BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Bull. Int. Math. Virtual Inst., Vol. **11**(1)(2021), 39-45 DOI: 10.7251/BIMVI2101039U

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

ON HYPER PSEUDO BCI-ALGEBRAS

Didem Sürgevil Uzay and Alev Firat

ABSTRACT. In this paper, we introduce the notion of hyper pseudo BCIalgebras and investigate some related properties. Also, we define some kinds of hyper pseudo subalgebras on hyper pseudo BCI-algebras.

1. Introduction

The study of BCK-algebras was initiated by K. Iseki [4] as a generalization of concept of set-theoretic difference and propositional calculus. In [5], the notion of BCI-algebra which is a generalization of a BCK-algebra was introduced by Iseki.

The hyperstructure theory (called also multialgebras) was introduced by F. Marty, [9], and hyper BCK-algebras were studied by many authors. Also the notion of hyper pseudo BCK-algebras which is a generalization of a hyper BCK-algebra and pseudo BCK-algebra was defined by R. A. Borzooei [1].

And then hyper BCI-algebras which is a generalization of a BCI-algebras was studied by X. L. Xin [10]. In [11], the notion of multiplier of hyper BCI-algebras was introduced and some properties of hyper BCI-algebras were investigated.

Also pseudo BCI-algebras was introduced by W. A. Dudek [2] and pseudo BCI-algebras were studied by many authors. [3, 4, 7, 8, 12]

In this paper, we introduce the notion of hyper pseudo BCI-algebras, which is a generalization of hyper BCI-algebras and pseudo BCI-algebras and discuss some related properties. Also we define some kinds of hyper pseudo subalgebras on hyper pseudo BCI-algebras.

39

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. hyper pseudo BCI-algebra, hyper pseudo subalgebra.

Communicated by Daniel A. Romano.

2. Preliminaries

DEFINITION 2.1. ([5]) An algebra (X, *, 0) of type (2, 0) is said to be a BCIalgebra if it satisfies: for all $x, y, z \in X$.

 $\begin{array}{l} (\mathrm{BCI1}) \ ((x*y)*(x*z))*(z*y)=0, \\ (\mathrm{BCI2}) \ ((x*(x*y))*y=0, \\ (\mathrm{BCI3}) \ x*x=0, \\ (\mathrm{BCI4}) \ x*y=0 \ \mathrm{and} \ y*x=0 \ \mathrm{imply} \ x=y. \end{array}$

DEFINITION 2.2. ([2]) A pseudo BCI-algebra is a structure $\mathfrak{X} = \{X, \leq, *, \circ, 0\}$ where " \leq " is a binary relation on a set X, "*" and " \circ " are binary operations on X and 0 is an element of X, verifying the axioms, for all $x, y, z \in X$.

(a1) $(x * y) \circ (x * z) \leq z * y, (x \circ y) * (x \circ z) \leq z \circ y,$ (a2) $x * (x \circ y) \leq y, x \circ (x * y) \leq y,$ (a3) $x \leq x,$ (a4) $x \leq y, y \leq x \text{ imply } x = y,$ (a5) $x \leq y \Leftrightarrow x * y = 0 \Leftrightarrow x \circ y = 0.$

PROPOSITION 2.1 ([2, 7, 8]). Let \mathfrak{X} be a pseudo BCI-algebra. Then the following hold for all $x, y, z \in X$:

