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SOME NEW FRACTIONAL INTEGRAL INEQUALITIES
FOR HARMONICALLY A-CONVEX FUNCTIONS
VIA CAPUTO i-FRACTIONAL DERIVATIVES

Rashida Hussain, Asghar Ali, Arzoo Ayub, and Asia Latif

ABSTRACT. In present paper some Hermite-Hadamard type inequalities for har-
monically h-convex functions via Caputo k-fractional derivatives are established.
Moreover, some corresponding results for Caputo fractional derivatives are in-
troduced. Also some inequalities involving Caputo k-fractional derivatives for
convex functions are deduced.

1. Introduction

Convexity has been subject to comprehensive research for past few years due to
its benefits in various branches of applied and pure mathematics. Several inequal-
ities have been well-established by the researchers for convex functions, Hermite-
Hadamard (HH) inequalities is the most celebrated one. It gives sufficient and nec-
essary condition for a function to be convex.

It is stated as; let f : I C R — R be a convex function, then the subsequent
inequalities hold

4 f(a;b> <b1a/abf(g”)d$<f(a)—;f(b)’

where a,b € T with a < b. If f is concave the Inequalities (1.1) are reversed.
Through the years various genelaizations and counter parts of HH inequalities have
been developed for different classes of convex functions. In this paper HH inequalities
are generalized for harmonically h-convex function. Harmonically h-convex functions
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100 HUSSAIN, ALI, AYUB, AND LATIF

were introduced by Noor et al. [27] as unification of harmonically convex functions
[13] and h-convex functions [28]. For more work on harmonically convex functions
and h-convex functions interested readers are referred to [3, 4, 5, 6, 7, 13, 14, 15,
16, 17, 18, 22, 24, 25, 26, 29].

Fractional calculus deals with differentiation and integration of arbitrary order
see [2, 21, 23]. In order to model real-life problems different fractional operators
have been developed. The Caputo derivatives are often preferred for modelling initial
value problems. Caputo derivatives are considered to be more natural as Caputo
derivatives of constant is zero [2]. Many authors developed HH-type and Hermite-
Hadamard-Fejer type inequalities using Caputo fractional derivatives see [8, 19, 20,
29| and references therein. The authors of this paper have developed said inequalities
for k-fractional integrals [1, 9, 10, 11, 12|, we are now motivated to formulate
inequalities for Caputo k-fractional integrals. In the sequel some definition connected
to our work are given.

DEeFINITION 1.1. ([7]) Let
a>0,k>1,a¢{1,2,3,..}, n=[a]+1, f € AC"[a,b].
Then right and left Caputo k-fractional derivatives having order « are respectively
given as follows

z (n)
CDg_ff(z) ! )/a( N0 dt, x> a

T kp(n— ¢ z— )%t

and

o S R0
DY f(x) | / : it @ < b,

= krk(n—% t—x)%fnﬂ )
ok
where I'j(.) is the k-gamma function given by I'y(y) = [;° ¢~ e % dt.

If £ = 1, the definition of Caputo k-fractional derivatives coincides with that of
Caputo fractional derivatives. In addition if o € {1,2,3,...}, then

DY () = f) (@) and O D f(z) = (—1)" fO) (2).
Further if n = 1 and o = 0, then
CDYLf(x) = f(z) and DY f(z) = (—1)"f(x).

G. Farid et al. [8, 29] introduced following notations.

DEFINITION 1.2. Let @ >0, k > 1, o ¢ {1,2,3,...}, n =[a] + 1, f € AC"[a,b).
Then right and left Caputo k-fractional derivatives of f % g having order « are re-
spectively given as follows

1 ARIGIARIO
Flk(n = %) Jo (z—)F—nH

(1.2) DY (f * g)(x) = dt, z>a

and
= v rM (g™ (1)

Cra,k _
(1.3) Dy (f xg)(x) = =) ), (- x)%_n+1dt, x < b.
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In the sequel, I and (0,1) C J are intervals in R and [a, b] is in R \ {0}.

In [28], VaroSanec considered an important generalization of convex functions
namely h-convex functions.

DEFINITION 1.3. Let h: J — R be a non-negative function, A # 0. A function
f I — R is said to be h-convex if f is non-negative and

ftz+ (1 —t)y) <A@ f(y) +h(l —t)f(z), forall z,yelandtel0,1].

In [13], Iscan defined harmonically convex functions as follows.

DEFINITION 1.4. A function f : [a,b] — R is harmonically convex if

! (M) <tfly)+ Q=) f(x) forall z,y € [a,b] and ¢ € [0,1].
In [27] Noor et al. defined harmonically h-convex functions.

