 0, w (+∞) = 0

}
,

(Mw) (η) = w′′ (ξ) ,

and

(4.3)

{
D (N) =

{
w ∈ C2 ([−1, 1]) : w (−1) = w (1) = 0

}
,

(Nw) (η) = w′′ (η)

Our problem (4.1) is written as follows

(4.4)

{
Mv +Nv − λv = f,
v ∈ D(M) ∩D(N).

One has

Lemma 4.1. The operators (M,D (M)) and (N,D (N)) satisfy Assumptions
(H.1) and (H.2)
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Proof. First, a direct computation show that

(M + z)
−1
ϕ = −

∫ +∞

ξ0

k(ξ, s)ϕ(s)ds,

where

k(ξ, s) =


e−

√
−z(ξ−ξ0) sinh

√
−zs√

−z
ξ0 6 s 6 ξ,

e−
√
−zs sinh

√
−z(ξ − ξ0)√

−z
s > ξ.

Here
√
−z is the analytic determination defined by Re

√
−z > 0. Then∥∥∥∥∫ +∞

ξ0

k(ξ, s)ϕ(s)ds

∥∥∥∥
X

6 I + J,

and

I =

∫ ξ

ξ0

e−(Re
√
−z)(ξ−ξ0)

∣∣sinh√−zs
∣∣∣∣√−z

∣∣ ds ∥ϕ∥X

6 e−(Re
√
−z)(ξ−ξ0)

|z|1/2
1

Re
√
−z

sinh(Re
√
zξ) ∥ϕ∥X

and

J 6
∣∣sinh√−z(ξ − ξ0)

∣∣∣∣√−z
∣∣ |z|

∫ +∞

ξ

e−(Re
√
−z)sds ∥ϕ∥X

6 cosh(Re
√
−z(ξ − ξ0))e

−(Re
√
−z)ξ

|z|1/2Re
√
−z

∥ϕ∥X ,

then

(4.5)
∥∥(M + zI)−1

∥∥
L(X)

= O

(
1

|z|

)
.

In the general case, it is well known that estimate (4.5) implies the existence of
δ0 ∈ (0, π/2) and ε0 > 0 such that the resolvent set of M contains a sectorial
domain of the form

Σ = {z ∈ C : |z| > ε0 and |arg z| = δ0} ∪ {z = ε0e
iθ : δ0 6 θ 6 2π − δ0}.

The operator (N,D (N)) can be treated by same techniques. This means that
Hypothesis (H.1) is handled by choosing a suitable ϵM and ϵN in (0, π/2).
Now, Hypothesis (H.2) is easily checked since the two operators are acting on
different variables. �

Remark 4.1. In our situation, thanks to (2.10), one has exactly

(4.6) DM (σ) = DM (σ) =
{
ϕ ∈ h2σ (D) : ϕ(.,±1) = 0, ϕ(ξ0, .) = 0

}
, 0 < 2σ < 1,

this justify the importance of the conditions (1.5).

Our main result concerning the operator (C,D(C)) is formulated as follows
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Lemma 4.2. The operator (C,D(C)) defined by (3.2) is a closed operator sat-
isfying the Krein-ellipticity property, that is: R+ ⊂ ρ (A) and

(4.7) ∃ K > 0 : ∀λ > 0
∥∥(C − λI)−1

∥∥
L(h2σ(D))

6 K

1 + |λ|
.

Proof. As a direct consequence of the sum’s theory, we can say that under
conditions (1.5) Problem (4.1) has a unique solution v. More precisely (C − λI)

−1

is well defined and one has

v = (C − λI)
−1
f = (M +N − λ)

−1
f =

−1

2iπ

∫
γ1

(M + z)
−1

(N − z − λ)
−1
fdz,

where γ1 is the boundary of Σ. Then

v(ξ, η)

= − 1

2iπ γ1

ξ−ξ0∫
0

e−
√
−z(ξ−ξ0) sinh

√
−zs√

−z
(
(N − zI)−1f(s)

)
(η)dsdz

− 1

2iπ γ1

+∞∫
ξ−ξ0

e−
√
−zs sinh

√
−z(ξ − ξ0)√

−z
(
(N − zI)−1f(s)

)
(η)dsdz;

but in our case, one has(
(N − zI)−1f(s)

)
(η)

= −
∫ η

−1

2 sinh
√
4z

(
1+τ
2

)
sinh

√
4z

(
1−η
2

)
√
4z sinh

√
4z

f(s)(τ)dτ

−
∫ 1

η

2 sinh
√
4z

(
1+η
2

)
sinh

√
4z

(
1−τ
2

)√
4 (z) sinh

√
4 (z)

f(s)(τ)dτ

=

∫ 1

−1

Kz(η, τ)f(s)(τ)dτ

=

∫ 1

−1

Kz(η, τ)f(s+ ξ0, τ)dτ.

