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SOME FIXED POINT THEOREMS UNDER

IMPLICIT RELATION ON S-METRIC SPACES

Gurucharan Singh Saluja

Abstract. The aim of this paper is to establish some fixed point and common
fixed points theorems in the setting of S-metric space under implicit relation.
Our results extend, unify and generalize several results from the current ex-
isting literature.

1. Introduction

Metric space is one of the most useful and important space in mathematics. Its
wide area provides a powerful tool to the study of variational inequalities, optimiza-
tion and approximation theory, computer sciences and so many other mathematics
fields. As it is well-known, one of the most useful result in nonlinear analysis is the
Banach contraction mappings principle [2]. Many authors generalized this famous
result in different ways. Recently the study of fixed point theory in metric space is
very interesting field and attract many researchers to investigated different results
on it.

In 2006, Mustafa and Sims [8] introduced a new structure of generalized metric
space, called G-metric space and gave a modification to the contraction principle of
Banach. After then, some authors [3, 9, 14] have proved some fixed point results
in these spaces. In 1992, B.C. Dhage [4] introduced the notion of D-metric space
and proved some fixed point theorems. In 2007, Sedghi et al. [11] introduced
D∗-metric space which is a modification of D-metric spaces and proved some fixed
point theorems in D∗-metric spaces. Later on many authors have studied the fixed
point theorems in generalized metric spaces (see, for example [1, 6, 7, 15]).
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In 2012, Sedghi et al. [12] introduced the concept of S-metric space which is
a generalization of a G-metric space and D∗-metric space and obtained some fixed
point theorems in S-metric space. They also give some examples of S-metric space
which shows that S-metric space is different from other spaces.

In 2013, Gupta [5] introduced the concept of cyclic contraction on S-metric
space and proved some fixed point theorems on S-metric spaces which generalized
the results of Sedghi et al. [12]. In 2014, Sedghi and Dung [13] have proved
a general fixed point theorem in S-metric space using implicit relation and as
application they obtained many analogous of fixed point theorems in metric spaces
for S-metric spaces.

In 2015, Prudhvi [10] proved some fixed point theorems on S-metric spaces
which extend and improve the results of Sedghi and Dung [13].

Motivated by Gupta [5], Prudhvi [10] and some others, the main purpose of this
paper is to study and establish some fixed point and common fixed point theorems
in S-metric space satisfying ϕ-implicit relation. Our results extend, generalize and
unify several results from the existing literature.

2. Preliminaries

We need the following definitions and lemmas in the sequel.

Definition 2.1. ([12]) Let X be a nonempty set and S : X3 → [0,∞) be a
function satisfying the following conditions for all x, y, z, t ∈ X:

(SM1) S(x, y, z) = 0 if and only if x = y = z;

(SM2) S(x, y, z) 6 S(x, x, t) + S(y, y, t) + S(z, z, t).

Then the function S is called an S-metric on X and the pair (X,S) is called
an S-metric space or simply SMS.

Example 2.1. ([15]) Let X be a nonempty set and d be the ordinary metric
on X. Then S(x, y, z) = d(x, z) + d(y, z) is an S-metric on X.

Example 2.2. ([12]) Let X = Rn and ∥.∥ a norm on X, then S(x, y, z) =
∥y + z − 2x∥+ ∥y − z∥ is an S-metric on X.

Example 2.3. ([12]) Let X = Rn and ∥.∥ a norm on X, then S(x, y, z) =
∥x− z∥+ ∥y − z∥ is an S-metric on X.

Example 2.4. ([13]) Let X = R be the real line. Then S(x, y, z) = |x − z| +
|y − z| for all x, y, z ∈ R is an S-metric on X. This S-metric on X is called the
usual S-metric on X.

Lemma 2.1 ([12], Lemma2.5). If (X,S) is an S-metric space, then we have
S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Lemma 2.2 ([12], Lemma2.12). Let (X,S) be an S-metric space. If xn → x
and yn → y as n → ∞, then S(xn, xn, yn) → S(x, x, y) as n → ∞.

Definition 2.2. ([12]) Let (X,S) be an S-metric space.
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(a1) A sequence {xn} in X converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n > n0 we have
S(xn, xn, x) < ε. We denote this by limn→∞ xn = x or xn → x as n → ∞.

