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ON GENERALIZED SYMMETRIC f-BIDERIVATIONS

OF LATTICES

Malik Anjum Javed and Muhammad Aslam

Abstract. In this paper, we introduce the notion of generalized symmetric

f -biderivation on lattices and investigate some related properties. We char-
acterized the distributive and modular lattices by generalized symmetric f -
biderivations.

1. Introduction

Lattices play an important role in various branches such as information theory,
information access controls, information retrieval and cryptanalysis [6, 3, 11, 15].
After the derivation on a ring was defined by Posner in [14], many researchers
studied the derivation theory on various algebraic structures. Recently the notion
of derivation introduced in rings and near rings has been studied by various re-
searchers in the context of lattices (see [1, 2, 3, 8, 10, 18]). In [1], Alshehri
introduced the notion of generalized derivation for a lattice and investigated many
properties. After the symmetric biderivation defined by Maksa [13], in rings various
researchers [15, 16, 17] studied this notion. In 2009, Y. Ceven et al. introduced
symmetric bi-derivations in lattices [9]. Many researchers studied notion of f -
derivatins in different algebraic structures (see [12, 7]) and also Chaudhry and
Khan [10] introduced the notion of symmetric f -biderivations on a lattice and dis-
cussed some related properties. In this paper, the notion of generalized symmetric
f -biderivations, which is more general than the notion of generalized symmetric
biderivations on lattices [9], is introduced. We apply this notion to lattices and
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investigate some related properties which are discussed in [9] and using it give
characterization of modular and distributive lattices.

2. Preliminaries

Definition 2.1. ([4]) Let L be a nonempty set endowed with operations ”∧ ”
and ” ∨ ”. If (L,∧,∨) satisfies the following conditions for all x, y, z ∈ L :

(L1) x ∧ x = x, x ∨ x = x;
(L2) x ∧ y = y ∧ x, x ∨ y = y ∨ x;
(L3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z);
(L4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,

then L is called a lattice.

Definition 2.2. ([4]) A lattice (L,∧,∨) is called a distributive lattice if one
of the following two identities hold for all x, y, z ∈ L :

(L5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(L6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In any lattice, the conditions (L5) and (L6) are equivalent.

Definition 2.3. ([4]) Let (L,∧,∨) be a lattice. A binary relation 6 on L is
defined by;

x 6 y if and only if x ∧ y = x and x ∨ y = y.

Definition 2.4. ([5]) A lattice (L,∧,∨) is called a modular if for a, b ∈ L with
a ̸= b, it satisfies the following condition:

x 6 b, implies x ∨ (a ∧ b) = (x ∨ a) ∧ b for all x ∈ L.

Definition 2.5. ([8]) Let (L,∧,∨) be a lattice. A mapping D(., .) : L×L → L
is called symmetric if D(x, y) = D(y, x) holds for all x, y ∈ L.

Definition 2.6. ([8]) Let (L,∧,∨) be a lattice. A mapping d : L → L defined
by d(x) = D(x, x) is called trace of D(., .).

Lemma 2.1 ([18]). Let (L,∧,∨) be a lattice. Let the binary relation 6 be as in
Definition 2.3. Then (L,6) is a partially ordered set (poset) and for any x, y ∈ L,
x ∧ y is the g.l.b. of {x, y} and x ∨ y is the l.u.b. of {x, y}.

Definition 2.7. ([18]) Let (L,∧,∨) be a lattice. A function d : L → L on a
lattice L is called a derivation on L if for all x, y, z ∈ L it satisfies the following
condition:

d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy).

Definition 2.8. ([1]) Let (L,∧,∨) be a lattice. A function D : L → L on a
lattice L is called a generalized derivation on L if there exist a derivation d : L → L
such that:

D(x ∧ y) = (Dx ∧ y) ∨ (x ∧ dy)

for all x, y ∈ L.
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Definition 2.9. ([10]) Let (L,∧,∨) be a lattice and D(., .) : L × L → L
be a symmetric mapping. We call D a symmetric f -biderivation on L, if for all
x, y, z ∈ L it satisfies the following condition

D(x ∧ y, z) = (D(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)).

Obviously, a symmetric f -biderivation D on L for all x, y, z ∈ L satisfies the
relation

D(x, y ∧ z) = (D(x, y) ∧ f(z)) ∨ (f(y) ∧D(x, z)).

