THE DOUBLE GEO CHROMATIC NUMBER OF A GRAPH

S. Beulah Samli, J. John and S. Robinson Chellathurai

Abstract. A geodetic set S of G is said to be a double geo chromatic set $S_{d g}$ if each $u-v$ geodesic, where $u, v \in S$ contains at least two entire color classes of G. The minimum cardinality of a double geo chromatic set of G is the double geo chromatic number of G and is denoted by $\chi_{d g}^{\prime}(G)$. The double geo chromatic number of some certain standard graphs are determined and some general properties satisfied by this concept are studied. Connected graphs of order $p \geqslant 2$ with double geo chromatic number 2 are characterized. It is shown that for every positive integer x, y, z with $6 \leqslant x \leqslant y \leqslant z, y \leqslant x+1$ and $z \leqslant x+3$, there exists a connected graph G with $g(G)=x, \chi_{g c}(G)=y$ and $\chi_{d g}^{\prime}(G)=z$. It is also shown that for every positive integer $a \geqslant 3$ with $\chi(G)=2$, there exists a connected graph G such that $g(G)=a, \chi_{g c}(G)=$ $\chi_{d g}^{\prime}(G)=a+1$.

1. Introduction

We consider finite simple connected graphs with at least two vertices. For any graph G the set of vertices is denoted by $V(G)$ and the edge set by $E(G)$. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to [9]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. If the subgraph induced by its neighbors is complete, then a vertex v is called an extreme vertex of a graph G. A vertex x is said to lie on an $u-v$ geodesic P if x is an internal vertex of P. The closed interval $I[u, v]$ consists of u, v and all vertices lying on a $u-v$ geodesic of G, and

[^0]for a non-empty set $S \subseteq V(G), I[S]=\bigcup_{u, v \in S} I[u, v]$.If G is a connected graph, then a set S of vertices is a geodetic set if $I[S]=V(G)$. The geodetic number $g(G)$ of G is the minimum cardinality among all geodetic set of G. Geodetic number was introduced in $[\mathbf{3}, \mathbf{1 0}]$ and further studied in $[\mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 2}]$. The degree of a vertex u of G is the number of edges that are incident to the vertex. A vertex u is a universal vertex if $\operatorname{deg}(u)=p-1$. A c-vertex coloring of G is an assignment of c colors, $1,2, \ldots, c$ to the vertices of G; the coloring is proper if no two distinct adjacent vertices have the same color. If $\chi(G)=c, G$ is said to be c - chromatic. A set $C \subseteq V(G)$ is called chromatic set if C contains all c vertices of distinct colors in G. The chromatic number of G is the minimum cardinality among all chromatic sets of G. That is $\chi(G)=\min \{|C| / C$ is the chromatic set of $G\}$. For references on chromatic sets see [11].

The concept of geo chromatic number of a graph was introduced in [2]. A set $S_{c} \subseteq V(G)$ is said to be a geo chromatic set of G if S_{c} is both a geodetic set and a chromatic set of G. The minimum cardinality among all geo chromatic set of a graph G is its geo chromatic number $\chi_{g c}(G)$.

The concept of geo chromatic set has motivated us to introduce the new geo chromatic set conception of double geo chromatic set. We call the minimum cardinality of a double geo chromatic set of G, the double geo chromatic number of G.

In this paper we introduce the new concept as double geo chromatic number of a graph. In section 2, we introduce the definition of double geo chromatic number, we determine the double geo chromatic number of some standard graphs, also we characterize the graphs G which has double geo chromatic number $p-1$ and 2 . In section 3, we illustrate realization of the double geo chromatic number of G. The following theorems are used in sequel.

Theorem 1.1. [5] Every geodetic set of a graph contains its extreme vertices.
Theorem 1.2. [9] Let G be a connected graph with cutvertices and let S be a geodetic set of G. If x is a cutvertex of G, then every component of $G-x$ contains an element of S.

2. The double geo chromatic number of a graph

Definition 2.1. A geodetic set S of G is said to be a double geo chromatic set $S_{d g}$ if each $u-v$ geodesic contains at least two entire color classes of G, where $u, v \in S$. The minimum cardinality of a double geo chromatic set of G is the double geo chromatic number of G and is denoted by $\chi_{d g}^{\prime}(G)$. A double geo chromatic set of minimum cardinality is called a $\chi_{d g}^{\prime}$-set of G. The minimum number of colors required for a double geo chromatic set is called double geo coloring.

Example 2.1. For the graph G given in Figure $1, S=\{a, b, g\}$ is a geodetic set. Hence $g(G)=3$. By assigning a proper coloring of G, we get $\chi(G)=2$. Clearly, by assigning two colors the geodesics $a-b$ and $a-g$ do not receive at least two color classes so that the set S is not a double geo chromatic set of G. Let
$S_{d g}=\{a, b, c, g\}$. It is clear that $S_{d g}$ is a geodetic set and it receive every double geo colors. Hence $S_{d g}$ is a double geo chromatic set of G and so $\chi_{d g}^{\prime}(G)=4$.