(a2) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm) → 0 as
n,m → ∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n,m > n0

we have S(xn, xn, xm) < ε.
(a3) The S-metric space (X,S) is called complete if every Cauchy sequence in

X is convergent in X.

Definition 2.3. Let T be a self mapping on an S-metric space (X,S). Then
T is said to be continuous at x ∈ X if for any sequence {xn} in X with xn → x
implies that Txn → Tx as n → ∞.

Definition 2.4. ([12]) Let (X,S) be an S-metric space. A mapping T : X →
X is said to be a contraction if there exists a constant 0 6 α < 1 such that

S(Tx, Tx, Ty) 6 αS(x, x, y)

for all x, y ∈ X. If the S-metric space (X,S) is complete then the mapping defined
as above has a unique fixed point.

Proposition 2.1. Let (X,S) be an S-metric space. Then the following state-
ments are equivalent.

(1) The sequence {xn} is Cauchy.

(2) For every ε > 0, there exists n0 ∈ N such that S(xn, xn, xm) < ε, for all
n,m > n0.

Proposition 2.2. Let (X,S) be an S-metric space. Then, for any x, y, z ∈ X
it follows that:

(1) if S(x, y, z) = 0, then x = y = z;

(2) S(x, x, y) 6 2S(x, x, z) + S(y, y, z).

Now, we introduce an implicit relation to investigate some fixed point and
common fixed point theorems in S-metric spaces.

Definition 2.5. (ImplicitRelation) Let Φ be the family of all real valued
continuous functions ϕ : R4

+ → R+, non-decreasing in the first argument for four
variables. For some k ∈ [0, 1), we consider the following conditions.

(R1) For x, y ∈ R+, if x 6 ϕ(y, y, x, 4x+y
3 ), then x 6 ky.

(R2) For x ∈ R+, if x 6 ϕ(0, x, 0, 0), then x = 0.

(R3) For x ∈ R+, if x 6 ϕ(x, 0, 0, x
3 ), then x = 0 since k ∈ [0, 1).

Example 2.5. Let ϕ(r, s, t, u) = r − µ min{s, t, u}+ (2 + µ)u, where µ > 0.

Example 2.6. Let ϕ(r, s, t, u) = r2 + a r max{s, t, u} − bs, where a > 0, b > 0.

Example 2.7. Let ϕ(r, s, t, u) = r + c max{s, t, u}, where c > 0.
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3. Main Results

In this section, we shall prove some fixed point and common fixed point theo-
rems satisfying an implicit relation in the setting of S-metric spaces.

Theorem 3.1. Let T be a self-map on a complete S-metric space (X,S) and

S(T x, T y, T z) 6 ϕ
(
S(x, y, z), S(z, z, T z), S(y, y, T y),

1

3

[
S(x, x, T y) + S(z, z, T y) + S(y, y, T x)

])
(3.1)

for all x, y, z ∈ X and some ϕ ∈ Φ. If ϕ satisfies the conditions (R1), (R2) and
(R3), then T has a unique fixed point in X.

Proof. For each x0 ∈ X and define a sequence {xn} in X such that xn+1 =
T xn for any n ∈ N. If for some n ∈ N, xn+1 = xn, then xn = T xn, that is, T has
a fixed point. Thus, we may assume that xn+1 ̸= xn for all n ∈ N. It follows from
(3.1), (SM2) and Lemma 2.1 that

S(xn+1, xn+1, xn) = S(T xn, T xn, T xn−1)

6 ϕ
(
S(xn, xn, xn−1), S(xn−1, xn−1, T xn−1), S(xn, xn, T xn),

1

3

[
S(xn, xn, T xn) + S(xn−1, xn−1, T xn) + S(xn, xn, T xn)

])
=ϕ

(
S(xn, xn, xn−1), S(xn−1, xn−1, xn), S(xn, xn, xn+1),

1

3

[
S(xn, xn, xn+1) + S(xn−1, xn−1, xn+1) + S(xn, xn, xn+1)

])
=ϕ

(
S(xn, xn, xn−1), S(xn, xn, xn−1), S(xn+1, xn+1, xn),

1

3

[
S(xn+1, xn+1, xn) + S(xn+1, xn+1, xn−1) + S(xn+1, xn+1, xn)

