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ABSTRACT. In this paper, we introduce the notion of generalized symmetric
f-biderivation on lattices and investigate some related properties. We char-
acterized the distributive and modular lattices by generalized symmetric f-
biderivations.

1. Introduction

Lattices play an important role in various branches such as information theory,
information access controls, information retrieval and cryptanalysis [6, 3, 11, 15].
After the derivation on a ring was defined by Posner in [14], many researchers
studied the derivation theory on various algebraic structures. Recently the notion
of derivation introduced in rings and near rings has been studied by various re-
searchers in the context of lattices (see [1, 2, 3, 8, 10, 18]). In [1], Alshehri
introduced the notion of generalized derivation for a lattice and investigated many
properties. After the symmetric biderivation defined by Maksa [13], in rings various
researchers [15, 16, 17] studied this notion. In 2009, Y. Ceven et al. introduced
symmetric bi-derivations in lattices [9]. Many researchers studied notion of f-
derivatins in different algebraic structures (see [12, 7]) and also Chaudhry and
Khan [10] introduced the notion of symmetric f-biderivations on a lattice and dis-
cussed some related properties. In this paper, the notion of generalized symmetric
f-biderivations, which is more general than the notion of generalized symmetric
biderivations on lattices [9], is introduced. We apply this notion to lattices and
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investigate some related properties which are discussed in [9] and using it give
characterization of modular and distributive lattices.
2. Preliminaries

DEFINITION 2.1. ([4]) Let L be a nonempty set endowed with operations ” A ”
and 7V 7. If (L, A, V) satisfies the following conditions for all z,y,z € L :

(L) z Az =2z, zVzx=uz;

(L2) zANy=y Az, aVy=yVuz;

(L3) (xAy)ANz=xA(yAz), (xVy)Vz=aV(yV=2);
(L4) (xANy)Va ==z, (xVy) Az =z,

then L is called a lattice.

DEFINITION 2.2. ([4]) A lattice (L, A, V) is called a distributive lattice if one
of the following two identities hold for all x,y,z € L :

(L5) x A (yVz)=(xAy)V(xAz);

(LB) xV (yAz)=(xVy) A(zV=2).

In any lattice, the conditions (L5) and (L6) are equivalent.

DEFINITION 2.3. ([4]) Let (L, A, V) be a lattice. A binary relation < on L is
defined by;

r<yifandonlyif t Ay=x and x Vy =y.

DEFINITION 2.4. ([5]) A lattice (L, A, V) is called a modular if for a,b € L with
a # b, it satisfies the following condition:

x < b, implies zV (a Ab) = (xVa)Ab forall x € L.

DEFINITION 2.5. ([8]) Let (L, A, V) be a lattice. A mapping D(.,.): LxL — L
is called symmetric if D(z,y) = D(y, z) holds for all z,y € L.

DEFINITION 2.6. ([8]) Let (L, A, V) be a lattice. A mapping d: L — L defined
by d(x) = D(x,z) is called trace of D(.,.).

LEMMA 2.1 ([18]). Let (L, A, V) be a lattice. Let the binary relation < be as in
Definition 2.3. Then (L, <) is a partially ordered set (poset) and for any x,y € L,
x Ay is the g.l.b. of {x,y} and x V y is the l.u.b. of {z,y}.

DEFINITION 2.7. ([18]) Let (L, A, V) be a lattice. A function d: L — L on a
lattice L is called a derivation on L if for all z,y, 2z € L it satisfies the following
condition:

d(z ANy) = (dx Ay) V (z Ady).

DEFINITION 2.8. ([1]) Let (L, A, V) be a lattice. A function D : L — L on a
lattice L is called a generalized derivation on L if there exist a derivation d : L — L
such that:

D(xANy)=(DxAy)V (zAdy)
for all z,y € L.
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DEFINITION 2.9. ([10]) Let (L,A,V) be a lattice and D(.,.) : L x L — L
be a symmetric mapping. We call D a symmetric f-biderivation on L, if for all
x,y, 2z € L it satisfies the following condition

D(x Ny, z) = (D(x,2) A f(y) vV (f(x) A D(y, 2)).