DEFINITION 1.5. Let h : J — R be a positive function. A function f : [a,b] —
R is said to be harmonically h-convex if

zy
f (tx + (1 -1ty

Latif et al.[22] defined harmonically symmetric function as follows.

) <h)f(y) +h(1 —t)f(z), forall z,y € [a,b] and t € [0,1].

DEFINITION 1.6. A function g : [a,b] — R is said to be harmonically symmetric

2ab
1
g(r) =g (iﬂi—i)

with respect to =17 if
2. Main Results

holds for all z € [a, b].

In this section some new HH-type inequalities for harmonically A-convex func-
tions via Caputo k-fractional derivatives are given. In addition, corresponding results
for Caputo fractional derivatives are also deduced. Moreover some analogous inequal-
ities involving Caputo k-fractional derivatives for convex functions are retrieved.

THEOREM 2.1. Let f : [a,b] — R be differentiable function such that f™) is
harmonically h-convex and f € Lla,b]. If g : [a,b] — R is a function such that
g™ is non-negative, integrable and harmonically symmetric w.r.t. %, then the
subsequent inequalities for Caputo k-fractional derivatives hold

£ () o1 )
<[fritwegen () v nitseaen i)

“(gMer) (x) h(x)da,

(2.1) <U™(a) + FO )] /

Fam Pt

fn
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where r(z) =1 and h(z) =h (%(x—%)) + h(%(%—x)) forallz € [§,1].

PROOF. Since f(”) 1s harmonically h-convex function. Substituting ¢t = = and

ta+g1b 5 Y= tb+(1 e in Inequality (1.5), we have

2.2)  f™ (fﬂ) <h (2> {f(") (M) + (M)] :

(n) ab
Multiplying Inequality (2.2) by gt(%‘.”fiﬁ’l”“) and then integrating w.r.t. ¢ over [0, 1],

we have
n b
f(n) 2ab 1 g( ) (tb+(ai7t)a> dt
a + b 0 t%—n-‘rl

ab ab ab ab
(gl ), () )|
0 0

xr =

S 2 it tie

ab _ 1
Let m = we have

s (200 /ig“”(i)dx
a+b 1 (x_i)%*"+1

(2.3) <h (1) A de+[i £ <%+1%7w) g™ (%) .

2|y -t @ p "

Let %4— % —x = y in second integral at right hand side of Inequality (2.3) and utilizing

the fact that ¢(" is harmonically symmetric with respect to %, we have

(n) (2ab ) (1)
/ <a+b>/ (x )“"“dw

1
b

n n 1) (1) 4(n) (1
), G,

b

Now utilizing the Deﬁmtlon 1.2, we have

) pn D -

ACEEAVEY. “gen) b

Ok 1 n Ca:k 1
24)  <|DYrgon () + 0 DI (frg)on (5]
where r(z) is defined in the statement.
Again employing the definition of harmonically convexity of the f(™ such that

we have

29 1 (i) + £ (g ) <@ + SO + 1 1)
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(n) ab
Multiplying Inequality (2.5) by gt(%‘.”fiﬁ’l”“) and then integrating w.r.t. ¢ over [0, 1],

we obtain

/1f(n)(tb+(albt)a) g(n)(thr(alllt)a) dt + /1 f(n)(ﬁ) g(n)(ﬁ) dt
0

o t%fnqu t%fnqu

() () L g(n)<tb+(alb_‘t)a)
SU@)+ 0] [ T bl + (1= )

ab _ 1
Let m = we have

+ fm) (1) o(n) (L 2 (=) g™ (&
[Hogey, 0 EE)e,

T L

R S N RCNC

b

S

Let % + % —x = y in second integral at left hand side of inequality (2.6) and utilizing

the fact that ¢(™ is harmonically symmetric with respect to %, we have

/i f(n)(xl)g(n)(alc)der/i i (%) g™ (%) .

1 1 F-n+l 1 F—n+l
0 (.%‘ b) (a y)

|

b

: (n) (1 _
<[ (@) + £ )] / ( - 1)%‘_),L+1h<x>dx
 \T—3)

where h(x) is given in the statement. Finally on employing the Definition 1.2, we

. b3 egon (1) +cor et (regon (3]

& (g™ or)(z) —
(27) <@+ F0) / (ig_l);)_(nflhw)dx

b

b

where r(z) and h(z) are given in the statement.
On combining inequality (2.4) and inequality (2.7) we obtain the Inequalities
(2.1). Hence proved. O

COROLLARY 2.1. In Theorem 2.1, if we take k =1 then the subsequent inequal-

ities hold
ny ! \ave) Pl

<[ () scor e en ()
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: () op)(z)_
<[ (a) + £ (b)) / Wh(x)dx.

b b

Jay

COROLLARY 2.2. In Theorem 2.1, if we take h(x) to be the identity function i.e.
f)(x) to be convex function, then [Theorem 2.1, [29]] is retrieved.