])
6 ϕ

(
S(xn, xn, xn−1), S(xn, xn, xn−1), S(xn+1, xn+1, xn),

1

3

[
2S(xn+1, xn+1, xn) + 2S(xn+1, xn+1, xn) + S(xn−1, xn−1, xn)

])
= ϕ

(
S(xn, xn, xn−1), S(xn, xn, xn−1), S(xn+1, xn+1, xn),

1

3

[
4S(xn+1, xn+1, xn) + S(xn, xn, xn−1)

])
.(3.2)

Since ϕ satisfies the condition (R1), there exists k ∈ [0, 1) such that

S(xn+1, xn+1, xn) 6 kS(xn, xn, xn−1) 6 knS(x1, x1, x0).(3.3)
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Thus for all n < m, by using (SM2), Lemma 2.1 and equation (3.3), we have

S(xn, xn, xm) 6 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

6 2[kn + · · ·+ km−1]S(x0, x0, x1)

6
( 2kn

1− k

)
S(x0, x0, x1).

Taking the limit as n,m → ∞, we get S(xn, xn, xm) → 0 since 0 < k < 1. This
proves that the sequence {xn} is a Cauchy sequence in the complete S-metric
space (X,S). By the completeness of the space, there exists u ∈ X such that
limn→∞ xn = u. Now we prove that x is a fixed point of T . Again by using
inequality (3.1), we obtain

S(xn+1, xn+1, T u) = S(T xn, T xn, T u)

6 ϕ
(
S(xn, xn, u), S(u, u, T u), S(xn, xn, T xn),

1

3

[
S(xn, xn, T xn) + S(u, u, T xn) + S(xn, xn, T xn)

])
= ϕ

(
S(xn, xn, u), S(u, u, T u), S(xn, xn, xn+1),

1

3

[
S(xn, xn, xn+1) + S(u, u, xn+1) + S(xn, xn, xn+1)

])
.

Note that ϕ ∈ Φ, then using Lemma 2.2 and taking the limit as n → ∞, we get

S(u, u, T u) 6 ϕ
(
0, S(u, u, T u), 0, 0

)
.

Since ϕ satisfies the condition (R2), then S(u, u, T u) 6 k.0 = 0. This shows that
u = T u. Thus u is a fixed point of T .

Now, we have to show that the fixed point of T is unique. For this, let u1, u2

be fixed points of T with u1 ̸= u2. We shall prove that u1 = u2. It follows from
equation (3.1) and Lemma 2.1 that

S(u1, u1, u2) = S(T u1, T u1, T u2)

6 ϕ
(
S(u1, u1, u2), S(u2, u2, T u2), S(u1, u1, T u1),

1

3

[
S(u1, u1, T u1) + S(u2, u2, T u1) + S(u1, u1, T u1)

])
= ϕ

(
S(u1, u1, u2), S(u2, u2, u2), S(u1, u1, u1),

1

3

[
S(u1, u1, u1) + S(u2, u2, u1) + S(u1, u1, u1)

])
= ϕ

(
S(u1, u1, u2), 0, 0,

1

3
S(u1, u1, u2)

)
.
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Since ϕ satisfies the condition (R3), then we get

S(u1, u1, u2) 6 k S(u1, u1, u2)

⇒ S(u1, u1, u2) = 0, since 0 < k < 1.

This shows that u1 = u2. Thus the fixed point of T is unique. This completes the
proof. �

Common Fixed Point Theorems

Theorem 3.2. Let T1 and T2 be two self-maps on a complete S-metric space
(X,S) and

S(T1x, T1y, T2z) 6 ϕ
(
S(x, y, z), S(z, z, T2z), S(y, y, T1y),

1

3

[
S(x, x, T1y) + S(z, z, T1y) + S(y, y, T1x)

])
(3.4)

for all x, y, z ∈ X and some ϕ ∈ Φ. Then T1 and T2 have a unique common fixed
point in X.