Obviously, a symmetric f-biderivation D on L for all x,y,z € L satisfies the
relation

D(z,yNz) = (D(x,y) A f(2)V (f(y) AD(z,2)).

We remark that if D is a symmetric f-biderivation on a lattice L, then the
mappings dy : L — L,di(z) = D(z,y) and ds : L — L,dy(y) = D(z,y) are f-
derivations on L. Further if f = 1, the identity on L, then symmetric 1-biderivation
is a symmetric biderivation on L.

PROPOSITION 2.1 ([10]). Let (L, A,V) be a lattice and f : L — L be a mapping.
Let d be the trace of symmetric f-biderivation D, then the following hold for all
x,y € L:
(i) Dia,
(i1) D(x

;(x) and D(z,y) < f(y),
(iid) d(x) <

() A f(y),
(2).

DEFINITION 2.10. [9] Let (L, A, V) be a lattice. The mapping A satisfying
Az Vy,z)=A(x,2)VA(y,z) forall z,y € L

~ /N N\

is called a joinitive mapping.

3. Generalized Symmetric f-biderivations

The following definition introduce the notion of generalized symmetric f-bideri-
vation related to symmetric f-biderivation for a lattice.

DEFINITION 3.1. Let (L, A, V) be a lattice, D(.,.) : L x L — L be a symmetric
f-biderivation and A(.,.) : L x L — L be a symmetric mapping. We call A
a generalized symmetric f-biderivation related to D, if it satisfies the following
condition

Az Ay, z) = (Az,2) A fy)) v (f(2) A D(y, 2))

for all z,y,2z € L. The mapping ¢ : L — L defined by d(x) = A(z,z) is called the
trace of generalized symmetric f-biderivation A.

Obviously, a generalized symmetric f-biderivation A on L satisfies the relation
Az, y Az) = (Az,y) A f(2)) V (f(y) A D(x, 2)) for all z,y,z € L.

We remark that if f = 1, the identity on L, then generalized symmetric 1-
biderivation is a generalized symmetric biderivation on L and if D = A, then A is
symmetric f-biderivation on L.

Now we give a few examples.
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EXAMPLE 3.1. Let (L, A, V) be a lattice with a least element 0 and f: L — L
be a mapping satisfying f(z Ay) = f(z) A f(y). The mapping D(z,y) = 0 is a
symmetric f-biderivation on L and A(z,y) : L x L — L be defined by A(z,y) =
f@) A f(y) for all x,y € L. Then we can easily verify that A is a generalized
symmetric f-biderivation related to D on L.

EXAMPLE 3.2. Let (L, A, V) be a lattice with a least element 0, where 0,a € L
and f : L — L be a mapping satisfying f(x Ay) = f(z) A f(y). The mapping
D(z,y) = 0 is a symmetric f-biderivation on L. Let A(z,y) : L x L — L be
defined by A(x,y) = (f(x) A f(y)) Aa for all z,y € L. Then it is easy to verify that
A is a generalized symmetric f-biderivation related to D on L.

EXAMPLE 3.3. Let (L,A,V) be a non trivial lattice with a least element 0
and f : L — L be a mapping satisfying f(z V y) = f(z) V f(y). The mapping
D(z,y) = 0 is a symmetric f-biderivation on L. Let A(z,y) : L x L — L be
defined by A(z,y) = f(z) V f(y) for all z,y € L. Then it is easy to verify that A
is not a generalized symmetric f-biderivation related to D on L.

Now, we investigate some properties for generalized symmetric f-biderivations
on L.

PRrROPOSITION 3.1. Let A is a generalized symmetric f-biderivation related to
a symmetric f-biderivation D. Then the mappings 61 : L — L,61(z) = A(z, 2) and
da: L — L,62(y) = A(x,y) are generalized f-derivations on L.

PROOF. We have

Sixny) = AleAy,z)

= (
= (a(x) A f(y) Vv (f(x) Adi(y)).