We remark that if D is a symmetric f -biderivation on a lattice L, then the
mappings d1 : L → L, d1(x) = D(x, y) and d2 : L → L, d2(y) = D(x, y) are f -
derivations on L. Further if f = 1, the identity on L, then symmetric 1-biderivation
is a symmetric biderivation on L.

Proposition 2.1 ([10]). Let (L,∧,∨) be a lattice and f : L → L be a mapping.
Let d be the trace of symmetric f -biderivation D, then the following hold for all
x, y ∈ L:

(i) D(x, y) 6 f(x) and D(x, y) 6 f(y),
(ii) D(x, y) 6 f(x) ∧ f(y),
(iii) d(x) 6 f(x).

Definition 2.10. [9] Let (L,∧,∨) be a lattice. The mapping ∆ satisfying

∆(x ∨ y, z) = ∆(x, z) ∨∆(y, z) for all x, y ∈ L

is called a joinitive mapping.

3. Generalized Symmetric f-biderivations

The following definition introduce the notion of generalized symmetric f -bideri-
vation related to symmetric f -biderivation for a lattice.

Definition 3.1. Let (L,∧,∨) be a lattice, D(., .) : L×L → L be a symmetric
f -biderivation and ∆(., .) : L × L → L be a symmetric mapping. We call ∆
a generalized symmetric f -biderivation related to D, if it satisfies the following
condition

∆(x ∧ y, z) = (∆(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

for all x, y, z ∈ L. The mapping δ : L → L defined by δ(x) = ∆(x, x) is called the
trace of generalized symmetric f -biderivation ∆.

Obviously, a generalized symmetric f -biderivation ∆ on L satisfies the relation

∆(x, y ∧ z) = (∆(x, y) ∧ f(z)) ∨ (f(y) ∧D(x, z)) for all x, y, z ∈ L.

We remark that if f = 1, the identity on L, then generalized symmetric 1-
biderivation is a generalized symmetric biderivation on L and if D = ∆, then ∆ is
symmetric f -biderivation on L.

Now we give a few examples.
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Example 3.1. Let (L,∧,∨) be a lattice with a least element 0 and f : L → L
be a mapping satisfying f(x ∧ y) = f(x) ∧ f(y). The mapping D(x, y) = 0 is a
symmetric f -biderivation on L and ∆(x, y) : L × L → L be defined by ∆(x, y) =
f(x) ∧ f(y) for all x, y ∈ L. Then we can easily verify that ∆ is a generalized
symmetric f -biderivation related to D on L.

Example 3.2. Let (L,∧,∨) be a lattice with a least element 0, where 0, a ∈ L
and f : L → L be a mapping satisfying f(x ∧ y) = f(x) ∧ f(y). The mapping
D(x, y) = 0 is a symmetric f -biderivation on L. Let ∆(x, y) : L × L → L be
defined by ∆(x, y) = (f(x)∧ f(y))∧a for all x, y ∈ L. Then it is easy to verify that
∆ is a generalized symmetric f -biderivation related to D on L.

Example 3.3. Let (L,∧,∨) be a non trivial lattice with a least element 0
and f : L → L be a mapping satisfying f(x ∨ y) = f(x) ∨ f(y). The mapping
D(x, y) = 0 is a symmetric f -biderivation on L. Let ∆(x, y) : L × L → L be
defined by ∆(x, y) = f(x) ∨ f(y) for all x, y ∈ L. Then it is easy to verify that ∆
is not a generalized symmetric f -biderivation related to D on L.

Now, we investigate some properties for generalized symmetric f -biderivations
on L.

Proposition 3.1. Let ∆ is a generalized symmetric f -biderivation related to
a symmetric f -biderivation D. Then the mappings δ1 : L → L, δ1(x) = ∆(x, z) and
δ2 : L → L, δ2(y) = ∆(x, y) are generalized f -derivations on L.

Proof. We have

δ1(x ∧ y) = ∆(x ∧ y, z)

= (∆(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

= (δ1(x) ∧ f(y)) ∨ (f(x) ∧ d1(y)).