Proof. For each x0 ∈ X. Put x2n+1 = T1x2n and x2n+2 = T2x2n+1 for
n = 0, 1, 2, . . . . It follows from (3.4), (SM2) and Lemma 2.1 that

S(x2n+1, x2n+1, x2n) = S(T1x2n, T1x2n, T2x2n−1)

6 ϕ
(
S(x2n, x2n, x2n−1), S(x2n−1, x2n−1, T2x2n−1), S(x2n, x2n, T1x2n),

1

3

[
S(x2n, x2n, T1x2n) + S(x2n−1, x2n−1, T1x2n) + S(x2n, x2n, T1x2n)

])
= ϕ

(
S(x2n, x2n, x2n−1), S(x2n−1, x2n−1, x2n), S(x2n, x2n, x2n+1),

1

3

[
S(x2n, x2n, x2n+1) + S(x2n−1, x2n−1, x2n+1) + S(x2n, x2n, x2n+1)

])
= ϕ

(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

1

3

[
S(x2n+1, x2n+1, x2n) + S(x2n+1, x2n+1, x2n−1)

+S(x2n+1, x2n+1, x2n)
])

6 ϕ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

1

3

[
2S(x2n+1, x2n+1, x2n) + 2S(x2n+1, x2n+1, x2n) + S(x2n, x2n, x2n−1)

])
= ϕ

(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

1

3

[
4S(x2n+1, x2n+1, x2n) + S(x2n, x2n, x2n−1)

])
.(3.5)

Since ϕ satisfies the condition (R1), there exists k ∈ [0, 1) such that

S(x2n+1, x2n+1, x2n) 6 kS(x2n, x2n, x2n−1) 6 k2nS(x1, x1, x0).(3.6)
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Thus for all n < m, by using (SM2), Lemma 2.1 and equation (3.6), we have

S(xn, xn, xm) 6 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

6 2[kn + · · ·+ km−1]S(x0, x0, x1)

6
( 2kn

1− k

)
S(x0, x0, x1).

Taking the limit as n,m → ∞, we get S(xn, xn, xm) → 0 since 0 < k < 1. This
proves that the sequence {xn} is a Cauchy sequence in the complete S-metric
space (X,S). By the completeness of the space, there exists v ∈ X such that
limn→∞ xn = v. Now we have to prove that v is a common fixed point of T1 and
T2. For this, consider
S(x2n+1, x2n+1 , T1v) = S(T1x2n, T1x2n, T1v)

6 ϕ
(
S(x2n, x2n, v), S(v, v, T1v), S(x2n, x2n, T1x2n),

1

3

[
S(x2n, x2n, T1x2n) + S(v, v, T1x2n) + S(x2n, x2n, T1x2n)

])
= ϕ

(
S(x2n, x2n, v), S(v, v, T1v), S(x2n, x2n, x2n+1),

1

3

[
S(x2n, x2n, x2n+1) + S(v, v, x2n+1) + S(x2n, x2n, x2n+1)

])
(3.7)

Note that ϕ ∈ Φ, then using Lemma 2.2 and taking the limit as n → ∞, we get

S(v, v, T1v) 6 ϕ
(
0, S(v, v, T1v), 0, 0

)
.

Since ϕ satisfies the condition (R2), then S(v, v, T1v) 6 k.0 = 0. This shows that
v = T1v for all v ∈ X. Similarly, we can show that v = T2v. This shows that v is a
common fixed point of T1 and T2.

Now to show that the common fixed point of T1 and T2 is unique. For this,
let v1 be another common fixed point of T1 and T2, that is, T1v1 = T2v1 = v1 with
v ̸= v1. Then we have to show that v = v1. It follows from equation (3.4) and
Lemma 2.1 that

S(v, v, v1) = S(T1v, T1v, T2v1)

6 ϕ
(
S(v, v, v1), S(v1, v1, T2v1), S(v, v, T1v),

1

3

[
S(v, v, T1v) + S(v1, v1, T1v) + S(v, v, T1v)

])
= ϕ

(
S(v, v, v1), S(v1, v1, v1), S(v, v, v),

1

3

[
S(v, v, v) + S(v1, v1, v) + S(v, v, v)

])
= ϕ

(
S(v, v, v1), 0, 0,

1

3
S(v, v, v1)

])
.
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Since ϕ satisfies the condition (R3), then we get

S(v, v, v1) 6 k S(v, v, v1)

⇒ S(v, v, v1) = 0, since 0 < k < 1.