Figure 1. A graph G with $\chi_{d g}^{\prime}(G)=4$
Remark 2.1. A minimum double geo chromatic set of G is not always unique. For the graph G given in Figure 2, $\{a, e, g, f, b\},\{a, e, g, f, j\}$ and $\{a, e, g, f, h\}$ are three minimum double geo chromatic sets of cardinality 5 .

Figure 2. A graph G with $\chi_{d g}^{\prime}(G)=5$

Observation 2.1. Let G be a connected graph of order p. Then:
(1) Every double geo chromatic set of a connected graph G contains its extreme vertices. Also if the set of all extreme vertices of G, say $\operatorname{Ext}(G)$ is a double geo chromatic set, then $\operatorname{Ext}(G)$ is the unique minimum double geo chromatic set of G.
(2) Every double geo chromatic set of G contains a universal vertex if G has at least one universal vertex.
(3) Every double geo chromatic set of G contains at least one vertex from each component of $G-v$ if v is a cut vertex of G.
(4) Every double geo chromatic set of G is a geo chromatic set of G.

Corollary 2.1. For the complete graph $K_{p}(p \geqslant 2)$, $\chi_{d g}^{\prime}\left(K_{p}\right)=p$.
Proof. This follows from Observation 2.1(1).
Observation 2.2. The double geo chromatic number of some standard graphs can be easily found and are given as follows:
(1) For the path $P_{p}, p \geqslant 2, \chi_{d g}^{\prime}\left(P_{p}\right)=\left\{\begin{array}{lll}2 & \text { if } p \text { is even } \\ 3 & \text { if } & p \text { is odd }\end{array}\right.$
(2) For the cycle $C_{p}, p \geqslant 6, \chi_{d g}^{\prime}\left(C_{p}\right)=\left\{\begin{array}{lll}2 & \text { if } p \equiv 2(\bmod 4) \\ 3 & \text { if } p \equiv 0(\bmod 4) \\ 6 & \text { if } p \text { is odd }\end{array}\right.$
(3) For the star $K_{1, p-1}, p \geqslant 2, \chi_{d g}^{\prime}\left(K_{1, p-1}\right)=p$.
(4) For the wheel $W_{p}, p \geqslant 5, \chi_{d g}^{\prime}\left(W_{p}\right)=\left\{\begin{array}{lll}\frac{p+4}{2} & \text { if } p \text { is even } \\ \left\lfloor\frac{p}{2}\right\rfloor+2 & \text { if } p \text { is odd }\end{array}\right.$
(5) For the complete bipartite graph $G=K_{m, n}\left(m, n \in \mathbb{Z}^{+}\right)$,
(i) $\chi_{d g}^{\prime}(G)=m+1$ if $2 \leqslant m \leqslant 4$ and $n \geqslant 2$.
(ii) $\chi_{d g}^{\prime}(G)=6$ if $m, n \geqslant 5$.

Theorem 2.1. Let G be a connected graph of order $p \geqslant 2$. Then $2 \leqslant \chi_{g c}(G) \leqslant$ $\chi_{d g}^{\prime}(G) \leqslant p$.

Proof. Clearly $\chi_{g c}(G) \geqslant 2$. Since every double geo chromatic set $S_{d g}$ of G is also a geo chromatic set S_{c} of $G, \chi_{g c}(G) \leqslant \chi_{d g}^{\prime}(G)$. Also, $V(G)$ is a double geo chromatic set of G and so $\chi_{d g}^{\prime}(G) \leqslant p$. Hence $2 \leqslant \chi_{g c}(G) \leqslant \chi_{d g}^{\prime}(G) \leqslant p$.

Remark 2.2. The bounds in Theorem 2.1 are sharp. For the path $P_{2 p}$, $\chi_{g c}\left(P_{2 p}\right)=2$. For the graph G given in Figure $3, \chi_{g c}(G)=\chi_{d g}^{\prime}(G)=3$. For the complete graph $K_{p}, \chi_{d g}^{\prime}\left(K_{p}\right)=p$. Also, all the inequalities in Theorem 2.1 are strict. For the graph G given in Figure 3, $\chi_{g c}(G)=4, \chi_{d g}^{\prime}(G)=6$ and $p=11$. Thus $2<\chi_{g c}(G)<\chi_{d g}^{\prime}(G)<p$.

Corollary 2.2. Let G be a connected graph of order $p \geqslant 2$. If $\chi_{g c}(G)=p$, then $\chi_{d g}^{\prime}(G)=p$.

Proof. This follows from Theorem 2.1.
Remark 2.3. The converse of the Corollary 2.2 need not be true. For the graph G of order $p=5$ given in Figure 4, we have $\chi_{d g}^{\prime}(G)=5$ but $\chi_{g c}(G)=4 \neq p$.

