BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **11**(1)(2021), 55-68 DOI: 10.7251/BIMVI2101025S

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

THE DOUBLE GEO CHROMATIC NUMBER OF A GRAPH

S. Beulah Samli, J. John and S. Robinson Chellathurai

ABSTRACT. A geodetic set S of G is said to be a double geo chromatic set S_{dg} if each u - v geodesic, where $u, v \in S$ contains at least two entire color classes of G. The minimum cardinality of a double geo chromatic set of G is the double geo chromatic number of G and is denoted by $\chi'_{dg}(G)$. The double geo chromatic number of some certain standard graphs are determined and some general properties satisfied by this concept are studied. Connected graphs of order $p \ge 2$ with double geo chromatic number 2 are characterized. It is shown that for every positive integer x, y, z with $6 \le x \le y \le z, y \le x+1$ and $z \le x+3$, there exists a connected graph G with $g(G) = x, \chi_{gc}(G) = y$ and $\chi'_{dg}(G) = z$. It is also shown that for every positive integer $a \ge 3$ with $\chi(G) = 2$, there exists a connected graph G such that $g(G) = a, \chi_{gc}(G) = \chi'_{dg}(G) = a+1$.

1. Introduction

We consider finite simple connected graphs with at least two vertices. For any graph G the set of vertices is denoted by V(G) and the edge set by E(G). The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to [9]. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. A u - v path of length d(u, v) is called an u - v geodesic. If the subgraph induced by its neighbors is complete, then a vertex v is called an *extreme vertex* of a graph G. A vertex x is said to lie on an u - v geodesic P if x is an internal vertex of P. The closed interval I[u, v] consists of u, v and all vertices lying on a u - v geodesic of G, and

¹⁹⁹¹ Mathematics Subject Classification. 05C12, 05C15.

Key words and phrases. geodetic number, chromatic number, geo chromatic number, double geo chromatic number.

Communicated by Daniel A. Romano.

for a non-empty set $S \subseteq V(G), I[S] = \bigcup_{\substack{u,v \in S \\ v \in S}} I[u,v]$. If G is a connected graph, then

a set S of vertices is a geodetic set if I[S] = V(G). The geodetic number g(G) of G is the minimum cardinality among all geodetic set of G. Geodetic number was introduced in [3, 10] and further studied in [1, 5, 6, 7, 8, 12]. The degree of a vertex u of G is the number of edges that are incident to the vertex. A vertex u is a universal vertex if deg(u) = p - 1. A c-vertex coloring of G is an assignment of c colors, $1, 2, \ldots, c$ to the vertices of G; the coloring is proper if no two distinct adjacent vertices have the same color. If $\chi(G) = c, G$ is said to be c- chromatic. A set $C \subseteq V(G)$ is called chromatic set if C contains all c vertices of distinct colors in G. The chromatic number of G is the minimum cardinality among all chromatic sets of G. That is $\chi(G) = min\{|C|/C \text{ is the chromatic set of } G\}$. For references on chromatic sets see [11].

The concept of geo chromatic number of a graph was introduced in [2]. A set $S_c \subseteq V(G)$ is said to be a *geo chromatic set* of G if S_c is both a geodetic set and a chromatic set of G. The minimum cardinality among all geo chromatic set of a graph G is its geo chromatic number $\chi_{qc}(G)$.

The concept of geo chromatic set has motivated us to introduce the new geo chromatic set conception of double geo chromatic set. We call the minimum cardinality of a double geo chromatic set of G, the double geo chromatic number of G.

In this paper we introduce the new concept as double geo chromatic number of a graph. In section 2, we introduce the definition of double geo chromatic number, we determine the double geo chromatic number of some standard graphs, also we characterize the graphs G which has double geo chromatic number p-1 and 2. In section 3, we illustrate realization of the double geo chromatic number of G. The following theorems are used in sequel.

THEOREM 1.1. [5] Every geodetic set of a graph contains its extreme vertices.

THEOREM 1.2. [9] Let G be a connected graph with cutvertices and let S be a geodetic set of G. If x is a cutvertex of G, then every component of G - x contains an element of S.

2. The double geo chromatic number of a graph

DEFINITION 2.1. A geodetic set S of G is said to be a double geo chromatic set S_{dg} if each u - v geodesic contains at least two entire color classes of G, where $u, v \in S$. The minimum cardinality of a double geo chromatic set of G is the double geo chromatic number of G and is denoted by $\chi'_{dg}(G)$. A double geo chromatic set of minimum cardinality is called a χ'_{dg} -set of G. The minimum number of colors required for a double geo chromatic set is called double geo coloring.