 $\begin{array}{ll} (b_1) & \text{if } x \leq 0, \ \text{then } x = 0, \\ (b_2) & \text{if } x \leq y, \ \text{then } z * y \leq z * x \ \text{and } z \circ y \leq z \circ x, \\ (b_3) & \text{if } x \leq y \ \text{and } y \leq z, \ \text{then } x \leq z, \\ (b_4) & (x * y) \circ z = (x \circ z) * y, \\ (b_5) & x * y \leq z \ \text{iff } x \circ z \leq y, \\ (b_6) & (x * y) * (z * y) \leq x * z, \ (x \circ y) \circ (z \circ y) \leq x \circ z, \\ (b_7) & \text{if } x \leq y, \ \text{then } x * z \leq y * z \ \text{and } x \circ z \leq y \circ z, \\ (b_8) & x * 0 = x = x \circ 0, \\ (b_9) & x * (x \circ (x * y)) = x * y, \ x \circ (x * (x \circ y)) = x \circ y, \\ (b_{10}) & 0 * (x \circ y) \leq y \circ x, \\ (b_{11}) & 0 \circ (x * y) \leq y * x, \\ (b_{12}) & 0 * (x * y) = (0 \circ x) \circ (0 * y), \\ (b_{13}) & 0 \circ (x \circ y) = (0 * x) * (0 \circ y), \\ (b_{14}) & 0 * x = 0 \circ x. \end{array}$

DEFINITION 2.3 ([2]). By a pseudo BCI-subalgebra of a pseudo BCI-algebra \mathfrak{X} , we mean subset S of X which satisfies $x * y \in S$ and $x \circ y \in S$ for all $x, y \in S$.

DEFINITION 2.4 ([7]). Let $\mathfrak{X} = (X, \leq, *, \circ, 0)$ be a pseudo BCI-algebra. For any nonempty subset J of X and any element y of X, we denote

$$*(y, J) := \{x \in X | x * y \in J\}$$
 and $\circ (y, J) := \{x \in X | x \circ y \in J\}$

Note that $*(y, J) \cap \circ(y, J) = \{x \in X | x * y \in J, x \circ y \in J\}.$

A nonempty subset J of a pseudo BCI-algebra $\mathfrak X$ is called a pseudo BCI-ideal of $\mathfrak X$ if it satisfies

 $(I_1) \ 0 \in I,$

 $(I_2) \ (\forall y \in J) * (y, J) \subseteq J \text{ and } \circ (y, J) \subseteq J.$

40

Note that if \mathfrak{X} is a pseudo BCI-algebra satisfying $x * y = x \circ y$ for all $x, y \in X$, then the notion of a pseudo BCI-ideal and a BCI-ideal coincide.

DEFINITION 2.5. ([3]) A pseudo BCI-algebra \mathfrak{X} is said to be p-semisimple if it satisfies for all $x \in X$,

if
$$0 \leq x$$
, then $x = 0$.

PROPOSITION 2.2 ([3]). Let \mathfrak{X} be a pseudo BCI-algebra. Then the following are equivalent for $x, y \in X$,

(i) X is p-semisimple, (ii) if $x \leq y$, then x = y, (iii) $x * (x \circ y) = y = x \circ (x * y)$, (iv) $0 * (0 \circ x) = x = 0 \circ (0 * x)$, (v) $x * (0 \circ y) = y \circ (0 * x)$.

3. ON HYPER PSEUDO BCI-ALGEBRAS

DEFINITION 3.1. Let H be a nonempty set and " \circ , *" be two hyper operations on H and "0" is a constant element. $(H, \circ, *, 0)$ is called to be a hyper pseudo BCI-algebra, if it satisfies the following conditions:

 $\begin{array}{l} \mbox{(HPI1)} & (x\circ z)\circ(y\circ z)\ll x\circ y, \ (x\ast z)\ast(y\ast z)\ll x\ast y, \\ \mbox{(HPI2)} & (x\circ y)\ast z=(x\ast z)\circ y, \\ \mbox{(HPI3)} & x\ll x, \\ \mbox{(HPI4)} & x\ll y \ , \ y\ll x\Rightarrow x=y, \\ \mbox{(HPI5)} & 0\circ(0\circ x)\ll x, \ 0\ast(0\ast x)\ll x, \\ \mbox{(HPI6)} & x\ll y\Leftrightarrow 0\in x\circ y\Leftrightarrow 0\in x\ast y. \end{array}$

Moreover for every $A, B \subseteq H, A \ll B$ is defined by there exists a $b \in B$ such that $a \ll b$ for all $a \in A$.