Theorem 2.2. Let G be a connected graph of order p. If $\operatorname{deg}(v)=p-1$, then v belongs to every double geo chromatic set of G.

Proof. Let S_{c} be a geo chromatic set and $S_{d g}$ be a double geo chromatic set of G. Since $\operatorname{deg}(v)=p-1, v$ receive distinct color by a proper coloring of G so that $v \in S_{c}$. By Observation 2.1(4), $S_{c} \subseteq S_{d g}$. Hence $v \in S_{d g}$.

Remark 2.4. The converse of the Theorem 2.2 need not be true. For the graph G given in Figure 3, the vertex i belongs to all double geo chromatic set of G. But $\operatorname{deg}(i) \neq p-1$.

Figure 3. A graph G with $2<\chi_{g c}(G)<\chi_{d g}^{\prime}(G)<p$

Figure 4. A graph G with $\chi_{d g}^{\prime}(G)=5$ and $\chi_{g c}(G)=4$
The following theorem chracterizes graphs for which the double geo chromatic number is $p-1$ if $g(G)=2$.

Theorem 2.3. Let G be a conncected graph of order $p \geqslant 6$ with $g(G)=2$ and z be the only vertex which has degree 2. Then every vertex of G except the vertex z has degree $p-2$ if and only if $\chi_{d g}^{\prime}(G)=p-1$.

Proof. Let G be a connected graph such that every vertex of degree $p-2$ except the vertex z, then there exists a connected graph $G \backslash\{z\}$ of order $n=p-1$. We claim that $\chi_{d g}^{\prime}(G \backslash\{z\})=n$. Since $n-2$ vertices of a connected graph $G \backslash\{z\}$ has degree $n-1$ and two vertices has degree $n-2$, $\operatorname{diam}(G \backslash\{z\})=2$. Clearly, every vertex of $G \backslash\{z\}$ lies in a $x-y$ geodesic such that $d(x, y)=2$. The set of vertices $\{x, y\}$ is a unique minimum geodetic set of $G \backslash\{z\}$. Consider a proper coloring of $G \backslash\{z\}$ such that the vertices which has degree $n-1$ receive distinct colors and the vertices x, y receive same color and so every vertices of $G \backslash\{z\}$ is a unique minimum double geo chromatic set of $G \backslash\{z\}$ so that $\chi_{d g}^{\prime}(G \backslash\{z\})=n$. Now, claim that $\chi_{d g}^{\prime}(G \backslash\{z\})=\chi_{d g}^{\prime}(G)$. Since the vertex z has degree 2 and $G \backslash\{z\}$ has degree $p-2$ and so $\operatorname{diam}(G)=2$. The vertices x, y are not adjacent in $G \backslash\{z\}$ and so the vertices x, y are not adjacent in G. Let the vertex z be adjacent with the vertices x, y. Cleary, every vertices of G lies in a $x-y$ geodesic. Consider a proper coloring of G such that the vertices of a minimum geodetic set S receive same color, the vertex z was repeated by a color which was assigned in the vertex which has degree $p-2$. Let $w \in G$ be a vertex which has degree $p-2$, the vertices w, z receive same color and the vertices of $G \backslash S \cup\{w, z\}$ receive distinct colors. Now, a $x-y$ geodesic has more than two color classes. Hence $V(G) \backslash\{z\}$ is a minimum double geo chromatic set of G which is also a unique minimum geo chromatic set of G. Hence it follows that $\chi_{d g}^{\prime}(G \backslash\{z\})=n=p-1$.

Conversely, let $\chi_{d g}^{\prime}(G)=p-1$. Assume to the contrary that there exists a vertex which does not have degree $p-2$ except the vertex z. Then either there exists a vertex which has degree $p-1$ or there exists a vertex which has degree less than $p-2$. Let us consider two cases.

Case 1. Suppose there exists a vertex which has degree $p-1$ and all the other vertices of G has degree $p-2$ except the vertex z. Since the vertices x and y are adjacent with the vertex z, we consider two subcases.

Sub case 1.1. Suppose there exists a vertex which has degree $p-1$ in $G \backslash$ $\{x, y, z\}$. Clearly the vertex z has degree 3 . This contradicts to our assumption that the vertex z has degree 2 .

Sub case 1.2. Suppose, either the vertex x or y has degree $p-1$. Let us assume that the vertex x has degree $p-1$. Now we claim that the vertex y has degree $p-1$. Suppose to the contrary that the vertex y does not have degree $p-1$, Clearly the vertex x does not have degree $p-1$, which contradicts to our assumption that x has degree $p-1$. Hence $\operatorname{deg}(y)=p-1$. which implies the vertex $G \backslash\{x, y\}$ is a unique minimum geodetic set S of $G, g(G)=p-2$, which contradicts to our fact that $g(G)=2$.

Case 2. Suppose there exists a vertex which has degree less than $p-2$. Let the vertex be x and all the other vertices of G has degree $p-2$ except the vertex z. We consider three subcases.