THEOREM 2.2. Let f : I C (0,00) — R be a function such that f € L[a,b],
where a,b € I with e < 1. If f™ is harmonically h-convex function on [a,b], then
the subsequent inequalities for Caputo k-fractional integrals hold

1 (b—a>”‘i £ ( 2ab>
h(3)(n—2)\ ab a+b

1 _

(2.8) <™ (a) + F™ b)) / ’ F()de,

P
where r(z) =1 and h(z) = h (b“_ba( f%)) + h( ab (7733)) forallz € [,1].

Proor. Considering Inequality (2.2) Multiplying it by ———7 and integrating

w.r.t. t over [0, 1], we have

(2 [ et >dt<h(2)[/o PNt ()]

ab 1 ab — 1
Let FFiDa — = and Tar(ioop =y Ve have

()t O e e

b

On employing the Definition 1.1, we have

n (D) (1n_;;) (b;ba> e (fibb)

(29) <KL (” N %) {CDw (for) <(11) + (1" “DT" (for) <zl))]

where r(z) is given in the statement.
Considering Inequality (2.5) and multiplying it by ﬁ and then integrating

w.r.t. ¢t over [0, 1], we have

(n) ab (n)(—ab__
/ wdu/ lf(i”“‘””)em s 0] ()
0 0 tr

tzfnJrl n+ Otk‘
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Using change of variable ﬁ = % and m = %, we have
b s 1)
[—— *—n+1
[ EEL

o <10 e [ () ()
r=5%

Now employing Definition 1.1, we have

el ot ren(2) ot o 0]

1
a 1 _
) <) (n) - )
1) <@+ 10 [ s
where r(z) and h(z) are given in the statement.
On combining inequality (2.9) and inequality (2.11), we get the required inequal-
ities. Hence proved. O

COROLLARY 2.3. In Theorem 2.2, if we take k = 1, then the subsequent inequal-

ities hold ) b—a\"" o ( 2ab
h(3) (n—a) ( ab ) ! (a“’)
<I'(n-a) [CDO}jJr (for) CL) +(=D" CDE* (for) (2)}
(2.12) <[f™(a) + £ (b)]f(m_l)la—mh(x)dm'
b b

COROLLARY 2.4. In Theorem 2.2, if we take h(x) to be the identity function i.e.
f)(x) to be convex function, then [Theorem 2.2, [29]] is retrieved.

THEOREM 2.3. Let f : [a,b] — R be a function such that f™ is a harmonically
h-convex, where e < | and f™ € L[a,b]. If g : [a,b] — R is a function such that
g™ is a non-negative, integrable and harmonically symmetric w.r.t. %, then the
subsequent inequalities for Caputo k-fractional integrals hold

! (25n) PH-wen (3)

|:CDa+b+ ((fxg)or) ((11) +(=1)" CDa+b ((fxg)or) (2)]

St (”)or x) —
218) <@+ 0] [ ™ en) @) poyae,

bl
_1
b

where r(z) =1 and h(z) = (“—b( )) ( (g—x)) forallz € [1,1].

—

)7—n+1
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PRrOOF. Since f(™ is harmonically h-convex therefore again considering inequal-

(n) ab
ity (2.2). Multiplying (2.2) by gt(éb*w and integrating w.r.t. ¢ over [0, 1], we

X ntl

n ab
sy (20 /é o ()
a+b 0 t%_n-‘rl
1 __ab ) g __ab 1 _ab ) g __ab
< h<1)[/2 (tb+(1 t)a) (w+(1 t)a)dt +/2 (ta+(1 t)b) (w+(1 t)a)dt
0 0

have

2 t%fn+l t%fn+l
Let % = % in above inequality, we have
atb 1
o (2 [¥ 800,
T-n
“EV Ty (=)

1y [ st o (1) 60 s 10 (i) o (2)
o en(f [ e o ),
b E 5 —

On right hand side of Inequality (2.14) putting % + % — x = gy in second integral and

utilizing the fact that ¢(™ is harmonically symmetric w.r.t. 21%, we have
atb n
e ( 2ab )/w gt )(a%) "
a+b 1 (x_%)%*an
1 S5 fm (1) g (1) st f (5) g™ (i)
<his frﬁldl‘ + =gt W

Y @)t booGw)”