Thus, we have v = v1. This shows that v is the unique common fixed point of T1
and T2. This completes the proof. �

Theorem 3.3. Let T1 and T2 be two continuous self-maps on a complete S-
metric space (X,S) and

S(T p
1 x, T p

1 y, T q
2 z) 6 ϕ

(
S(x, y, z), S(z, z, T q

2 z), S(y, y, T
p
1 y),

1

3

[
S(x, x, T p

1 y) + S(z, z, T p
1 y)

+S(y, y, T p
1 x)

])
(3.8)

for all x, y, z ∈ X, where p and q are some integers and some ϕ ∈ Φ. Then T1 and
T2 have a unique common fixed point in X.

Proof. Since T p
1 and T q

2 satisfy the conditions of Theorem 3.2. So T p
1 and

T q
2 have a unique common fixed point. Let z be the common fixed point. Then,

we have

T p
1 z = z ⇒ T1(T p

1 z) = T1z
⇒ T p

1 (T1z) = T1z.
If T1z = z0, then T p

1 z0 = z0. So, T1z is a fixed point of T p
1 . Similarly, T2(T q

2 z) =
T2z. Now, using equation (3.8) and Lemma 2.1, we obtain

S(z, z, T1z) = S(T p
1 z, T p

1 z, T p
1 (T1z))

6 ϕ
(
S(z, z, T1z), S(T1z, T1z, T p

1 (T1z)), S(z, z, T p
1 z),

1

3

[
S(z, z, T p

1 z) + S(T1z, T1z, T p
1 z) + S(z, z, T p

1 z)
])

= ϕ
(
S(z, z, T1z), S(T1z, T1z, T1z), S(z, z, z),

1

3

[
S(z, z, z) + S(T1z, T1z, z) + S(z, z, z)

])
= ϕ

(
S(z, z, T1z), 0, 0,

1

3
S(z, z, T1z)

)
.

Since ϕ satisfies the condition (R3), then we get

S(z, z, T1z) 6 k S(z, z, T1z)
⇒ S(z, z, T1z) = 0, since 0 < k < 1.

Thus, we have z = T1z for all z ∈ X. Similarly, we can show that z = T2z. This
shows that z is a common fixed point of T1 and T2. For uniqueness of z, let z′ ̸= z
be another common fixed point of T1 and T2. Then clearly z′ is also a common
fixed point of T p

1 and T q
2 which implies z′ = z. Hence T1 and T2 have a unique

common fixed point. This completes the proof. �
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Theorem 3.4. Let {Gα} be a family of continuous self mappings on a complete
S-metric space (X,S) satisfying

S(Gαx,Gαy,Gβz) 6 ϕ
(
S(x, y, z), S(z, z,Gβz), S(y, y,Gαy),

1

3

[
S(x, x,Gαy) + S(z, z,Gαy)

+S(y, y,Gαx)
])

(3.9)

for α, β ∈ Φ with α ̸= β and x, y, z ∈ X. Then there exists a unique q ∈ X
satisfying Gαq = q for all α ∈ Φ.

Proof. For x0 ∈ X, we define a sequence as follows:

x2n+1 = Gαx2n, x2n+2 = Gβx2n+1, n = 0, 1, 2, . . . .

It follows from (3.9), (SM2) and Lemma 2.1 that

S(x2n+1 , x2n+1, x2n) = S(Gαx2n,Gαx2n,Gβx2n−1)

6 ϕ
(
S(x2n, x2n, x2n−1), S(x2n−1, x2n−1,Gβx2n−1), S(x2n, x2n,Gαx2n),

1

3

[
S(x2n, x2n,Gαx2n) + S(x2n−1, x2n−1,Gαx2n)

+S(x2n, x2n,Gαx2n)
])

= ϕ
(
S(x2n, x2n, x2n−1), S(x2n−1, x2n−1, x2n), S(x2n, x2n, x2n+1),

1

3

[
S(x2n, x2n, x2n+1) + S(x2n−1, x2n−1, x2n+1)

+S(x2n, x2n, x2n+1)
])

= ϕ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

1

3

[
S(x2n+1, x2n+1, x2n) + S(x2n+1, x2n+1, x2n−1)

+S(x2n+1, x2n+1, x2n)
])

= ϕ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

1

3

[
2S(x2n+1, x2n+1, x2n) + 2S(x2n+1, x2n+1, x2n)