Sub case 2.1. Let the vertex x has degree 2. Clearly the vertices of G except the vertices of $N[x], N[z]$ has degree $p-3$ and the vertices of $N(x) \backslash\{z\}$, $N(z) \backslash\{x\}$ has degree $p-2$. Let the vertex of $N(x) \backslash\{z\}$ be x^{\prime}. Clearly the
vertex set of $G \backslash\left\{x, y, x^{\prime}\right\}$ is a minimum geodetic set of G and so $g(G)>2$, which is impossible.

Sub case 2.2. Let the vertex x has degree $p-3$. Clearly the vertex x is not adjacent with exactly two vertices of $G \backslash\{z\}$. Let the vertices which are not adjacent to the vertex x be a, y such that $d(a, y)=1$, so that $d(x, a)=d(x, y)=2$. Therefore the set of vertices $\{x, a, y\}$ of G is a minimum geodetic set of G so that $g(G)=3$. This contradicts the fact that $g(G)=2$.

Sub case 2.3. If $2<\operatorname{deg}(x)<p-3$, then there exist vertices which have degree at most $p-2$. Choose a vertex w such that $d(x, w)=2$. Clearly, there are some vertices which does not lie in a $x-w$ geodesic. Hence $g(G)>2$, which contradicts to our assumption. It follows that every vertices of G except the vertex z has degree $p-2$.

Theorem 2.4. Let G be a connected graph of order $p \geqslant 2$. Then $\chi_{g c}(G)=2$ if and only if $\chi_{d g}^{\prime}(G)=2$.

Proof. Suppose that $\chi_{g c}(G)=2$. Let $S=\{x, y\}$ be a minimum geodetic set of G. Since x, y belongs to distinct color classes, every vertices of G lies in a $x-y$ geodesic, say P. Hence P contains exactly two color classes of G. Hence $\chi_{d g}^{\prime}(G)=2$. Conversely, let $\chi_{d g}^{\prime}(G)=2$. By Theorem 2.1, $\chi_{g c}(G)=2$.

Observation 2.3. Let G be a connected graph of order $p \leqslant 4$. Then $\chi_{g c}(G)=$ $\chi_{d g}^{\prime}(G)$

3. Realization result

In this section we give realization result concerning the double geo chromatic number.

Theorem 3.1. For every positive integer x, y, z with $6 \leqslant x \leqslant y \leqslant z, y \leqslant x+1$ and $z \leqslant x+3$, there exists a connected graph G with $g(G)=x, \chi_{g c}(G)=y$ and $\chi_{d g}^{\prime}(G)=z$.

Proof. We consider the following cases.
Case 1. If $x=y=z$, consider the complete graph K_{x}. Then by Corollary 2.9 and Observation 2.4(4), $g(G)=\chi_{g c}(G)=\chi_{d g}^{\prime}(G)=x$.

Case 2. $x=y<z$: Let us consider three subcases.
Subcase 2.1. $z=x+1$: Let P_{3} be a path with vertex set $\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $d\left(x_{1}, x_{3}\right)=2$. Let $K_{1, x-1}$ be a star with vertex set $\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{x-1}\right\}$, where y_{0} is a centre vertex. Let G be the graph obtained from this by identifying y_{0} with a pendent vertex of P_{3}, say x_{3}. It is easily seen that the set of all extreme vertices of G is a minimum geodetic set S so that $g(G)=x$. Since $\chi(G)=2, S$ has the vertices of two color classes. So that $\chi_{g c}(G)=y=x$. If G has two color classes, then there exist a geodesic which does not has at least two color classes. It is clear that, a geodetic set is not a double geo chromatic set of G. Define a coloring by, $y_{1}, y_{2}, \ldots, y_{x-1}, x_{2}$ belongs to distinct color classes and x_{1}, x_{3} belongs to one color
class. Since $\left\{y_{1}, y_{2}, \ldots, y_{x-1}, x_{1}\right\}$ is a geodetic set S of G, S not have any vertex from one color class. Let $S \cup\left\{x_{2}\right\}$. Then $S \cup\left\{x_{2}\right\}$ is a double geo chromatic set of G. Hence $\chi_{d g}^{\prime}(G)=z=x+1$.