In the last equation, the mapping d; : L — L,d;(y) = D(y, z) is a f-derivation on
L, where D is the symmetric f-biderivation. Hence the mapping d; is a generalized
f-derivation on L. O

THEOREM 3.1. Let (L,A,V) be a lattice, f : L — L be a mapping satisfying
fleany) = f(x) A f(y) for all x,y € L. Let A be a generalized symmetric f-
biderivation related to a symmetric f-biderivation D, § be the trace of A and d be
the trace of D. Then

(¢) D(x,y) < A(z,y) for all z,y € L.

(i) Az,y) < f(z) and A(z,y) < f(y),

(i#1) Al,y) < f(x Ay),

(iv) d(x) < 6(x) < f(z)

(v) d(x) = f(2) = 8(z) = [(x)
forall x,y € L.



ON GENERALIZED SYMMETRIC f-BIDERIVATIONS OF LATTICES 73

PROOF. (i) Since
Az,y) AD(x,y) = Az Aw,y) AD(z,y)
[(A(z,y) A f2) vV (f(@) A D(,y)] A D(z,y)
[(Alz,y) A f(x)) Vv D(x,y)] A D(,y)
= Dl(z,y)

by using Proposition 2.1 (i) and (L4), we have D(z,y) < A(z,y).
(#4) From (7), we get A(x,y) = (A(z,y) A f(z)) V D(z,y) which implies
(z,y)
y) Vv

Az, y) v f(z) = [(Alz,y) A f(@) v D(@,y)]V f(z)
(Alz,y) A f(2) vV (D(z,y) V [z
(Alz,y) A f2) V f(x) = f(x)
by using (L3), Proposition 2.1 (i) and (L4), we have A(x,y) < f(z). Since A is
symmetric, we have also A(x,y) < f(y).

(#4i) Tt directly follows from (it).

(i) Tt follows from (¢) and (i1).

(v) It directly follows from (iv).

)

O

COROLLARY 3.1. Let (L,A,V) be a lattice and f : L — L be a mapping. Let A
be a generalized symmetric f-biderivation related to a symmetric f-biderivation D.
Let the least element be 0 and the greatest element be 1 of L and f(0) = 0. Then
A(0,2) = A(z,0) =0 and A(1,2) = A(x,1) < f(x) for all z € L.

PRrROOF. Follows directly from the Theorem 3.1 (ii). O
THEOREM 3.2. Let (L,A,V) be a modular lattice and f : L — L be a map-

ping. Let A be a generalized symmetric f-biderivation related to a symmetric f-
biderivation D, § be the trace of A and d be the trace of D. Then

(i) 6z Ay) = (6(z) A F(y) V (F(x) Ad(y)) V Dz, y)

(12) D(z,y) <d(xAy),0(z) A fly) <8z Ay), fz) Ad(y) <z Ay)
for all x,y € L.

PROOF. (i) Using Proposition 2.1(i) and Theorem 3.1 (iv), we have
S(xAy) = Al@Ay,zAy)
= (A(z,z Ay) A fy) Vv (f(z) AD(y,x Ay))
= [{(A(@,z) A f(y) v (f(x) AD(z,y)} A f(y)]
VIf (@) A{(D(y, ) A fy)) vV (f(2) A D(y,y))}-
Since L is modular lattice, therefore
Szny) = [6(@)Af() VD@, y) A flx)Af(y)}]
VI{f(@) AD(z,y) A f(y)}V (f(z) Ad(y))]
Using Proposition 2.1(i), the last equation gives
6(x Ay) =[(0(x) A f(y) vV D(z,y) v (f(x) Ad(y))]
for all x,y € L.
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(1) Directly follows from (3). O

THEOREM 3.3. Let (L,A,V) be a modular lattice and f : L — L be a map-
ping. Let A be a generalized symmetric f-biderivation related to a symmetric f-
biderivation D and § be the trace of A. Then d(z) Ad(y) < §(x) Ad(y) < Iz Ay)
for all x,y € L.