We then obtain the formula

v(ξ, η)

= − 1

2iπ γ1

ξ−ξ0∫
0

e−
√
−z(ξ−ξ0) sinh

√
−zs√

−z
[
1
−1Kz(η, τ)f(s+ ξ0, τ)dτ

]
dsdz

− 1

2iπ γ1

+∞∫
ξ−ξ0

e−
√
−zs sinh

√
−z(ξ − ξ0)√

−z
[
1
−1Kz(η, τ)f(s+ ξ0, τ)dτ

]
dsdz.

The estimate (4.7) is obtained via the same argument used in [3]. �
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Consequently, one has

Lemma 4.3. The operator (A,D(A)) defined by (3.1) is a closed operator sat-
isfying the Krein-ellipticity property, that is: R+ ⊂ ρ (A) and

(4.8) ∃ C > 0 : ∀λ > 0
∥∥(A− λI)−1

∥∥
L(Lp(R+;h2σ(D)))

6 C

1 + |λ|
,

Remark 4.2. Assumption (4.8) implies that operator B = −(−A)1/2 is well
defined and it is the infinitesimal generator of the generalized analytic semigroup(
etB

)
t>0

. More precisely, there exists a sector

Πδ,r0 = {z ∈ C∗ : |arg z| 6 δ + π/2} ∪B(0, r0)

(with some positive δ, r0) and K > 0 such that ρ(B) ⊃ Πδ,r0 and

(4.9) ∃C > 0 : ∀z ∈ Πδ,r0 ,
∥∥(B − zI)−1

∥∥ 6 K

1 + |z|
.

We recall that one has for all t > 0 and φ ∈ E

(4.10) eBtφ =
1

2iπ

∫
γ

ezt(B − zI)−1φdz,

where γ = ∂Πδ,r0 , (the sectorial boundary curve of Πδ,r0 oriented from ∞ei(δ+π/2)

to ∞e−i(δ+π/2)).

Taking into account the definition of the operator A, we mention some usual
properties of the semigroup

(
etB

)
t>0

. For more information, we refer the reader to

[10] and [16].

Lemma 4.4. Let E a complex Banach space. For t ∈ R+, 1 < p < +∞,
Ψ ∈ Lp(R+;E) and Φ ∈ Lp(R+;E), one has

(1) t 7−→ B
∫ t
0
e(t−s)BΨ(s)ds ∈ Lp(R+;E).

(2) t 7−→ B
∫ t
0
e(t−s)BΦ(s)ds ∈ Lp(R+;E).

(3) t 7−→ B
∫ +∞
t

e(s−t)BΦ(s)ds ∈ Lp(R+;E).

(4) t 7−→ B
∫ +∞
0

e(s+t)BΦ(s)ds ∈ Lp(R+;E).

5. Some regularity results for the complete transformed problem

We look now an explicit representation of v. Classical considerations give the
following representation, for a.e. t ∈ R+

v(t) = etBb1 + tetBb2 + t2etBb3,
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where b1, b2 and b3 are arbitrary constants in E. Using condition (1.7), a formal
computation show that

v(t) =
(1 + 2t)

2 (1− eBω)
3

t+ω∫
t

(
ω − s

(
I − eBω

))2
eB(t+ω−s)f(s)ds

+
ω2eBω

2 (1− eBω)
3

t+ω∫
t

eB(t+ω−s)f(s)ds(5.1)

+
t2

2 (1− eBω)
3

t+ω∫
t

eB(t+ω−s)f(s)ds.

Remark 5.1. Note here that this solution is well defined. In fact, we know
that (4.9) allow us to say that the operator 1− eBω has a bounded inverse and(

1− eBω
)−1

=
1

2πi

∫
γ

ezω

(1− ezω)
(B − zI)

−1
dz + I,

where γ is a suitable curve in the complex plane, see [15], page 59.