EXAMPLE 3.1. Let $H = \{0, 1, 2\}$ and " \circ , *" be a hyper operation on H with Cayley table as follows:

0	0	1	2
0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$
1	{1}	$\{0,1\}$	$\{0,1\}$
2	$\{2\}$	$\{2\}$	$\{0,1\}$
	,		
*	0	1	2
0	$\{0,1\}$	$\{0,1\}$	$\{0,1\}$
1	$\{1\}$	$\{0,1\}$	$\{0,1\}$
2	$\{2\}$	$\{2\}$	$\{0,1,2\}$

Then it is easily checked that $(H, \circ, *, 0)$ is a hyper pseudo BCI-algebra.

THEOREM 3.1. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra. If its atis fiesx * $y = x \circ y$, for all $x, y \in H$, then H is a hyper BCI algebra; and if " * ", " \circ " are singleton, then H is a pseudo BCI-algebra.

PROOF. Let H be a hyper pseudo BCI-algebra. If $x * y = x \circ y$, for all $x, y \in H$, then H is a hyper BCI-algebra and if " * ", " \circ " are singleton, then H is a pseudo BCI-algebra.

By (a4), (a5) we have $x \ll y \Leftrightarrow x \ast y = \{0\} \Leftrightarrow x \circ y = \{0\}$. Using (*HPI1*), we get $(x \circ z) \circ (y \circ z) \ll (x \circ y)$. Therefore we have $((x \circ z) \circ (y \circ z)) \ast (x \circ y) = 0$. Using (*HPI2*), we get $((x \circ z) \ast (x \circ y)) \circ (y \circ z) = 0$. Then we have $((x \circ z) \ast (x \circ y)) \ll (y \circ z)$.

Similarly we can see that; $((x * z) \circ (x * y)) \ll (y * z)$. Hence (a1) holds. (*HPI3*) $x \ll x$. Then (a3) holds. Using (*HPI2*) and (a3), we get $(x * (x \circ y)) \circ y = (x \circ y) * (x \circ y)$. Therefore $0 \in (x \circ y) * (x \circ y)$. So that $(x * (x \circ y)) \ll y$.

Similarly, it can be proved that $(x \circ (x * y)) \ll y$. Hence (a2) holds. Hence, H is a hyper pseudo BCI-algebra.

PROPOSITION 3.1. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra. Then it satisfies the following conditions for all $x, y, z \in H$:

- (i) $x \ll 0$ implies x = 0.
- (ii) $0 \in x \circ (x * 0), 0 \in x * (x \circ 0),$
- (iii) $x \ll x \circ 0, \ x \ll x * 0,$
- (iv) $0 \circ (x \circ y) \ll y \circ x$, $0 * (x * y) \ll y * x$,
- (v) $A \ll A$,
- (vi) $A \subseteq B$ implies $A \ll B$,
- (vii) $A \ll \{0\}$ implies $A = \{0\}$,
- (viii) $x \circ 0 \ll \{y\}$ implies $x \ll y$ and $x \ast 0 \ll \{y\}$ implies $x \ll y$.
- (ix) $y \ll z$ implies $x \circ z \ll x \circ y$ and $x * z \ll x * y$.

(x) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$ and $x \circ z \ll y \circ z$.

- $x * y = \{0\} \text{ implies } (x * z) * (y * z) = \{0\} \text{ ve } x * z \ll y * z.$
- (xi) $A \circ \{0\} = \{0\}$ implies $A = \{0\}$.

PROOF. (i) Let $x \ll 0$. Then $0 \in x \circ 0$ and $0 \in x * 0$ and so using (*HPI*1), we have

$$0 \in 0 \circ (x \circ 0) \subseteq (0 \circ 0) \circ (x \circ 0) \ll 0 \circ x, 0 \in 0 * (x * 0) \subseteq (0 * 0) * (x * 0) \ll 0 * x.$$

Therefore $0 \ll 0 \circ x$, $0 \ll 0 * x$. On the other hand using (*HPI5*), we have $0 \in 0 \circ (0 \circ x) \ll x$, $0 \in 0 * (0 * x) \ll x$. Therefore we get $0 \ll x$. By (*HPI4*), we find x = 0.