By using the Definition 1.2, we have
n Da -

HORAVETY At S ALY

C 1 n C 1
(2.15) Da+b ((f*xg)or) - +(-1) Da+b ((fxg)or) Ik

9" (=g )

s and integrating w.r.t. ¢ over [0, %] ,

Now multiplying inequality (2.5) by
we have

n ab n ab n ab n ab
/% Fo (tb+(1—t)a) g™ (tb+(1—t)a) it + /5 F (ta+(1—t)b) g™ (tb+(1—t)a> i
0 0

t%—n-‘rl t%—n"rl

1 ,(n) ab
< [F™(a) + £ )] / g<“’*“‘““>[h<t> + (1 = t)]dt.

tw—ntl
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ab _ 1
Let m = we have

ath n arr p(n) (1) 00 (1
/2:,, £ (1) g >(i)d$+/2zb f (é%_z)g (m)dx

-pTT L T et

(2.16)

s [ () ()
=%

b

Using the change of variable % + % — 2 = y and harmonically symmetry of ¢ and
definition in the second integral term on left side of inequality (2.16). Then applying
Definition 1.2, we have

L (o) _
(g™ or) (@) 5

e <@+ o) [ i)

b et
where r(z) and h(z) are given in the statement. On combining inequality (2.15) and
inequality (2.17) we get the required Inequalities (2.13). O

COROLLARY 2.5. In Theorem 2.1, if we take k = 1 then the subsequent inequal-

ities hold
1

U (25s) Pha-wen ()

<D eoon () + 0 Dl ewren ()]

G (g(”) o 7’) (z) —

@18)  <[f™(a)+ f™ )] / (x)d.

A W

b )

COROLLARY 2.6. In Theorem 2.3, if we take h(x) to be the identity function i.e.
f™ () to be convex function, then [Theorem 2.3, [29]] is retricved.

THEOREM 2.4. Let f : I C (0,00) — R be a function such that f™ € L[a,b],
a,b € 1. If f™ is harmonically h-convex function on [a,b], then the subsequent
inequalities for Caputo k-fractional integrals hold

2% (b=e)"TE £ ( 2ab )
h(z)(n—%) a+b

VA
P
)1
-

7~
S

|

> o
N—
Q
>
2 Q
;e
+

.
o]

=
VR
SHN

)+ v enih_ron (3]

1) < [f@+ o] [ wh(z)dl«,
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where r(z) =1 and h(z) =h (%(x—%)) + h(%(%—x)) forallz € [§,1].

Proor. Multiplying Inequality (2.2) by t%f% and integrating w.r.t. t over

0, 1], we have
[0, 3],

(n) ab (n) ab
f(n) 2adb /; tn_(H_%)dt <h 1 /é J (tb+(17t)a) dt +/% f (t‘”r(l*t)b) dt
a+b)/, ) o el o tH—ntl

wab \ 2t [ ) St
™ - <n(5)| [ e [ —
d (an> (n——%) (2) 0 t%—ntl +'0 (2—n+l
b 1 b 1
Let m = 5 and taJr(aTt)b =y we have

a+b

0 (2" [ e ]

2ab b

Appling the definition of Caputo k-fractional derivative in above inequality, we have

o (bze)""F o < 2ab )
h(z) (n—¢) atb
a,k

(2.20) < kTy (n - %) [CDE’;]}AJ”OT) (i) +(=1)" Dz (for) <;>]

where r(z) is given in the statement.
Now multiplying Inequality (2.5) with t%f% and integrating w.r.t. ¢ over [0, %] ,
we have

/é%dw/é%dt
0 0

tE—ntl tx—ntl

<)+ 0] [ (o) + b1 - e

Using change of variables m = % and % = i Then the Definition 1.1,

we have

i (n-3) {CDZ@Af or) <1> ()" DL (for) (llaﬂ

a 2ab



INEQUALITIES FOR HARMONICALLY h-CONVEX FUNCTIONS VIA .. 109

b

(221) < [F™(@)+ 1" 0)] / ' ;g_wh(x)dx.

a+b (1

where r(z) and h(z) are given in the statement.
On combining inequality (2.20) and inequality (2.21) we get Inequalities(2.19).
O

COROLLARY 2.7. In Theorem 2.1, if we take k =1 then the subsequent inequal-
ities hold for Caputo fractional derivatives

207 (ba_Tayl_a £ ( 2ab )

h(%) (n—a) a+b
<rim-a) [Digron (g) + 0r Dl on (5)
. 1 _

< [f(")(a) +f(")(b)] [M Wh(@d%
2ab \p L

COROLLARY 2.8. In Theorem 2.4, if we take h(x) to be the identity function i.e.
f)(x) to be convex function, then [Theorem 2.4, [29]] is retrieved.
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