Subcase 2.2. $z=x+2$: Let H be the graph obtained as follows:
(1) Take two copies of P_{5} with the vertex set $\left\{v_{i_{1}}: 1 \leqslant i \leqslant 5\right\}$ and $\left\{u_{i_{1}}: 1 \leqslant i \leqslant 5\right\}$.
(2) Take a copy of P_{4} with the vertex set $\left\{x_{j_{1}}: 1 \leqslant j \leqslant 4\right\}$ and a copy of P_{3} with the vertex set $\left\{w_{k_{1}}: 1 \leqslant k \leqslant 3\right\}$ such that $\operatorname{deg}\left(w_{11}\right)=\operatorname{deg}\left(w_{31}\right)=$ $\operatorname{deg}\left(x_{11}\right)=\operatorname{deg}\left(x_{41}\right)=1$ and $d\left(x_{11}, x_{31}\right)=2$.
(3) Take one copy of P_{2} with the vertex set $\left\{y_{1}, y_{2}\right\}$.
(4) Add two new vertices z_{1}, z_{2} and join to both w_{11}, x_{11}. Also join w_{31} to x_{31}.
(5) Join one pendant vertex from each copy of P_{5}, say v_{11}, u_{11} to w_{11} and again join the remaining pendant vertex, say v_{51}, u_{51} of P_{5} to x_{41}.
(6) Take a copy of $K_{1, x-6}$ with the vertex set $\left\{a_{0}, a_{1}, \ldots, a_{x-6}\right\}$, where a_{0} is the centre vertex of $K_{1, x-6}$.
Let G be the graph obtained from H by identifying a_{0} with x_{31}. The graph G is shown in Figure 5.
Clearly, $I\left[a_{i}, a_{j}\right] \cup I\left[y_{2}, a_{i}\right] \cup I\left[y_{2}, z_{1}\right] \cup I\left[z_{1}, z_{2}\right] \cup I\left[a_{i}, w_{21}\right] \cup I\left[u_{31}, v_{31}\right]=V(G)$,

Figure 5. A graph G with $g(G)=\chi_{g c}(G)=x$ and $\chi_{d g}^{\prime}(G)=x+2$
where $1 \leqslant i, j \leqslant x-6(i \neq j)$. Then $S=\left\{a_{1}, a_{2}, \ldots, a_{x-6}, y_{2}, z_{1}, z_{2}, w_{21}, u_{31}, v_{31}\right\}$ is a geodetic set of G. Also, the removal of at least one vertex from S is not a geodetic set of G and so $g(G)=x$. It is clear that $\chi(G)=3$ and S is a chromatic set of G. Therefore S is a geo chromatic set of G and $\chi_{g c}(G)=x$. By using three colors, we can't say that at least two color classes of G lie on a geodesic. Hence $z>x$. Define a coloring of G such that different vertices of S receive distinct colors, say color 1, color $2, \ldots$, color x and some vertices of $G \backslash S$ receive color $x+1$ and also another some vertices of $G \backslash S$ receive color $x+2$. It is clear that at least two color classes lie on each geodesic of G and also G receive $x+2$ double geo colors. Let the vertices of $G \backslash S$ belong to the color classes either $C_{l_{(x+1)}}$ or $C_{l_{(x+2)}}$. Since S receive x colors, S does not receive any vertex from each $C_{l_{(x+1)}}$ and $C_{l_{(x+2)}}$. For obtaining S as a double geo chromatic set, choose atleast one vertex from each $C_{l_{(x+1)}}$ and $C_{l_{(x+2)}}$. Let $v_{11} \in C_{l_{1}}$ and $v_{21} \in C_{l_{2}}$. If $v_{11}, v_{21} \in S$, then $S_{d g}=S \cup\left\{v_{11}, v_{21}\right\}$ is a double geo chromatic set of G. Therefore $\chi_{d g}^{\prime}(G) \leqslant x+2$. But, the removal of at least one vertex from $S_{d g}=S \cup\left\{v_{11}, v_{21}\right\}$ is not a double geo chromatic set of G. Hence $\chi_{d g}^{\prime}(G)=x+2$.
Subcase 2.3. $z=x+3$: Let $P_{4}: x_{1}, x_{2}, x_{3}, x_{4}$ be a path of length 4. For