(ii) Using (HPI2), we find $0 \in (x \circ 0) * (x \circ 0) = (x * (x \circ 0)) \circ 0$. Therefore there exists $c \in x * (x \circ 0)$ such that $c \ll 0$. By (i); we have c = 0. Hence $0 \in x * (x \circ 0)$. Similarly, it can be prove that $0 \in x \circ (x * 0)$.

(iii) Using (*ii*), we have $0 \in x * (x \circ 0)$ and $0 \in x \circ (x * 0)$. Therefore, we get $x \ll x \circ 0, x \ll x * 0$.

(iv) By (*HPI3*) and (*HPI1*); we find $0 \circ (x \circ y) \subseteq (y \circ y) \circ (x \circ y) \ll y \circ x$. Hence we get $0 \circ (x \circ y) \ll (y \circ x)$. By the similar way, we can see that; $0 * (x * y) \ll (y * x)$.

(v) For all $x \in H$, by (*HPI3*); we get $x \ll x$. Therefore we find $A \ll A$.

(vi) Let $A \subseteq B$ and $a \in A$. $b \in B$ such that b = a and using (*HPI3*), we find $a \ll b$. Hence it can be prove that $A \ll B$.

(vii) Let $a \in A$ and $A \ll \{0\}$. Then $a \ll 0$ and using (i), we have a = 0. Hence we find $A = \{0\}$.

(viii) By (*HP12*); we have $0 \in (x \circ 0) * y = (x * y) \circ 0$. Therefore we get $0 \in d \circ 0$. Hence there exists $d \in x \circ y$ such that $c \ll 0$. By (i); we find $d = 0 \in x \circ y$. The similar way, it can be prove that $x \ll y$ for $x * 0 \ll \{y\}$.

(ix) Let $y \ll z$. Then using (HPI1), we can find $(x \circ z) \circ 0 \subseteq (x \circ z) \circ (y \circ z) \ll x \circ y$ and $(x * z) * 0 \subseteq (x * z) * (y * z) \ll x * y$. Hence we have $(x \circ z) \circ 0 \ll x \circ y$ and $(x * z) * 0 \ll x * y$. For all $a \in x \circ z$ there exists $b \in x \circ y$ such that $a \circ 0 \ll \{b\}$ and for all $c \in x * z$ such that $d \in x * y$ there exists $c * 0 \ll \{d\}$. Moreover, using (viii), we have $a \ll b, c \ll d$ and so we find $x \circ z \ll x \circ y$ and $x * z \ll x * y$.

(x) Let $x \circ y = 0$ and x * y = 0. Then by (*HPI1*); we get $(x \circ z) \circ (y \circ z) \ll (x \circ y) = \{0\}$ and using (*vii*), we have $(x \circ z) \circ (y \circ z) = \{0\}$. Similarly, we have $(x * z) * (y * z) \ll (x * y) = \{0\}$ so that by (*vii*); we can write $(x * z) * (y * z) = \{0\}$.

(xi) By (i); we can write $a \circ 0 = \{0\}$ for $a \in A$ implies a = 0. Then $A \circ \{0\}$ for $a \in A$ implies $A = \{0\}$. The similar way, $b * 0 = \{0\}$ for $b \in A$ implies b = 0. Therefore $A * \{0\}$ for $b \in A$ implies $A = \{0\}$.

DEFINITION 3.2. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and S be a nonempty subset of H and S be a hyper pseudo BCI-algebra with " * ", " \circ " two hyper operations on H. Then S is a hyper pseudo subalgebra of H.

PROPOSITION 3.2. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and S, a nonempty subset of H. If $x \circ y \subseteq S$ and $x * y \subseteq S$ then $0 \in S$ for all $x, y \in S$.