PRroOF. Since §(z) A f(y) < d(z A y) by Theorem 3.2 (ii) and 6(y) < f(y)
by Theorem 3.1 (iv), we have d(z) A d(y) < 6(x) A f(y) < 6(z Ay). Using again
Theorem 3.1 (iv), we get d(z) Ad(y) < §(z) Ad(y). O

Keeping in view Example 3.3, we have the following lemma.

LEMMA 3.1. Let (L,A,V) be a non trivial lattice with a least element 0 and
f: L = L be an onto mapping satisfying f(x Ay) = f(x) A f(y). Let the map-
ping A(z,y) = f(x) V f(y) related to D(x,y) = 0 be a generalized symmetric
f-biderivation. Then for f(x) < f(2), the lattice L is modular.

PROOF. Since D(x,y) =0, so for all x,y, z € L, we have (f(x)V f(y))A f(z) =
(Aly, ) Af()V(f(Y)AD(z,2)) = AlyAz,z) = f(2)VF(yAz) = f(@)V(f(y)Af(z

hence L is a modular lattice. O

~—

DEFINITION 3.2. Let (L,A,V) be a lattice, A be a generalized symmetric f-
biderivation related to a symmetric f-biderivation D, ¢ be the trace of A. If x < y
implies d(z) < §(y), then 0 is called an isotone mapping.

We remark that if 6(1) = 1, since §(1) < f(1), we have f(1) = 1, where 1 is
the greatest element of L.

PROPOSITION 3.2. Let (L,A,V) be a lattice and A be a generalized symmetric
f-biderivation related to a symmetric f-biderivation D, & be the trace of A. Then
d is an isotone mapping if and only 6(x) V i(y) < d(z Vy).

PRrROOF. Since z < zVy and y < x V y and § is an isotone mapping, we have
d(z) < d(xVy) and d(y) < d(x Vy), so d(x)Vi(y) < d(xVy). Conversely, let
() Vio(y) < d(xVy) and z < y. Since z Vy = y, we have 6(z) V d(y) < (y).
Also it is known that d(y) < 6(z) V 6(y). Hence we obtain é(x) V é(y) = d(y), so
§(x) < d(y). O

THEOREM 3.4. Let (L,A,V) be a modular lattice with greatest element 1, f :
L — L be a mapping satisfying f(x Ay) = f(x) A f(y) for all z,y € L. Let A be a
generalized symmetric f-biderivation related to a symmetric f-biderivation D, 6 be
the trace of A. Then the following conditions are equivalent:

(1) § is an isotone mapping

(1) 6(z Ny) =d(z) Aé(y)

(7i) 0(z) = f(x) NO(L) for all x,y € L.

PROOF. (i) = (i4). Since x Ay < x and x Ay < y and § is an isotone mapping,

we have

0(xAy) <6(x) and §(z Ay) < I(y).
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So d(z Ay) < 0(z) Ad(y). By Theorem 3.3, we have d(z) A §(y) < 6(z Ay). Hence
() No(y) = d(z Ay).

(75) = (7). Let o6(z Ay) = d(x) A d(y) and = < y. Since z Ay = x, we get
5(z) = 6(z A y) = 6(z) A b(y) < b(y).

(7) = (444). Since y < 1 and § is an isotone mapping, we have §(y) < §(1). Since
d(y) < f(y), by Theorem 3.1 (iv), then we have §(y) < f(y) A 6(1). By Theorem
3.2 (ii), we have §(y) A f(z) < d(y Ax). Taking y = 1, we get (1) A f(x) < §(z) for
all z € L. Hence we have §(z) = f(x) A J(1).

(#i) = (7). Let 0(z) = f(x) Ad(1) and x < y. Since Ay = x, we have
5(2) = 6(any) = FEAAS(L) = (F@)AFE)AS() = (F)AS)AC () AS(D)
d(z) A d(y). Hence §(z) < 6(y).