EXAMPLE 2.1. For the graph G given in Figure 1, $S = \{a, b, g\}$ is a geodetic set. Hence g(G) = 3. By assigning a proper coloring of G, we get $\chi(G) = 2$. Clearly, by assigning two colors the geodesics a - b and a - g do not receive at least two color classes so that the set S is not a double geo chromatic set of G. Let

 $S_{dg} = \{a, b, c, g\}$. It is clear that S_{dg} is a geodetic set and it receive every double geo colors. Hence S_{dg} is a double geo chromatic set of G and so $\chi'_{dg}(G) = 4$.

FIGURE 1. A graph G with $\chi'_{dg}(G) = 4$

REMARK 2.1. A minimum double geo chromatic set of G is not always unique. For the graph G given in Figure 2, $\{a, e, g, f, b\}$, $\{a, e, g, f, j\}$ and $\{a, e, g, f, h\}$ are three minimum double geo chromatic sets of cardinality 5.

FIGURE 2. A graph G with $\chi_{dg}^{'}(G) = 5$

OBSERVATION 2.1. Let G be a connected graph of order p. Then:

(1) Every double geo chromatic set of a connected graph G contains its extreme vertices. Also if the set of all extreme vertices of G, say Ext(G) is a double geo chromatic set, then Ext(G) is the unique minimum double geo chromatic set of G.

(2) Every double geo chromatic set of G contains a universal vertex if G has at least one universal vertex.

(3) Every double geo chromatic set of G contains at least one vertex from each component of G - v if v is a cut vertex of G.

(4) Every double geo chromatic set of G is a geo chromatic set of G.

COROLLARY 2.1. For the complete graph K_p $(p \ge 2)$, $\chi'_{da}(K_p) = p$.

PROOF. This follows from Observation 2.1(1).

OBSERVATION 2.2. The double geo chromatic number of some standard graphs can be easily found and are given as follows:

(1) For the path P_p , $p \ge 2$, $\chi'_{dg}(P_p) = \begin{cases} 2 & \text{if } p \text{ is even} \\ 3 & \text{if } p \text{ is odd} \end{cases}$ (2) For the cycle C_p , $p \ge 6$, $\chi'_{dg}(C_p) = \begin{cases} 2 & \text{if} \quad p \equiv 2(mod4) \\ 3 & \text{if} \quad p \equiv 0(mod4) \\ 6 & \text{if} \quad p \text{is odd} \end{cases}$

(3) For the star $K_{1,p-1}, p \ge 2, \chi'_{dg}(K_{1,p-1}) = p$.

- (4) For the wheel $W_p, p \ge 5, \chi'_{dg}(W_p) = \begin{cases} \frac{p+4}{2} & \text{if } p \text{ is even} \\ \lfloor \frac{p}{2} \rfloor + 2 & \text{if } p \text{ is odd} \end{cases}$
- (5) For the complete bipartite graph $G = K_{m,n} (m, n \in \mathbb{Z}^+)$
- (i) $\chi'_{dg}(G) = m + 1$ if $2 \leq m \leq 4$ and $n \geq 2$. (ii) $\chi'_{dg}(G) = 6$ if $m, n \geq 5$.

THEOREM 2.1. Let G be a connected graph of order $p \ge 2$. Then $2 \le \chi_{qc}(G) \le$ $\chi_{dg}(G) \leqslant p.$

PROOF. Clearly $\chi_{gc}(G) \ge 2$. Since every double geo chromatic set S_{dg} of G is also a geo chromatic set S_c of $G, \chi_{gc}(G) \leq \chi'_{dg}(G)$. Also, V(G) is a double geo chromatic set of G and so $\chi'_{dq}(G) \leq p$. Hence $2 \leq \chi_{gc}(G) \leq \chi'_{dq}(G) \leq p$.

REMARK 2.2. The bounds in Theorem 2.1 are sharp. For the path P_{2p} , $\chi_{gc}(P_{2p}) = 2$. For the graph G given in Figure 3, $\chi_{gc}(G) = \chi'_{dg}(G) = 3$. For the complete graph K_p , $\chi'_{dq}(K_p) = p$. Also, all the inequalities in Theorem 2.1 are strict. For the graph G given in Figure 3, $\chi_{gc}(G) = 4$, $\chi'_{dq}(G) = 6$ and p = 11. Thus $2 < \chi_{gc}(G) < \chi'_{dg}(G) < p$.