PROOF. Let $x \circ y \subseteq S$ and $x * y \subseteq S$ for all $x, y \in S$. Therefore we have $a \in S$ and $b \in S$. Moreover we can write $a \ll a, b \ll b$ and then we get $0 \in a \circ a \subseteq S$ and we can find $0 \in b * b \subseteq S$. Hence we can prove that $0 \in S$.

THEOREM 3.2. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and S, a nonempty subset of H. Then S is a hyper pseudo subalgebra of H if and only if it satisfies $x \circ y \subseteq S$ and $x * y \subseteq S$ for all $x, y \in S$.

PROOF. (\Rightarrow) It is easily see that $x \circ y \subseteq S$ and $x * y \subseteq S$ for all $x, y \in S$. (\Leftarrow) Using Proposition 3.2, we have

 $x \circ y \subseteq S$ and $x * y \subseteq S$ for all $x, y \in S$ implies that $0 \in S$.

For all $x, y, z \in S$, we get

$$x \circ z \subseteq S, \ x * z \subseteq S \quad y \circ z \subseteq S, \ y * z \subseteq S \quad x \circ y \subseteq S, \ x * y \subseteq S.$$

Hence, we have

$$(x \circ z) \circ (y \circ z) = \bigcup_{a \in x \circ z, b \in y \circ z} a \circ b \subseteq S, \quad (x * z) * (y * z) = \bigcup_{c \in x * z, d \in y * z} c * d \subseteq S.$$

Therefore (HPI1) holds. The similar way, (HPI2), (HPI3), (HPI4), (HPI5) are true for S. Hence S is a hyper pseudo subalgebra of H.

EXAMPLE 3.2. In Example 3.1. for $S_1 = \{0,1\} \subseteq H$, S_1 is a hyper pseudo subalgebra of H. On the other hand, $S_2 = \{0,2\} \subseteq H$, S_2 is not a hyper pseudo subalgebra of H because we have $2 \in S$, $2 * 2 = \{0,1,2\} \notin S_2$.

THEOREM 3.3. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and $S(H) := \{x \in H | 0 \circ x = 0 * x = \{0\}\}$ be a nonempty subset of H. Then S(H) is a hyper pseudo subalgebra of H.

PROOF. Let $x, y \in S(H)$ and $a \in x \circ y, b \in x * y$. Then using (*HPI*1), we have

$$0 \circ (x \circ y) = (0 \circ y) \circ (x \circ y) \ll 0 \circ x = 0,$$

$$0 * (x * y) = (0 * y) * (x * y) \ll 0 * x = 0.$$

Hence by Proposition 3.1 (vii), we find

$$0 \circ (x \circ y) = \{0\}, \text{ and } 0 * (x * y) = \{0\}.$$

Therefore we have $x \circ y \subseteq S(H)$ and $x * y \subseteq S(H)$. Hence S(H) is a hyper pseudo subalgebra of H.

PROPOSITION 3.3. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and S_k , a nonempty set be defined such that

 $S_k := \{ x \in H | 0 \land x = x \circ (x * 0) = \{ 0 \} \}.$

If S_k is a nonempty subset of H then it satisfies $x \circ y \subseteq S_k$.

PROOF. Let $x, y \in S_k$ and $x \circ (x * 0) = \{0\}$. By (HPI2), (HPI1); we get $(x \circ y) \circ ((x \circ y) * 0) = (x \circ y) \circ ((x * 0) \circ y) \ll x \circ (x * 0) = \{0\}$. Hence we have $0 \wedge (x \circ y) = \{0\}$. Therefore we get $x \circ y \subseteq S_k$.

THEOREM 3.4. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and S_I be a nonempty subset of H and it be defined by

$$S_I := \{ x \in H | x \circ x = x * x = \{ 0 \} \}.$$

Then S_I is a hyper pseudo subalgebra of H.