In the last equation, the mapping d1 : L → L, d1(y) = D(y, z) is a f -derivation on
L, where D is the symmetric f -biderivation. Hence the mapping δ1 is a generalized
f -derivation on L. �

Theorem 3.1. Let (L,∧,∨) be a lattice, f : L → L be a mapping satisfying
f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ L. Let ∆ be a generalized symmetric f -
biderivation related to a symmetric f -biderivation D, δ be the trace of ∆ and d be
the trace of D. Then

(i) D(x, y) 6 ∆(x, y) for all x, y ∈ L.
(ii) ∆(x, y) 6 f(x) and ∆(x, y) 6 f(y),
(iii) ∆(x, y) 6 f(x ∧ y),
(iv) d(x) 6 δ(x) 6 f(x)
(v) d(x) = f(x) ⇒ δ(x) = f(x)

for all x, y ∈ L.
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Proof. (i) Since

∆(x, y) ∧D(x, y) = ∆(x ∧ x, y) ∧D(x, y)

= [(∆(x, y) ∧ f(x)) ∨ (f(x) ∧D(x, y))] ∧D(x, y)

= [(∆(x, y) ∧ f(x)) ∨D(x, y)] ∧D(x, y)

= D(x, y)

by using Proposition 2.1 (i) and (L4), we have D(x, y) 6 ∆(x, y).
(ii) From (i), we get ∆(x, y) = (∆(x, y) ∧ f(x)) ∨D(x, y) which implies

∆(x, y) ∨ f(x) = [(∆(x, y) ∧ f(x)) ∨D(x, y)] ∨ f(x)

= (∆(x, y) ∧ f(x)) ∨ (D(x, y) ∨ f(x))

= (∆(x, y) ∧ f(x)) ∨ f(x)) = f(x)

by using (L3), Proposition 2.1 (i) and (L4), we have ∆(x, y) 6 f(x). Since ∆ is
symmetric, we have also ∆(x, y) 6 f(y).

(iii) It directly follows from (ii).
(iv) It follows from (i) and (ii).
(v) It directly follows from (iv). �

Corollary 3.1. Let (L,∧,∨) be a lattice and f : L → L be a mapping. Let ∆
be a generalized symmetric f -biderivation related to a symmetric f -biderivation D.
Let the least element be 0 and the greatest element be 1 of L and f(0) = 0. Then
∆(0, x) = ∆(x, 0) = 0 and ∆(1, x) = ∆(x, 1) 6 f(x) for all x ∈ L.

Proof. Follows directly from the Theorem 3.1 (ii). �

Theorem 3.2. Let (L,∧,∨) be a modular lattice and f : L → L be a map-
ping. Let ∆ be a generalized symmetric f -biderivation related to a symmetric f -
biderivation D, δ be the trace of ∆ and d be the trace of D. Then

(i) δ(x ∧ y) = (δ(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) ∨D(x, y)
(ii) D(x, y) 6 δ(x ∧ y), δ(x) ∧ f(y) 6 δ(x ∧ y), f(x) ∧ d(y) 6 δ(x ∧ y)

for all x, y ∈ L.

Proof. (i) Using Proposition 2.1(i) and Theorem 3.1 (iv), we have

δ(x ∧ y) = ∆(x ∧ y, x ∧ y)

= (∆(x, x ∧ y) ∧ f(y)) ∨ (f(x) ∧D(y, x ∧ y))

= [{(∆(x, x) ∧ f(y)) ∨ (f(x) ∧D(x, y))} ∧ f(y)]

∨[f(x) ∧ {(D(y, x) ∧ f(y)) ∨ (f(x) ∧D(y, y))}].
Since L is modular lattice, therefore

δ(x ∧ y) = [(δ(x) ∧ f(y)) ∨ {D(x, y) ∧ f(x) ∧ f(y)}]
∨[{f(x) ∧D(x, y) ∧ f(y)} ∨ (f(x) ∧ d(y))]

Using Proposition 2.1(i), the last equation gives

δ(x ∧ y) = [(δ(x) ∧ f(y)) ∨D(x, y) ∨ (f(x) ∧ d(y))]

for all x, y ∈ L.
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(ii) Directly follows from (i). �

Theorem 3.3. Let (L,∧,∨) be a modular lattice and f : L → L be a map-
ping. Let ∆ be a generalized symmetric f -biderivation related to a symmetric f -
biderivation D and δ be the trace of ∆. Then d(x) ∧ d(y) 6 δ(x) ∧ δ(y) 6 δ(x ∧ y)
for all x, y ∈ L.

Proof. Since δ(x) ∧ f(y) 6 δ(x ∧ y) by Theorem 3.2 (ii) and δ(y) 6 f(y)
by Theorem 3.1 (iv), we have δ(x) ∧ δ(y) 6 δ(x) ∧ f(y) 6 δ(x ∧ y). Using again
Theorem 3.1 (iv), we get d(x) ∧ d(y) 6 δ(x) ∧ δ(y). �

Keeping in view Example 3.3, we have the following lemma.