COROLLARY 2.2. Let G be a connected graph of order $p \ge 2$. If $\chi_{ac}(G) = p$, then $\chi'_{da}(G) = p$.

PROOF. This follows from Theorem 2.1.

REMARK 2.3. The converse of the Corollary 2.2 need not be true. For the graph G of order p = 5 given in Figure 4, we have $\chi'_{dg}(G) = 5$ but $\chi_{gc}(G) = 4 \neq p$.

THEOREM 2.2. Let G be a connected graph of order p. If deg(v) = p - 1, then v belongs to every double geo chromatic set of G.

58

PROOF. Let S_c be a geo chromatic set and S_{dg} be a double geo chromatic set of G. Since deg(v) = p - 1, v receive distinct color by a proper coloring of G so that $v \in S_c$. By Observation 2.1(4), $S_c \subseteq S_{dg}$. Hence $v \in S_{dg}$.

REMARK 2.4. The converse of the Theorem 2.2 need not be true. For the graph G given in Figure 3, the vertex i belongs to all double geo chromatic set of G. But $deg(i) \neq p-1$.

FIGURE 3. A graph G with $2 < \chi_{gc}(G) < \chi^{'}_{dg}(G) < p$

FIGURE 4. A graph G with $\chi'_{dg}(G) = 5$ and $\chi_{gc}(G) = 4$

The following theorem chracterizes graphs for which the double geo chromatic number is p-1 if g(G) = 2.

THEOREM 2.3. Let G be a connected graph of order $p \ge 6$ with g(G) = 2 and z be the only vertex which has degree 2. Then every vertex of G except the vertex z has degree p - 2 if and only if $\chi'_{dg}(G) = p - 1$.

PROOF. Let G be a connected graph such that every vertex of degree p-2except the vertex z, then there exists a connected graph $G \setminus \{z\}$ of order n = p - 1. We claim that $\chi'_{dq}(G \setminus \{z\}) = n$. Since n-2 vertices of a connected graph $G \setminus \{z\}$ has degree n-1 and two vertices has degree n-2, $diam(G \setminus \{z\}) = 2$. Clearly, every vertex of $G \setminus \{z\}$ lies in a x - y geodesic such that d(x, y) = 2. The set of vertices $\{x, y\}$ is a unique minimum geodetic set of $G \setminus \{z\}$. Consider a proper coloring of $G \setminus \{z\}$ such that the vertices which has degree n-1 receive distinct colors and the vertices x, y receive same color and so every vertices of $G \setminus \{z\}$ is a unique minimum double geo chromatic set of $G \setminus \{z\}$ so that $\chi'_{dg}(G \setminus \{z\}) = n$. Now, claim that $\chi'_{dg}(G \setminus \{z\}) = \chi'_{dg}(G)$. Since the vertex z has degree 2 and $G \setminus \{z\}$ has degree p-2 and so diam(G) = 2. The vertices x, y are not adjacent in $G \setminus \{z\}$ and so the vertices x, y are not adjacent in G. Let the vertex z be adjacent with the vertices x, y. Cleary, every vertices of G lies in a x - y geodesic. Consider a proper coloring of G such that the vertices of a minimum geodetic set Sreceive same color, the vertex z was repeated by a color which was assigned in the vertex which has degree p-2. Let $w \in G$ be a vertex which has degree p-2, the vertices w, z receive same color and the vertices of $G \setminus S \cup \{w, z\}$ receive distinct colors. Now, a x - y geodesic has more than two color classes. Hence $V(G) \setminus \{z\}$ is a minimum double geo chromatic set of G which is also a unique minimum geo chromatic set of G. Hence it follows that $\chi'_{dg}(G \setminus \{z\}) = n = p - 1$.

Conversely, let $\chi'_{dg}(G) = p - 1$. Assume to the contrary that there exists a vertex which does not have degree p - 2 except the vertex z. Then either there exists a vertex which has degree p - 1 or there exists a vertex which has degree less than p - 2. Let us consider two cases.

Case 1. Suppose there exists a vertex which has degree p-1 and all the other vertices of G has degree p-2 except the vertex z. Since the vertices x and y are adjacent with the vertex z, we consider two subcases.

Sub case 1.1. Suppose there exists a vertex which has degree p-1 in $G \\ \{x, y, z\}$. Clearly the vertex z has degree 3. This contradicts to our assumption that the vertex z has degree 2.