+S(x2n, x2n, x2n−1)
])

= ϕ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

1

3

[
4S(x2n+1, x2n+1, x2n) + S(x2n, x2n, x2n−1)

])
.(3.10)

Since ϕ satisfies the condition (R1), there exists k ∈ [0, 1) such that

S(x2n+1, x2n+1, x2n) 6 kS(x2n, x2n, x2n−1) 6 k2nS(x1, x1, x0).(3.11)
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Thus for all n < m, by using (SM2), Lemma 2.1 and equation (3.11), we have

S(xn, xn, xm) 6 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

6 2[kn + · · ·+ km−1]S(x0, x0, x1)

6
( 2kn

1− k

)
S(x0, x0, x1).

Taking the limit as n,m → ∞, we get S(xn, xn, xm) → 0 as
(

2kn

1−k

)
→ 0 since

0 < k < 1. This proves that the sequence {xn} is a Cauchy sequence in the
complete S-metric space (X,S). By the completeness of the space, there exists
q ∈ X such that xn → q ∈ X as n → ∞. By the continuity of Gα and Gβ , it is clear
that Gαq = Gβq = q. Therefore q is a common fixed point of Gα for all α ∈ Φ.

In order to prove the uniqueness, let us take another common fixed point q′ of
Gα and Gβ where q′ ̸= q. Then using equation (3.9) and Lemma 2.1, we obtain

S(q, q, q′) = S(Gαq,Gαq,Gβq
′)

6 ϕ
(
S(q, q, q′), S(q′, q′,Gβq

′), S(q, q,Gαq),

1

3

[
S(q, q,Gαq) + S(q′, q′,Gαq)

+S(q, q,Gαq)
])

= ϕ
(
S(q, q, q′), S(q′, q′, q′), S(q, q, q),

1

3

[
S(q, q, q) + S(q′, q′, q) + S(q, q, q)

])
= ϕ

(
S(q, q, q′), 0, 0,

1

3
S(q, q, q′)

)
.

Since ϕ satisfies the condition (R3), then we get

S(q, q, q′) 6 k S(q, q, q′)

⇒ S(q, q, q′) = 0, since 0 < k < 1.

Thus, we have q = q′ for all q ∈ X. This shows that q is a unique common fixed
point of Gα for all α ∈ Φ. This completes the proof. �

Next, we give an analogue of fixed point theorem in metric spaces for S-metric
spaces by combining Theorem 3.1 with ϕ ∈ Φ and ϕ satisfies the conditions (R1),
(R2) and (R3). The following corollary is an analogue of Banach’s contraction
principle.

Corollary 3.1. Let (X,S) be a complete S-metric space. Suppose that the
mapping T : X → X satisfies the following condition:

S(T x, T y, T z) 6 γ S(x, y, z)
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for all x, y, z ∈ X, where γ ∈ [0, 1) is a constant. Then T has a unique fixed point
in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 3.1 with ϕ(a, b, c, d) = γ a for
some γ ∈ [0, 1) and all a, b, c, d ∈ R+. �

Again, we give an analogue of fixed point theorem in metric spaces for S-metric
spaces by combining Theorem 3.2 with ϕ ∈ Φ and ϕ satisfies the conditions (R1),
(R2) and (R3). Then we have the following corollary.

Corollary 3.2. Let (X,S) be a complete S-metric space. Suppose that the
mappings T1, T2 : X → X satisfies the following condition:

S(T1x, T1y, T2z) 6 δ S(x, y, z)

for all x, y, z ∈ X, where δ ∈ [0, 1) is a constant. Then T1 and T2 have a unique
common fixed point in X.

Proof. The assertion follows using Theorem 3.2 with ϕ(a, b, c, d) = δ a for
some δ ∈ [0, 1) and all a, b, c, d ∈ R+. �

Example 3.1. Let X = R be the usual S-metric space as in Example 2.4.
Now, we consider the mapping T : X → X by T (x) = x

7 for all x ∈ [0, 1]. Then

S(T x, T y, T z) = |T x− T z|+ |T y − T z|

=
∣∣∣(x

7

)
−

(z
7

)∣∣∣+ ∣∣∣(y
7

)
−

(z
7

)∣∣∣
=

1

7

[
|x− z|+ |y − z|

]
6 2

7

[
|x− z|+ |y − z|

]
=

2

7
S(x, y, z)

= γ S(x, y, z)

where γ = 2
7 < 1. Thus T satisfies all the conditions of Corollary 3.1 and clearly

0 ∈ X is the unique fixed point of T .