Putting

Z = eBω,

then, (5.1) can be written in a compact form as follows

v(t) =

3∑
i=1

vi (t) ,

where

v1 (t) = Φ1 (Z)
t+ω∫
t

(1 + 2t) (ω − s (I − Z))
2
eB(t−s)f(s)ds,

v2 (t) = Φ2 (Z)
t+ω∫
t

eB(t−s)f(s)ds,

v3 (t) = Φ1 (Z)
t+ω∫
t

t2eB(t−s)f(s)ds.

Here

Φ1 (Z) =
Z

2 (1− Z)
3 ,

Φ2 (Z) =
ω2Z2

2 (1− Z)
3 .

Thereafter, keeping in mind Assumption (2.10) and Lemma 4.4 we give here some
interesting regularity results. The proofs of these results is straightforward and will
be omitted.

Lemma 5.1. Let f ∈ Lp ([0,+∞[;E) with 1 < p < +∞. Then for k ∈ {0, 1, 2}
and i ∈ {1, 2, 3}, we get
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(1) t 7→ v
(k)
i (t) ∈ Lp (R+;E) .

(2) t 7→ A3vi (t) ∈ Lp (R+;E) .

(3) t 7→ A2vi (t) ∈ Lp (R+;E) .

(4) t 7→ Avi (t) ∈ Lp (R+;E) .

Now, we are able to give our main results for problem (3.3)

Proposition 5.1. Problem (3.3) has unique ω−periodic solution

v ∈W 3,p
(
R+;E

)
satisfying the maximal regularity property

d3v

dt3
, A

d2v

dt2
, A2 dv

dt
,A3v ∈ Lp

(
R+;E

)
.

So, our main result concerning Problem (2.9) is given by the following

Theorem 5.1. Let f ∈ Lp
(
[0,+∞[;h2σ (D)

)
with 1 < p < +∞, 0 < 2σ < 1

satisfying
f(.,+∞, .) = 0 and f (., 0,±1) = 0.

Then, Problem (2.9) has unique ω−periodic solution

v ∈W 3,p
(
R+;h2σ (D)

)
,

such that
∂3v

∂t3
, ∆

d2v

dt2
, ∆2 ∂v

∂t
and ∆3v ∈ Lp

(
R+;E

)
.

Adapting the same classical perturbation argument used in [12], we obtain

Theorem 5.2. Let f ∈ Lp
(
[0,+∞[;h2σ (D)

)
with 1 < p < +∞, 0 < 2σ < 1

satisfying
f(.,+∞, .) = 0 and f (., 0,±1) = 0.

Then, Problem(
∂

∂t
+∆

)3

v (t, ξ, η) +
1

ξ
[Pv] (t, ξ, η) = f (t, ξ, η) , (t, ξ, η) ∈ Q

v (t+ ω, ξ, η) = v (t, ξ, η) , (t, ξ, η) ∈ Q,

v (t, ξ0, η) = 0, (t, η) ∈ R+ × ]−1, 1[ ,

v (t, ξ,−1) = v (t, ξ, 1) = 0, (t, ξ) ∈ R+ × ]ξ0,+∞[ ,

has unique ω−periodic solution

v ∈W 3,p
(
R+;h2σ (D)

)
,

such that
∂3v

∂t3
, ∆

d2v

dt2
, ∆2 ∂v

∂t
and ∆3v ∈ Lp

(
R+;E

)
.

Then we can go back to the original problem (1.3) is ensured by the inverse
change of variables (2.2) and Lemma 2.1. Taking into account all results obtained
in preceding theorem, we are able to justify our main result, that is
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Theorem 5.3. Let f ∈ Lp
(
[0,+∞[;h2σ (D)

)
with 1 < p < +∞, 0 < 2σ < 1

satisfying condition (1.5). Then, Problem (1.3) -(1.7) has a unique ω−periodic
solution

u ∈W 3,p
(
R+;h2σα,σ (Ω)

)
,

such that

∂3u

∂t3
, ∆

∂2u

∂t2
, ∆2 ∂u

∂t
and ∆3u ∈ Lp

(
R+;h2σα,σ (Ω)

)
.
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Novi Sad, Serbia