Figure 6. A graph G with $g(G)=\chi_{g c}(G)=x$ and $\chi_{d g}^{\prime}(G)=x+3$
each integer i with $1 \leqslant i \leqslant 3$, let $P_{2}: y_{i_{1}}, y_{i_{2}}$ be a path of order 2. Join each $y_{i_{1}}$ to x_{1} and join each $y_{i_{2}}$ to x_{2}, x_{3} and also join y_{12} to y_{22}. Let G be the graph obtained from this by adding $x-4$ new vertices $z_{1}, z_{2}, \ldots, z_{x-4}$ to P_{4} and join
each $z_{j}(1 \leqslant j \leqslant x-4)$ to x_{4}. The graph G is shown in Figure 6. It is easily to seen that $I\left[z_{r}, z_{s}\right] \cup I\left[z_{r}, x_{1}\right] \cup I\left[x_{1}, y_{12}\right] \cup I\left[x_{1}, y_{22}\right] \cup I\left[x_{1}, y_{32}\right]=V(G)$, where $1 \leqslant r, s \leqslant x-4(r \neq s)$. Then $S=\left\{x_{1}, y_{11}, y_{21}, y_{31}, z_{1}, z_{2}, \ldots, z_{x-4}\right\}$ is a geodetic set of G and so $|S| \leqslant x$. If $|S| \leqslant x-1$, then S is not a geodetic set of G. Therefore $g(G)=x$. Clearly, S is a chromatic set of G and so S is a geo chromatic set S_{c} of G. Hence $\chi_{g c}(G)=x=y$. It is clear that S_{c} is not a double geo chromatic set of G. Define a coloring of G such that different vertices of S (except x_{1}) receive distinct colors, say color 1 , color $2, \ldots$, color $x-1$ and the vertices x_{1}, x_{3} receive color x, the vertices x_{2}, x_{4} receive color $x+1$, the vertices y_{12}, y_{32} receive color $x+2$ and also the vertex y_{22} receive color $x+3$. Clearly, each geodesic of G have at least two color classes. But no vertex of S receive color $x+1$, color $x+2$, color $x+3$. Let the vertices which receive color $x+1$, color $x+2$ and color $x+3$ belong to the color classes $C_{l(x+1)}, C_{l(x+2)}$ and $C_{l(x+3)}$. For obtaining S as a double geo chromatic set, choose at least one vertex from each $C_{l(x+1)}, C_{l(x+2)}$ and $C_{l(x+3)}$. Let $x_{2} \in C_{l(x+1)}$, $y_{12} \in C_{l(x+2)}$ and $y_{22} \in C_{l(x+3)}$. If $x_{2}, y_{22}, y_{12} \in S$, then $S \cup\left\{x_{2}, y_{12}, y_{22}\right\}$, which is a double geo chromatic set $S_{d g}$ of G. Therefore $\chi_{d g}^{\prime}(G) \leqslant x+3$. But, the removal of at least one vertex from $S \cup\left\{x_{2}, y_{12}, y_{22}\right\}$ is not a double geo chromatic set of G. Hence $\chi_{d g}^{\prime}(G)=x+3$.

Case 3. $x<x+1 \leqslant z$: We consider three subcases.
Subcase 3.1. $z=x+1$: Let $C_{6}: x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}$ be a cycle of order 6 with $d\left(x_{3}, x_{1}\right)=2$ and $d\left(x_{4}, x_{1}\right)=3$. Now add $x-2$ new vertices $y_{1}, y_{2}, \ldots, y_{x-2}$. Let G be the graph obtained from this by joining x_{3} and x_{5} to $y_{1}, y_{2}, \ldots, y_{x-2}$ and also join x_{3} to x_{5}. The graph G is shown in Figure 7. It is easily to seen that

Figure 7. A graph G with $g(G)=x, \chi_{g c}(G)=\chi_{d g}^{\prime}(G)=x+1$
$S=\left\{x_{1}, x_{4}, y_{1}, y_{2}, \ldots, y_{x-2}\right\}$ is a minimum geodetic set of G. Therefore $g(G)=x$. Since $\chi(G)=3, S$ does not have any vertex from one color class of G. Let a vertex from that color class be x_{3}. Now, the set S becomes $S \cup\left\{x_{3}\right\}$, which is a chromatic set of G. Clearly $S \cup\left\{x_{3}\right\}$ is a minimum geo chromatic set S_{c} of G so that $\chi_{g c}(G)=x+1$. It is clear that using three color classes are not enough for double geo chromatic set of G. Let us increase the color classes by assigning the
colors $1,2,3, \ldots, x-2, x-1$ to $y_{1}, y_{2}, \ldots, y_{x-2}, x_{3}$ and two colors, say $x, x+1$ are required to color the vertices of $G \backslash\left\{y_{1}, y_{2}, \ldots, y_{x-2}, x_{3}\right\}$. Clearly, each geodesic contains at least two color classes of G. But S does not receive every colors which have been assigned. Let the color be $x-1$. Since x_{3} receive a color $x-1, S \cup\left\{x_{3}\right\}$ is the set which has vertices from each defined color classes. Hence $S \cup\left\{x_{3}\right\}$ is a minimum double geo chromatic set $S_{d g}$ of $G, \chi_{d g}^{\prime}(G)=x+1$.
Subcase 3.2. $z=x+2$: Let $C_{6}: x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}$ be a cycle of order 6 . Join x_{1} to x_{3}, x_{5} and x_{4} to x_{2}, x_{6}. Add $x-2$ new vertices $y_{1}, y_{2}, \ldots, y_{x-2}$. Let G be the graph obtained from this by joining each $y_{i}(1 \leqslant i \leqslant x-2)$ to x_{4} and x_{5} and x_{3} to x_{5}. The graph G is shown in Figure 8. Let $S=\left\{x_{1}, x_{4}, y_{1}, y_{2}, \ldots, y_{x-2}\right\}$.