THEOREM 3.5. Let (L,A,V) be a distributive lattice with greatest element 1,
f: L — L be a mapping satisfying f(x Ny) = f(x) A f(y) for all x,y € L. Let A be
a generalized symmetric f-biderivation related to a symmetric f-biderivation D, §
be the trace of A. Then the following conditions are equivalent:

(i) ¢ is an isotone mapping

(i1) o(z Ay) = do(x) Aé(y)

(#i1) 6(x) = f(z) AN6(1) for all x,y € L.

PROOF. Since every modular lattice is distributive therefore proof is straight
forward as in Theorem 3.4. O

O

Note that if f: L — L is a lattice homomorphism, then f(L) is a sublattice of
L.

PROPOSITION 3.3. Let (L,A,V) be a lattice and f : L — L be a lattice homo-
morphism. Let A : L x L — L be a generalized symmetric f-biderivation related to
D on L defined by A(z,y) = f(z) A f(y). Then f(L) is a distributive lattice if and
only if A is joinitive.

PROOF. Let A be a joinitive. By definition of A, we have A(x V y,2z) =
flexvy) A f(z)=(f(z)V f(y) A f(z). Since A is joinitive, therefore A(z Vy, z) =
Alz,2) V Aly, z) = (f(x) A f(2) vV (f(y) A f(2))- Hence (f(z) V fy)) A flz) =
(f@)Nf(2))V(fy) A f(2)). Thus f(L) is distributive lattice. Conversely let f(L)
be a distributive lattice. Then f(z)Af(yVz) = f(2)A(f(y)V f(z)) = (f(x)ANf(y))V
(f(x)Af(z)), which along with definition of A implies A(z, yVz) = A(z, y)VA(z, 2).
Hence A is joinitive. O

Taking f = 1, the identity on L, we get the following corollary, which is an
improvement of the result of Y. Ceven [[Cevenl9 Proposition 3.

COROLLARY 3.2. Let (L,A,V) be a lattice and A : L x L — L be a symmetric
biderivation on L defined by A(x,y) = x Ay. Then L is a distributive lattice if and
only if A is joinitive.

THEOREM 3.6. Let (L,A\,V) be a distributive lattice, f : L — L be a map-

ping. Let A1 and Ay be generalized symmetric f-biderivations related to a same
symmetric f-biderivation D. The mapping Ay A Ag defined by (A1 A Ag)(z,y) =
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Aq(z,y) A Ao(x,y), is a generalized symmetric f-biderivation related to the sym-
metric f-biderivation D.

PROOF.

(AT ANA)(zANy,z) = Az Ay, z) ANAs(z Ay, z2)

= [(Ar(z,2) A f(y) V (f(2) A D(y, 2))]
AN(Az(z,2) A f(y) V (f(@) A D(y, 2))]

= [(Au(z,2) A f(y) A (Da(z,2) A f()] V (f(z) A D(y, 2))
= [Au(z,2) ANAs(z,2) A f(Y)] V (f(2) A D(y, 2))
= ((ArAA2)(z,2) A fy) V (f(2) A D(y, 2))

This completes the proof. O

THEOREM 3.7. Let (L,A\,V) be a distributive lattice, f : L — L be a map-
ping. Let Ay and Ay be generalized symmetric f-biderivations related to a same
symmetric f-biderivation D. The mapping A1V Ay defined by (A1 V As)(z,y) =
Aq(z,y) V Ao(x,y), is a generalized symmetric f-biderivation related to the sym-
metric f-biderivation D.

PRrROOF.

(A VAN (xzAy,2z) = [Ar1(xAy,z)VAx(z Ay, z)

= (D@, 2) A f(y) vV (f(@) A D(y, 2))
V[(Az(z,2) A f(y) V (f(2) A D(y, 2))]

= [(Au(z,2) A f(y) V (Da(z,2) A f()] V (f(z) A D(y, 2))
= [(Asr(z,2) V As(z, 2)) A f(y)] V (f(2) A D(y, 2))
= ((ArVA2)(z,2) A f(y) V (f(2) A D(y, 2)),

This completes the proof. O
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