Sub case 1.2. Suppose, either the vertex x or y has degree p-1. Let us assume that the vertex x has degree p-1. Now we claim that the vertex y has degree p-1. Suppose to the contrary that the vertex y does not have degree p-1, Clearly the vertex x does not have degree p-1, which contradicts to our assumption that x has degree p-1. Hence deg(y) = p-1. which implies the vertex $G \setminus \{x, y\}$ is a unique minimum geodetic set S of G, g(G) = p-2, which contradicts to our fact that g(G) = 2.

Case 2. Suppose there exists a vertex which has degree less than p-2. Let the vertex be x and all the other vertices of G has degree p-2 except the vertex z. We consider three subcases.

Sub case 2.1. Let the vertex x has degree 2. Clearly the vertices of G except the vertices of N[x], N[z] has degree p-3 and the vertices of $N(x) \setminus \{z\}$, $N(z) \setminus \{x\}$ has degree p-2. Let the vertex of $N(x) \setminus \{z\}$ be x'. Clearly the

vertex set of $G \setminus \{x, y, x'\}$ is a minimum geodetic set of G and so g(G) > 2, which is impossible.

Sub case 2.2. Let the vertex x has degree p-3. Clearly the vertex x is not adjacent with exactly two vertices of $G \setminus \{z\}$. Let the vertices which are not adjacent to the vertex x be a, y such that d(a, y) = 1, so that d(x, a) = d(x, y) = 2. Therefore the set of vertices $\{x, a, y\}$ of G is a minimum geodetic set of G so that g(G) = 3. This contradicts the fact that g(G) = 2.

Sub case 2.3. If 2 < deg(x) < p - 3, then there exist vertices which have degree at most p - 2. Choose a vertex w such that d(x, w) = 2. Clearly, there are some vertices which does not lie in a x - w geodesic. Hence g(G) > 2, which contradicts to our assumption. It follows that every vertices of G except the vertex z has degree p - 2.

THEOREM 2.4. Let G be a connected graph of order $p \ge 2$. Then $\chi_{gc}(G) = 2$ if and only if $\chi'_{dg}(G) = 2$.

PROOF. Suppose that $\chi_{gc}(G) = 2$. Let $S = \{x, y\}$ be a minimum geodetic set of G. Since x, y belongs to distinct color classes, every vertices of G lies in a x - y geodesic, say P. Hence P contains exactly two color classes of G. Hence $\chi'_{dg}(G) = 2$. Conversely, let $\chi'_{dg}(G) = 2$. By Theorem 2.1, $\chi_{gc}(G) = 2$.

OBSERVATION 2.3. Let G be a connected graph of order $p \leq 4$. Then $\chi_{gc}(G) = \chi'_{dg}(G)$

3. Realization result

In this section we give realization result concerning the double geo chromatic number.

THEOREM 3.1. For every positive integer x, y, z with $6 \le x \le y \le z, y \le x+1$ and $z \le x+3$, there exists a connected graph G with $g(G) = x, \chi_{gc}(G) = y$ and $\chi'_{dg}(G) = z$.

PROOF. We consider the following cases.

Case 1. If x = y = z, consider the complete graph K_x . Then by Corollary 2.9 and Observation 2.4(4), $g(G) = \chi_{gc}(G) = \chi'_{dg}(G) = x$.

Case 2. x = y < z: Let us consider three subcases.

Subcase 2.1. z = x + 1: Let P_3 be a path with vertex set $\{x_1, x_2, x_3\}$ such that $d(x_1, x_3) = 2$. Let $K_{1,x-1}$ be a star with vertex set $\{y_0, y_1, y_2, ..., y_{x-1}\}$, where y_0 is a centre vertex. Let G be the graph obtained from this by identifying y_0 with a pendent vertex of P_3 , say x_3 . It is easily seen that the set of all extreme vertices of G is a minimum geodetic set S so that g(G) = x. Since $\chi(G) = 2$, S has the vertices of two color classes. So that $\chi_{gc}(G) = y = x$. If G has two color classes, then there exist a geodesic which does not has at least two color classes. It is clear that, a geodetic set is not a double geo chromatic set of G. Define a coloring by, $y_1, y_2, ..., y_{x-1}, x_2$ belongs to distinct color classes and x_1, x_3 belongs to one color

class. Since $\{y_1, y_2, ..., y_{x-1}, x_1\}$ is a geodetic set S of G, S not have any vertex from one color class. Let $S \cup \{x_2\}$. Then $S \cup \{x_2\}$ is a double geo chromatic set of G. Hence $\chi'_{dg}(G) = z = x + 1$.