Figure 8. A graph G with $g(G)=x, \chi_{g c}(G)=x+1$ and $\chi_{d g}^{\prime}(G)=x+2$

It is clear that S is a minimum geodetic set of G and $g(G)=x$. It is clear that $\chi(G)=3$ and so G have three color classes, say $C_{l_{1}}, C_{l_{2}}$ and $C_{l_{3}}$. But S does not receive any vertex from $C_{l_{3}}$ so that S is not a chromatic set of G. Let $x_{5} \in C_{l_{3}}$. If $x_{5} \in S$, then $S \cup\left\{x_{5}\right\}$ is a geo chromatic set S_{c} of G. Therefore $\chi_{g c}(G)=x+1$. Define a double geo coloring of G such that different vertices of S receive distinct colors, say color 1 , color $2, \ldots$, color x and some vertices of $G \backslash S$ receive color $x+1$ and also another some vertices of $G \backslash S$ receive color $x+2$. Let the vertices which receive color 1 , color $2, \ldots$, color x, color $x+1$, color $x+2$ belong to the color classes, namely $C_{l_{1}}, C_{l_{2}}, \ldots, C_{l_{x}}, C_{l_{(x+1)}}, C_{l_{(x+2)}}$. It is clear that each geodesic have at least two color classes of G, but S do not receive any vertex from each $C_{l_{(x+1)}}$ and $C_{l_{(x+2)}}$. Let $x_{3} \in C_{l_{(x+1)}}$ and $x_{5} \in C_{l_{(x+2)}}$. If $x_{3}, x_{5} \in S$, then $S \cup\left\{x_{3}, x_{5}\right\}$ is a double geo
chromatic set of G. The removal of at least one vertex from $S \cup\left\{x_{3}, x_{5}\right\}$ is not a double geo chromatic set of G. Hence $\chi_{d g}^{\prime}(G)=x+2$.

Subcase 3.3. $z=x+3$: Let $C_{8}: a_{1}, a_{2}, \ldots, a_{8}, a_{1}$ be a cycle of order 8. Join a_{2} to a_{7}, a_{8}, a_{3} to a_{8}, a_{7} and a_{4} to a_{6}. Add $x-2$ new vertices $b_{1}, b_{2}, \ldots, b_{x-2}$. Let G be the graph obtained from this by joining each $b_{j}(1 \leqslant j \leqslant x-2)$ to a_{4} and a_{6}. The graph G is shown in Figure 9.

Figure 9. A graph G with $g(G)=x, \chi_{g c}(G)=x+1$ and $\chi_{d g}^{\prime}(G)=x+3$

It is easily seen that $\left\{a_{1}, a_{5}, b_{1}, b_{2}, \ldots, b_{x-2}\right\}$ is a minimum geodetic set of G and $g(G)=x$. Since $\chi(G)=4$, there exist four color classes (say) $C_{l_{1}}, C_{l_{2}}, C_{l_{3}}$ and $C_{l_{4}}$. No vertex from one color class, say $C_{l_{4}}$ belong to S so that S is not a chromatic set of G. To obtain S as a chromatic set, choose at least one vertex from $C_{l_{4}}$. Let $a_{4} \in C_{l_{4}}$. If $a_{4} \in S$, then $S_{c}=S \cup\left\{a_{4}\right\}$ is a minimum geo chromatic set of G. Therefore $\chi_{g c}(G)=x+1$. Now, define a double geo coloring of G such that $b_{1}, b_{2}, \ldots, b_{x-2}, a_{5}, a_{8}, a_{2}$ receive distinct colors, say color 1 , color $2, \ldots$, color x, color
$x+1$ and a_{1}, a_{4}, a_{7} receive color $x+2$ and also a_{3}, a_{6} receive color $x+3$. Let the vertices which receive color 1 , color $2, \ldots$, color $x+2$, color $x+3$ belong to the color classes, namely $C_{l_{1}}, C_{l_{2}}, \ldots, C_{l_{(x+2)}}, C_{l_{(x+3)}}$. It is clear that each geodesic have at least two color classes of G. But no vertex from $C_{l_{x}}, C_{l_{(x+1)}}, C_{l_{(x+3)}}$ belong to S so that S do not receive every double geo colors. If $a_{2}, a_{3}, a_{8} \in S$, then $S \cup\left\{a_{2}, a_{3}, a_{8}\right\}$ is a double geo chromatic set of G. Therefore $\chi_{d g}^{\prime}(G) \leqslant x+3$. Also, the removal of at least one vertex from $S \cup\left\{a_{2}, a_{3}, a_{8}\right\}$ is not a double geo chromatic set of G. Hence $\chi_{d g}^{\prime}(G)=x+3$.

Theorem 3.2. For an integer $a>3$ with $\chi(G)=2$, there exists a connected graph G such that $g(G)=a$ and $\chi_{g c}(G)=\chi_{d g}^{\prime}(G)=a+1$.