Lemma 3.1. Let (L,∧,∨) be a non trivial lattice with a least element 0 and
f : L → L be an onto mapping satisfying f(x ∧ y) = f(x) ∧ f(y). Let the map-
ping ∆(x, y) = f(x) ∨ f(y) related to D(x, y) = 0 be a generalized symmetric
f -biderivation. Then for f(x) 6 f(z), the lattice L is modular.

Proof. Since D(x, y) = 0, so for all x, y, z ∈ L, we have (f(x)∨f(y))∧f(z) =
(∆(y, x)∧f(z))∨(f(y)∧D(z, x)) = ∆(y∧z, x) = f(x)∨f(y∧z) = f(x)∨(f(y)∧f(z))
hence L is a modular lattice. �

Definition 3.2. Let (L,∧,∨) be a lattice, ∆ be a generalized symmetric f -
biderivation related to a symmetric f -biderivation D, δ be the trace of ∆. If x 6 y
implies δ(x) 6 δ(y), then δ is called an isotone mapping.

We remark that if δ(1) = 1, since δ(1) 6 f(1), we have f(1) = 1, where 1 is
the greatest element of L.

Proposition 3.2. Let (L,∧,∨) be a lattice and ∆ be a generalized symmetric
f -biderivation related to a symmetric f -biderivation D, δ be the trace of ∆. Then
δ is an isotone mapping if and only δ(x) ∨ δ(y) 6 δ(x ∨ y).

Proof. Since x 6 x ∨ y and y 6 x ∨ y and δ is an isotone mapping, we have
δ(x) 6 δ(x ∨ y) and δ(y) 6 δ(x ∨ y), so δ(x) ∨ δ(y) 6 δ(x ∨ y). Conversely, let
δ(x) ∨ δ(y) 6 δ(x ∨ y) and x 6 y. Since x ∨ y = y, we have δ(x) ∨ δ(y) 6 δ(y).
Also it is known that δ(y) 6 δ(x) ∨ δ(y). Hence we obtain δ(x) ∨ δ(y) = δ(y), so
δ(x) 6 δ(y). �

Theorem 3.4. Let (L,∧,∨) be a modular lattice with greatest element 1, f :
L → L be a mapping satisfying f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ L. Let ∆ be a
generalized symmetric f -biderivation related to a symmetric f -biderivation D, δ be
the trace of ∆. Then the following conditions are equivalent:

(i) δ is an isotone mapping
(ii) δ(x ∧ y) = δ(x) ∧ δ(y)
(iii) δ(x) = f(x) ∧ δ(1) for all x, y ∈ L.

Proof. (i) ⇒ (ii). Since x∧ y 6 x and x∧ y 6 y and δ is an isotone mapping,
we have

δ(x ∧ y) 6 δ(x) and δ(x ∧ y) 6 δ(y).
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So δ(x ∧ y) 6 δ(x) ∧ δ(y). By Theorem 3.3, we have δ(x) ∧ δ(y) 6 δ(x ∧ y). Hence
δ(x) ∧ δ(y) = δ(x ∧ y).

(ii) ⇒ (i). Let δ(x ∧ y) = δ(x) ∧ δ(y) and x 6 y. Since x ∧ y = x, we get
δ(x) = δ(x ∧ y) = δ(x) ∧ δ(y) 6 δ(y).

(i) ⇒ (iii). Since y 6 1 and δ is an isotone mapping, we have δ(y) 6 δ(1). Since
δ(y) 6 f(y), by Theorem 3.1 (iv), then we have δ(y) 6 f(y) ∧ δ(1). By Theorem
3.2 (ii), we have δ(y)∧ f(x) 6 δ(y ∧x). Taking y = 1, we get δ(1)∧ f(x) 6 δ(x) for
all x ∈ L. Hence we have δ(x) = f(x) ∧ δ(1).