Subcase 2.2. z = x + 2: Let *H* be the graph obtained as follows:

- (1) Take two copies of P_5 with the vertex set $\{v_{i_1} : 1 \leq i \leq 5\}$ and $\{u_{i_1} : 1 \leq i \leq 5\}$.
- (2) Take a copy of P_4 with the vertex set $\{x_{j_1}: 1 \leq j \leq 4\}$ and a copy of P_3 with the vertex set $\{w_{k_1}: 1 \leq k \leq 3\}$ such that $deg(w_{11}) = deg(w_{31}) = deg(x_{11}) = deg(x_{41}) = 1$ and $d(x_{11}, x_{31}) = 2$.
- (3) Take one copy of P_2 with the vertex set $\{y_1, y_2\}$.
- (4) Add two new vertices z_1, z_2 and join to both w_{11}, x_{11} . Also join w_{31} to x_{31} .
- (5) Join one pendant vertex from each copy of P_5 , say v_{11} , u_{11} to w_{11} and again join the remaining pendant vertex, say v_{51} , u_{51} of P_5 to x_{41} .
- (6) Take a copy of $K_{1,x-6}$ with the vertex set $\{a_0, a_1, ..., a_{x-6}\}$, where a_0 is the centre vertex of $K_{1,x-6}$.

Let G be the graph obtained from H by identifying a_0 with x_{31} . The graph G is shown in Figure 5.

Clearly, $I[a_i, a_j] \cup I[y_2, a_i] \cup I[y_2, z_1] \cup I[z_1, z_2] \cup I[a_i, w_{21}] \cup I[u_{31}, v_{31}] = V(G)$,

FIGURE 5. A graph G with $g(G) = \chi_{gc}(G) = x$ and $\chi_{dg}^{'}(G) = x + 2$

where $1 \leq i, j \leq x - 6$ $(i \neq j)$. Then $S = \{a_1, a_2, ..., a_{x-6}, y_2, z_1, z_2, w_{21}, u_{31}, v_{31}\}$ is a geodetic set of G. Also, the removal of at least one vertex from S is not a geodetic set of G and so g(G) = x. It is clear that $\chi(G) = 3$ and S is a chromatic set of G. Therefore S is a geo chromatic set of G and $\chi_{gc}(G) = x$. By using three colors, we can't say that at least two color classes of G lie on a geodesic. Hence z > x. Define a coloring of G such that different vertices of S receive distinct colors, say color 1, color 2,...,color x and some vertices of $G \smallsetminus S$ receive color x + 1 and also another some vertices of $G \backsim S$ receive color x + 2. It is clear that at least two color classes lie on each geodesic of G and also G receive x + 2 double geo colors. Let the vertices of $G \backsim S$ belong to the color classes either $C_{l_{(x+1)}}$ or $C_{l_{(x+2)}}$. Since S receive x colors, S does not receive any vertex from each $C_{l_{(x+1)}}$ and $C_{l_{(x+2)}}$. For obtaining S as a double geo chromatic set, choose atleast one vertex from each $C_{l_{(x+1)}}$ and $C_{l_{(x+2)}}$. Let $v_{11} \in C_{l_1}$ and $v_{21} \in C_{l_2}$. If $v_{11}, v_{21} \in S$, then $S_{dg} = S \cup \{v_{11}, v_{21}\}$ is a double geo chromatic set of G. Therefore $\chi'_{dg}(G) \leq x + 2$. But, the removal of at least one vertex from $S_{dg} = S \cup \{v_{11}, v_{21}\}$ is not a double geo chromatic set of G. Hence $\chi'_{dq}(G) = x + 2$.

Subcase 2.3. z = x + 3: Let $P_4 : x_1, x_2, x_3, x_4$ be a path of length 4. For

FIGURE 6. A graph G with $g(G) = \chi_{gc}(G) = x$ and $\chi'_{dg}(G) = x + 3$

each integer i with $1 \leq i \leq 3$, let $P_2 : y_{i_1}, y_{i_2}$ be a path of order 2. Join each y_{i_1} to x_1 and join each y_{i_2} to x_2, x_3 and also join y_{12} to y_{22} . Let G be the graph obtained from this by adding x - 4 new vertices $z_1, z_2, ..., z_{x-4}$ to P_4 and join