Proof. Let $P_{3}: x_{1}, x_{2}, x_{3}$ be a path of order 3. Add $z_{1}, z_{2}, \ldots, z_{a}$ new vertices and join each $z_{i}(1 \leqslant i \leqslant a)$ to x_{1} and x_{3}. Let $P_{2}: w_{1}, w_{2}$ be a path of order 2 and join w_{2} to x_{3} of P_{3} and join w_{1} to z_{a}. Let $K_{1, a-1}$ be a star with the vertex set $\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{a-1}\right\}$, where y_{0} is the centre vertex. Let G be the graph obtained from this by identifying y_{0} with w_{2}. The graph G is shown in Figure 10. It is easily

Figure 10. A graph G with $g(G)=a$ and $\chi_{g c}(G)=\chi_{d g}^{\prime}(G)=a+1$
seen that $S=\left\{x_{1}, y_{1}, y_{2}, \ldots, y_{a-1}\right\}$ is a minimum geodetic set of G and $g(G)=a$. Since $\chi(G)=2$, there exist two color classes, say $C_{l_{1}}$ and $C_{l_{2}}$. By assigning a proper coloring of G, the vertices of S receive same color, say color 1 so that S is not a chromatic set of G. It is clear that S does not receive any vertex from $C_{l_{2}}$ (say) and so choose at least one vertex from $C_{l_{2}}$ to obtain S as a geo chromatic set of G. Let $x_{2} \in C_{l_{2}}$. If $x_{2} \in S$, then $S_{c}=S \cup\left\{x_{2}\right\}$ is a geo chromatic set of G and so $\chi_{g c}(G)=a+1$. Also, there exists a geodesic which do not contain at least two color classes of G so that two colors are not enough for double geo coloring.

Define a coloring of G such that $y_{1}, y_{2}, \ldots, y_{a-1}$ receive distinct colors, say color 1 , color $2, \ldots$, color $a-1$ and some vertices of $G \backslash\left\{y_{j}\right\}(1 \leqslant j \leqslant a-1)$ receive color a and also another some vertices of $G \backslash\left\{y_{j}\right\}(1 \leqslant j \leqslant a-1)$ receive color $a+1$. It is clear that each geodesic of G contain at least two color classes of G. Therefore G receives $a+1$ double geo colors. It follows that $S_{d g}=S_{c}$ is a double geo chormatic set of G and also the removal of at least one vertex from $S_{d g}=S \cup\left\{x_{2}\right\}$ is not a double geo chromatic set of G. Hence $\chi_{d g}^{\prime}(G)=a+1$.

References

[1] H. A. Ahangar. Graph with large geodetic number. Filomat, 31(13)(2017), 4297-4304.
[2] S. B. Samli and S. R. Chellathurai. Geo chromatic number of a graph. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6)(2018), 259-264.
[3] F. Buckley and F. Harary. Distance in Graphs. Addison - Wesly Publishing company, Redwood City, CA, 1990.
[4] G. Chatrand and P. Zhang. Introduction to Graph Theory. MacGraw Hill, 2005.
[5] G. Chatrand, F. Harary and P. Zhang. On the geodetic number of a graph. Networks, $39(1)(2002), 1-6$.
[6] G. Chatrand, F. Harary and P. Zhang. Geodetic sets in graphs. Discuss. Math., Graph Theory, 20(1)(2000), 129-138.
[7] H. Escuardo, R. Gera, A. Hansberg, N. Jafari Rad and L. Volkmann. Geodetic domination in graphs. J. Comb. Math. Comb. Comput., 77(2011), 89-101.
[8] A. Hansberg and L. Volkmann. On the geodetic and geodetic domination numbers of a graph. Discrete Math., 310(15-15)(2010), 2140-2146.
[9] F. Harary. Graph Theory. Addison - Wesley, 1969.
[10] F. Harary, E. Loukakis and C. Tsouros. The geodetic number of a graph. Math. Comput. Modelling, $\mathbf{1 7}(11)(1993), 89-95$.
[11] M. Mohammed Abdul Khayoom and P. Arul Paul Sudhahar. Monophonic chromatic parameter in a connected graph. Int. J. Math. Anal., Ruse, 11(19)(2017), 911-920.
[12] A. P. Santhakumaran and J. John. Edge geodetic number of a graph. J. Discrete Math. Sci. and Cryptograpy, 10(3)(2007), 415-432.
[13] A. P. Santhakumaran and T. Jebaraj. Double geodetic mumber of a graph. Discuss. Math. Graph Theory, 32(1)(2012), 109-119.

Received by editors 12.08.2019; Revised version 27.05.2020; Available online 06.07.2020.
Department of Mathematics, Scott Christian College (Autonomous), Nagercoil 629 003, India

Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India

E-mail address: beulahsamlisam1991@gmail.com
Department of Mathematics, Government College of Engineering, Tirunelveli 627 007, India

E-mail address: john@gcetly.ac.in
Department of Mathematics, Scott Christian College (Autonomous), Nagercoil 629 003, India

E-mail address: robinchel@rediffmail.com

[^0]: 1991 Mathematics Subject Classification. 05C12, 05C15.
 Key words and phrases. geodetic number, chromatic number, geo chromatic number, double geo chromatic number.

 Communicated by Daniel A. Romano.