PROOF. Let $x, y \in S(I)$ and $a \in x \circ y, b \in x * y$. Then we find

 $(x \circ y) \circ (x \circ y) \ll x \circ x = \{0\}, \text{ and } (x * y) \circ (x * y) \ll x * x = \{0\}.$

By Proposition 3.1 (vii), we can write $(x \circ y) \circ (x \circ y) = \{0\}$ and $(x * y) \circ (x * y) = \{0\}$. Therefore we get $a \circ a = \{0\}$ and $a, b \in S_I$ so that we find $b * b = \{0\}$. Then $x \circ y \subseteq S(I)$ and $x * y \subseteq S(I)$. Hence, using Theorem 3.2, we can write S_I is a hyper pseudo subalgebra of H.

THEOREM 3.5. Let $(H, \circ, *, 0)$ be a hyper pseudo BCI-algebra and S_I , a nonempty subset of H be defined by as follows:

$$S_I := \{ x \in H | x \circ x = x * x = \{ 0 \} \}.$$

Then $(S_I, \circ, *)$ is a pseudo BCI-algebra.

PROOF. Let $x, y \in S(I)$ and $a, b \in x \circ y, c, d \in x * y$. Then we have

$$a \circ b \subseteq (x \circ y) \circ (x \circ y) \ll x \circ x = \{0\},\$$

$$c * d \subseteq (x * y) \circ (x * y) \ll x * x = \{0\}.$$

Therefore we find $a \circ b = \{0\}$, $c * d = \{0\}$ and so we have $a \ll b$ and $c \ll d$. The similar way, it can be proved that $b \ll a$ and $d \ll c$. Using (*HPI4*), we can find a = b, c = d. Hence $x \circ y$ and x * y are singleton. Using Theorem 3.1, we find that S_I is a pseudo BCI-algebra.

References

- R. A. Borzooei, A. Rezazadeh and R. Ameri. On hyper pseudo BCK-algebras. Iran. J. Math. Sci. Inform., 9(1)(2014), 13–29.
- [2] W. A. Dudek and Y. B. Jun. Pseudo-BCI algebras. East Asian Math. J., 24(2)(2008), 187– 190.
- [3] G. Dymek. P-semisimple pseudo-BCI-algebras. J. Mult.-Val. Log. Soft Comput., 19(5)(2012), 461–474.
- [4] K. Iseki and S. Tanaka. An introduction to the theory of BCK-algebras. Math. Japan, 23(1)(1978), 1–26.
- [5] K. Iseki. On BCI-Algebras. Math. Semin. Notes, Kobe Univ., 8(1)(1980), 125-130.
- [6] Y. B. Jun and X. L. Xin. On derivations of BCI-algebras. Information Sciences, 159(3-4)(2004), 167–176.
- [7] Y. B. Jun, H. S. Kim and J. Neggers. On pseudo-BCI ideals of pseudo BCI-algebras. Mat. Vesn., 58(1-2)(2006), 39–46.
- [8] K. J. Lee and C. H. Park. Some ideals of pseudo-BCI algebras. J. Appl. Math. Inform., 27(1-2)(2009), 217–231.
- [9] F. Marty. Surene generalization de la notion de group. In eigth Congress Math. Scandinaves, Stockholm, (1934), 45–49.
- [10] X. L. Xin. Hyper BCI-algebras. Discuss. Math., Gen. Algebra Appl., 26(1)(2006), 5–19.
- [11] D. S. Uzay and A. Firat. On multipler of hyper BCI-algebras. Gazi University Journal of
- Science, 32(2)(2019), 660–665.
 [12] D. S. Uzay and A. Firat. On derivation of pseudo BCI-algebras. Asian-Eur. J. Math.,
- 12(6)(2019), ID: 2040011.

Received by editors 22.01.2020; Revised version 14.06.2020; Available online 06.07.2020.

Department of Mathematics, Ege University, Izmir, Turkey, $E\text{-}mail\ address:\ \texttt{didemsurgevil@hotmail.com}$

DEPARTMENT OF MATHEMATICS, EGE UNIVERSITY, IZMIR, TURKEY, *E-mail address:* alev.firat@ege.edu.tr