each $z_j (1 \leq j \leq x - 4)$ to x_4 . The graph G is shown in Figure 6. It is easily to seen that $I[z_r, z_s] \cup I[z_r, x_1] \cup I[x_1, y_{12}] \cup I[x_1, y_{22}] \cup I[x_1, y_{32}] = V(G)$, where $1 \leq r, s \leq x - 4 \ (r \neq s)$. Then $S = \{x_1, y_{11}, y_{21}, y_{31}, z_1, z_2, ..., z_{x-4}\}$ is a geodetic set of G and so $|S| \leq x$. If $|S| \leq x-1$, then S is not a geodetic set of G. Therefore g(G) = x. Clearly, S is a chromatic set of G and so S is a geo chromatic set S_c of G. Hence $\chi_{qc}(G) = x = y$. It is clear that S_c is not a double geo chromatic set of G. Define a coloring of G such that different vertices of S (except x_1) receive distinct colors, say color 1, color 2,...,color x-1 and the vertices x_1, x_3 receive color x, the vertices x_2, x_4 receive color x + 1, the vertices y_{12}, y_{32} receive color x + 2 and also the vertex y_{22} receive color x + 3. Clearly, each geodesic of G have at least two color classes. But no vertex of S receive color x + 1, color x + 2, color x + 3. Let the vertices which receive color x + 1, color x + 2 and color x + 3 belong to the color classes $C_{l(x+1)}, C_{l(x+2)}$ and $C_{l(x+3)}$. For obtaining S as a double geo chromatic set, choose at least one vertex from each $C_{l(x+1)}, C_{l(x+2)}$ and $C_{l(x+3)}$. Let $x_2 \in C_{l(x+1)}, y_{12} \in C_{l(x+2)}$ and $y_{22} \in C_{l(x+3)}$. If $x_2, y_{22}, y_{12} \in S$, then $S \cup \{x_2, y_{12}, y_{22}\}$, which is a double geo chromatic set S_{dg} of G. Therefore $\chi'_{dg}(G) \leq x+3$. But, the removal of at least one vertex from $S \cup \{x_2, y_{12}, y_{22}\}$ is not a double geo chromatic set of G. Hence $\chi'_{dq}(G) = x + 3$.

Case 3. $x < x + 1 \leq z$: We consider three subcases.

Subcase 3.1. z = x + 1: Let $C_6: x_1, x_2, x_3, x_4, x_5, x_6, x_1$ be a cycle of order 6 with $d(x_3, x_1) = 2$ and $d(x_4, x_1) = 3$. Now add x - 2 new vertices $y_1, y_2, ..., y_{x-2}$. Let G be the graph obtained from this by joining x_3 and x_5 to $y_1, y_2, ..., y_{x-2}$ and also join x_3 to x_5 . The graph G is shown in Figure 7. It is easily to seen that

FIGURE 7. A graph G with g(G) = x, $\chi_{gc}(G) = \chi'_{dg}(G) = x + 1$

 $S = \{x_1, x_4, y_1, y_2, ..., y_{x-2}\}$ is a minimum geodetic set of G. Therefore g(G) = x. Since $\chi(G) = 3$, S does not have any vertex from one color class of G. Let a vertex from that color class be x_3 . Now, the set S becomes $S \cup \{x_3\}$, which is a chromatic set of G. Clearly $S \cup \{x_3\}$ is a minimum geo chromatic set S_c of G so that $\chi_{gc}(G) = x + 1$. It is clear that using three color classes are not enough for double geo chromatic set of G. Let us increase the color classes by assigning the colors 1, 2, 3, ..., x - 2, x - 1 to $y_1, y_2, ..., y_{x-2}, x_3$ and two colors, say x, x + 1 are required to color the vertices of $G \setminus \{y_1, y_2, ..., y_{x-2}, x_3\}$. Clearly, each geodesic contains at least two color classes of G. But S does not receive every colors which have been assigned. Let the color be x - 1. Since x_3 receive a color $x - 1, S \cup \{x_3\}$ is the set which has vertices from each defined color classes. Hence $S \cup \{x_3\}$ is a minimum double geo chromatic set S_{dg} of $G, \chi'_{dg}(G) = x + 1$.

Subcase 3.2. z = x + 2: Let $C_6: x_1, x_2, x_3, x_4, x_5, x_6, x_1$ be a cycle of order 6. Join x_1 to x_3, x_5 and x_4 to x_2, x_6 . Add x - 2 new vertices $y_1, y_2, ..., y_{x-2}$. Let G be the graph obtained from this by joining each y_i $(1 \le i \le x - 2)$ to x_4 and x_5 and x_3 to x_5 . The graph G is shown in Figure 8. Let $S = \{x_1, x_4, y_1, y_2, ..., y_{x-2}\}$.