Example 3.2. Let X = R be the usual S-metric space as in Example 2.4.
Now, we consider the mapping T1, T2 : X → X by T1(x) = x

2 and T2(x) = 0 for all
x ∈ [0, 1]. Then

S(T1x, T1y, T2z) = |T1x− T2z|+ |T1y − T2z|

=
∣∣∣(x

2

)
− 0

∣∣∣+ ∣∣∣(y
2

)
− 0

∣∣∣
=

1

2

[
|x|+ |y|

]
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and

6 3

4

[
|x− z|+ |y − z|

]
=

3

4
S(x, y, z)

= δ S(x, y, z)

where δ = 3
4 < 1. Thus T1 and T2 satisfy all the conditions of Corollary 3.2 and

clearly 0 ∈ X is the unique common fixed point of T1 and T2.

Example 3.3. Let X = [0, 1]. We define S : X3 → R+ by

S(x, y, z) =

{
0 if x = y = z,

max{x, y, z} if otherwise.

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space. Let T : X → X be a
mapping defined as T (x) = x

3 for all x ∈ X.
Without loss of generality we may assume that x > y > z, then we have

S(T x, T y, T z) = max
{x

3
,
y

3
,
z

3

}
=

x

3
,

S(x, y, z) = max
{
x, y, z

}
= x,

S(z, z, T z) = max
{
z, z,

z

3

}
= z,

S(y, y, T y) = max
{
y, y,

y

3

}
= y,

S(x, x, T y) = max
{
x, x,

y

3

}
= x,

S(z, z, T y) = max
{
z, z,

y

3

}
= z,

S(y, y, T x) = max
{
y, y,

x

3

}
= y.

Now, we consider inequality (3.1), we have

S(T x, T y, T z) =
x

3
6 ϕ

{
x, z, y,

(x+ z + y

3

)}
.

Since ϕ satisfies the condition (R1), there exists k ∈ (0, 1) such that
x

3
6 k x,

or k > 1
3 . If we take 0 6 k < 1, then T satisfies all the conditions of Theorem

3.1. Hence, applying Theorem 3.1, T has a unique fixed point. Here it is seen that
0 ∈ X is the unique fixed point of T .

Example 3.4. Let X = [0, 1]. We define S : X3 → R+ by

S(x, y, z) =

{
0 if x = y = z,

max{x, y, z} if otherwise.

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space. Let T1, T2 : X → X
be two mappings defined as T1(x) = x

4 and T2(x) = x
5 for all x ∈ X.
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Without loss of generality we may assume that x > y > z, then we have

S(T1x, T1y, T2z) = max
{x

4
,
y

4
,
z

5

}
=

x

4
,

S(x, y, z) = max
{
x, y, z

}
= x,

S(z, z, T2z) = max
{
z, z,

z

5

}
= z,

S(y, y, T1y) = max
{
y, y,

y

4

}
= y,

S(x, x, T1y) = max
{
x, x,

y

4

}
= x,

S(z, z, T1y) = max
{
z, z,

y

4

}
= z,

S(y, y, T1x) = max
{
y, y,

x

4

}
= y.

Now, we consider inequality (3.4), we have

S(T1x, T1y, T2z) =
x

4
6 ϕ

{
x, z, y,

(x+ z + y

3

)}
.

Since ϕ satisfies the condition (R1), there exists k ∈ (0, 1) such that x
4 6 k x, or

k > 1
4 . If we take 0 6 k < 1, then T1 and T2 satisfy all the conditions of Theorem

3.2. Hence, applying Theorem 3.2, T1 and T2 have a unique common fixed point.
Here it is seen that 0 ∈ X is the unique common fixed point of T1 and T2.

4. Conclusion

In this paper, we establish some fixed point and common fixed point theorems
under an implicit relation in the framework of S-metric spaces. We support our
results by some examples. Our results extend, unify and generalize several results
from the existing literature.
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