(iii) ⇒ (i). Let δ(x) = f(x) ∧ δ(1) and x 6 y. Since x ∧ y = x, we have
δ(x) = δ(x∧y) = f(x∧y)∧δ(1) = (f(x)∧f(y))∧δ(1) = (f(x)∧δ(1))∧(f(y)∧δ(1)) =
δ(x) ∧ δ(y). Hence δ(x) 6 δ(y). �

Theorem 3.5. Let (L,∧,∨) be a distributive lattice with greatest element 1,
f : L → L be a mapping satisfying f(x∧ y) = f(x)∧ f(y) for all x, y ∈ L. Let ∆ be
a generalized symmetric f -biderivation related to a symmetric f -biderivation D, δ
be the trace of ∆. Then the following conditions are equivalent:

(i) δ is an isotone mapping
(ii) δ(x ∧ y) = δ(x) ∧ δ(y)
(iii) δ(x) = f(x) ∧ δ(1) for all x, y ∈ L.

Proof. Since every modular lattice is distributive therefore proof is straight
forward as in Theorem 3.4. �

Note that if f : L → L is a lattice homomorphism, then f(L) is a sublattice of
L.

Proposition 3.3. Let (L,∧,∨) be a lattice and f : L → L be a lattice homo-
morphism. Let ∆ : L×L → L be a generalized symmetric f -biderivation related to
D on L defined by ∆(x, y) = f(x)∧ f(y). Then f(L) is a distributive lattice if and
only if ∆ is joinitive.

Proof. Let ∆ be a joinitive. By definition of ∆, we have ∆(x ∨ y, z) =
f(x ∨ y) ∧ f(z) = (f(x) ∨ f(y)) ∧ f(z). Since ∆ is joinitive, therefore ∆(x ∨ y, z) =
∆(x, z) ∨ ∆(y, z) = (f(x) ∧ f(z)) ∨ (f(y) ∧ f(z)). Hence (f(x) ∨ f(y)) ∧ f(z) =
(f(x)∧ f(z))∨ (f(y)∧ f(z)). Thus f(L) is distributive lattice. Conversely let f(L)
be a distributive lattice. Then f(x)∧f(y∨z) = f(x)∧(f(y)∨f(z)) = (f(x)∧f(y))∨
(f(x)∧f(z)), which along with definition of ∆ implies ∆(x, y∨z) = ∆(x, y)∨∆(x, z).
Hence ∆ is joinitive. �

Taking f = 1, the identity on L, we get the following corollary, which is an
improvement of the result of Y. Ceven []Ceven19 Proposition 3.

Corollary 3.2. Let (L,∧,∨) be a lattice and ∆ : L× L → L be a symmetric
biderivation on L defined by ∆(x, y) = x∧ y. Then L is a distributive lattice if and
only if ∆ is joinitive.

Theorem 3.6. Let (L,∧,∨) be a distributive lattice, f : L → L be a map-
ping. Let ∆1 and ∆2 be generalized symmetric f -biderivations related to a same
symmetric f -biderivation D. The mapping ∆1 ∧∆2 defined by (∆1 ∧∆2)(x, y) =
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∆1(x, y) ∧ ∆2(x, y), is a generalized symmetric f -biderivation related to the sym-
metric f -biderivation D.

Proof.

(∆1 ∧∆2)(x ∧ y, z) = ∆1(x ∧ y, z) ∧∆2(x ∧ y, z)

= [(∆1(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))]

∧[(∆2(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))]

= [(∆1(x, z) ∧ f(y)) ∧ (∆2(x, z) ∧ f(y))] ∨ (f(x) ∧D(y, z))

= [∆1(x, z) ∧∆2(x, z) ∧ f(y)] ∨ (f(x) ∧D(y, z))

= ((∆1 ∧∆2)(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

This completes the proof. �

Theorem 3.7. Let (L,∧,∨) be a distributive lattice, f : L → L be a map-
ping. Let ∆1 and ∆2 be generalized symmetric f -biderivations related to a same
symmetric f -biderivation D. The mapping ∆1 ∨∆2 defined by (∆1 ∨∆2)(x, y) =
∆1(x, y) ∨ ∆2(x, y), is a generalized symmetric f -biderivation related to the sym-
metric f -biderivation D.

Proof.

(∆1 ∨∆2)(x ∧ y, z) = [∆1(x ∧ y, z) ∨∆2(x ∧ y, z)]

= (∆1(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

∨[(∆2(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))]

= [(∆1(x, z) ∧ f(y)) ∨ (∆2(x, z) ∧ f(y))] ∨ (f(x) ∧D(y, z))

= [(∆1(x, z) ∨∆2(x, z)) ∧ f(y)] ∨ (f(x) ∧D(y, z))

= ((∆1 ∨∆2)(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)),

This completes the proof. �
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