FIGURE 8. A graph G with g(G) = x, $\chi_{gc}(G) = x + 1$ and $\chi'_{da}(G) = x + 2$

It is clear that S is a minimum geodetic set of G and g(G) = x. It is clear that $\chi(G) = 3$ and so G have three color classes, say C_{l_1} , C_{l_2} and C_{l_3} . But S does not receive any vertex from C_{l_3} so that S is not a chromatic set of G. Let $x_5 \in C_{l_3}$. If $x_5 \in S$, then $S \cup \{x_5\}$ is a geo chromatic set S_c of G. Therefore $\chi_{gc}(G) = x + 1$. Define a double geo coloring of G such that different vertices of S receive distinct colors, say color 1, color 2,...,color x and some vertices of $G \smallsetminus S$ receive color x + 1 and also another some vertices of $G \smallsetminus S$ receive color x + 2. Let the vertices which receive color 1, color 2,...,color x, color x + 1, color x + 2 belong to the color classes, namely C_{l_1} , C_{l_2} ,..., C_{l_x} , $C_{l_{(x+1)}}$, $C_{l_{(x+2)}}$. It is clear that each geodesic have at least two color classes of G, but S do not receive any vertex from each $C_{l_{(x+1)}}$ and $C_{l_{(x+2)}}$. Let $x_3 \in C_{l_{(x+1)}}$ and $x_5 \in C_{l_{(x+2)}}$. If $x_3, x_5 \in S$, then $S \cup \{x_3, x_5\}$ is a double geo

chromatic set of G. The removal of at least one vertex from $S \cup \{x_3, x_5\}$ is not a double geo chromatic set of G. Hence $\chi'_{dg}(G) = x + 2$.

Subcase 3.3. z = x + 3: Let $C_8 : a_1, a_2, ..., a_8, a_1$ be a cycle of order 8. Join a_2 to a_7, a_8, a_3 to a_8, a_7 and a_4 to a_6 . Add x - 2 new vertices $b_1, b_2, ..., b_{x-2}$. Let G be the graph obtained from this by joining each b_j $(1 \le j \le x - 2)$ to a_4 and a_6 . The graph G is shown in Figure 9.

FIGURE 9. A graph G with g(G) = x, $\chi_{gc}(G) = x + 1$ and $\chi'_{dg}(G) = x + 3$

It is easily seen that $\{a_1, a_5, b_1, b_2, ..., b_{x-2}\}$ is a minimum geodetic set of Gand g(G) = x. Since $\chi(G) = 4$, there exist four color classes (say) C_{l_1} , C_{l_2} , C_{l_3} and C_{l_4} . No vertex from one color class, say C_{l_4} belong to S so that S is not a chromatic set of G. To obtain S as a chromatic set, choose at least one vertex from C_{l_4} . Let $a_4 \in C_{l_4}$. If $a_4 \in S$, then $S_c = S \cup \{a_4\}$ is a minimum geo chromatic set of G. Therefore $\chi_{gc}(G) = x + 1$. Now, define a double geo coloring of G such that $b_1, b_2, ..., b_{x-2}, a_5, a_8, a_2$ receive distinct colors, say color 1, color 2,...,color x, color x + 1 and a_1, a_4, a_7 receive color x + 2 and also a_3, a_6 receive color x + 3. Let the vertices which receive color 1, color 2,..., color x + 2, color x + 3 belong to the color classes, namely $C_{l_1}, C_{l_2}, \ldots, C_{l_{(x+2)}}, C_{l_{(x+3)}}$. It is clear that each geodesic have at least two color classes of G. But no vertex from $C_{l_x}, C_{l_{(x+1)}}, C_{l_{(x+3)}}$ belong to S so that S do not receive every double geo colors. If $a_2, a_3, a_8 \in S$, then $S \cup \{a_2, a_3, a_8\}$ is a double geo chromatic set of G. Therefore $\chi'_{dg}(G) \leq x + 3$. Also, the removal of at least one vertex from $S \cup \{a_2, a_3, a_8\}$ is not a double geo chromatic set of G. Hence $\chi'_{dg}(G) = x + 3$.

THEOREM 3.2. For an integer a > 3 with $\chi(G) = 2$, there exists a connected graph G such that g(G) = a and $\chi_{gc}(G) = \chi'_{da}(G) = a + 1$.

PROOF. Let $P_3: x_1, x_2, x_3$ be a path of order 3. Add $z_1, z_2, ..., z_a$ new vertices and join each z_i $(1 \le i \le a)$ to x_1 and x_3 . Let $P_2: w_1, w_2$ be a path of order 2 and join w_2 to x_3 of P_3 and join w_1 to z_a . Let $K_{1,a-1}$ be a star with the vertex set $\{y_0, y_1, y_2, ..., y_{a-1}\}$, where y_0 is the centre vertex. Let G be the graph obtained from this by identifying y_0 with w_2 . The graph G is shown in Figure 10. It is easily

FIGURE 10. A graph G with g(G) = a and $\chi_{gc}(G) = \chi'_{dg}(G) = a + 1$

seen that $S = \{x_1, y_1, y_2, ..., y_{a-1}\}$ is a minimum geodetic set of G and g(G) = a. Since $\chi(G) = 2$, there exist two color classes, say C_{l_1} and C_{l_2} . By assigning a proper coloring of G, the vertices of S receive same color, say color 1 so that S is not a chromatic set of G. It is clear that S does not receive any vertex from C_{l_2} (say) and so choose at least one vertex from C_{l_2} to obtain S as a geo chromatic set of G. Let $x_2 \in C_{l_2}$. If $x_2 \in S$, then $S_c = S \cup \{x_2\}$ is a geo chromatic set of G and so $\chi_{gc}(G) = a + 1$. Also, there exists a geodesic which do not contain at least two color classes of G so that two colors are not enough for double geo coloring. Define a coloring of G such that $y_1, y_2, ..., y_{a-1}$ receive distinct colors, say color 1, color 2,...,color a-1 and some vertices of $G \setminus \{y_j\}$ $(1 \leq j \leq a-1)$ receive color a and also another some vertices of $G \setminus \{y_j\}$ $(1 \leq j \leq a-1)$ receive color a+1. It is clear that each geodesic of G contain at least two color classes of G. Therefore G receives a+1 double geo colors. It follows that $S_{dg} = S_c$ is a double geo chormatic set of G and also the removal of at least one vertex from $S_{dg} = S \cup \{x_2\}$ is not a double geo chromatic set of G. Hence $\chi'_{dg}(G) = a+1$.

References

- [1] H. A. Ahangar. Graph with large geodetic number. *Filomat*, **31**(13)(2017), 4297–4304.
- [2] S. B. Samli and S. R. Chellathurai. Geo chromatic number of a graph. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5(6)(2018), 259–264.
- [3] F. Buckley and F. Harary. Distance in Graphs. Addison Wesly Publishing company, Redwood City, CA, 1990.
- [4] G. Chatrand and P. Zhang. Introduction to Graph Theory. MacGraw Hill, 2005.
- [5] G. Chatrand, F. Harary and P. Zhang. On the geodetic number of a graph. Networks, 39(1)(2002), 1–6.
- [6] G. Chatrand, F. Harary and P. Zhang. Geodetic sets in graphs. Discuss. Math., Graph Theory, 20(1)(2000), 129–138.
- [7] H. Escuardo, R. Gera, A. Hansberg, N. Jafari Rad and L. Volkmann. Geodetic domination in graphs. J. Comb. Math. Comb. Comput., 77(2011), 89–101.
- [8] A. Hansberg and L. Volkmann. On the geodetic and geodetic domination numbers of a graph. Discrete Math., 310(15-15)(2010), 2140–2146.
- [9] F. Harary. Graph Theory. Addison Wesley, 1969.
- [10] F. Harary, E. Loukakis and C. Tsouros. The geodetic number of a graph. Math. Comput. Modelling, 17(11)(1993), 89–95.
- [11] M. Mohammed Abdul Khayoom and P. Arul Paul Sudhahar. Monophonic chromatic parameter in a connected graph. Int. J. Math. Anal., Ruse, 11(19)(2017), 911–920.
- [12] A. P. Santhakumaran and J. John. Edge geodetic number of a graph. J. Discrete Math. Sci. and Cryptograpy, 10(3)(2007), 415–432.
- [13] A.P. Santhakumaran and T. Jebaraj. Double geodetic number of a graph. Discuss. Math. Graph Theory, 32(1)(2012), 109–119.

Received by editors 12.08.2019; Revised version 27.05.2020; Available online 06.07.2020.

DEPARTMENT OF MATHEMATICS, SCOTT CHRISTIAN COLLEGE (AUTONOMOUS), NAGERCOIL - 629 003, INDIA

Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India

E-mail address: beulahsamlisam1991@gmail.com

DEPARTMENT OF MATHEMATICS, GOVERNMENT COLLEGE OF ENGINEERING, TIRUNELVELI - 627 007, INDIA

E-mail address: john@gcetly.ac.in

Department of Mathematics, Scott Christian College (Autonomous), Nagercoil - 629 003, India

E-mail address: robinchel@rediffmail.com