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NOTE ON MEET-DISTRIBUTIVE LATTICE MATRICES

Rajesh Gudepu and DPRV Subba Rao

Abstract. In this paper, we extended the notion of meet-distributive lattice
matrices. The properties of meet-distributive lattice matrices are studied and

various characterizations of them are given.

1. Introduction

The notion of lattice matrices appeared firstly in the work Lattice Matrices [5]
by Y. Giveon in 1964. A matrix is called a lattice matrix if its entries belong to a
distributive lattice. All Boolean matrices and fuzzy matrices are lattice matrices.
Lattice matrices in various special cases become useful tools in various domains
like the theory of switching nets, automata theory, and the theory of finite graphs
[5]. The basic properties of pseudocomplemented lattices and the representation
theorem are discussed by G. Birkhoff [1] and T. S. Blyth [2] in Lattice theory. We
know that multiplication of Boolean (lattice) matrices is associative and distributive
with respect to join. But, in general it is not true, that this multiplication is
distributive with respect to meet. In 1964 T. S. Blyth [3] introduce the concept of
meet-distributive Boolean matrices.

In this paper, as an analogue to T. S. Blyth [3], we generalize the concept
of meet-distributive Boolean matrices to meet-distributive lattice matrices and we
characterize those matrices.

In classical linear algebra, a QR factorization is a decomposition of a matrix A
into a product A = QR of an orthogonal matrix Q and an upper triangular matrix
R.
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26 GUDEPU AND DORADLA

In this paper, we have proven the meet-distributive lattice matrix can be de-
composed into a product A = QD of an invertible (orthogonal) matrix Q and a
diagonal matrix D.

2. Preliminaries

In this section, we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. ([1]) A partially ordered set (L,6) is a lattice if for all a, b ∈ L,
the least upper bound of a, b and the greatest lower bound of a, b exist in L. For
any a, b ∈ L, the least upper bound and the greatest lower bound are denoted by
a∨ b and a∧ b (or ab), respectively. An element a ∈ L is called greatest element of
L if α 6 a, for all α ∈ L. An element b ∈ L is called least element of L if b 6 α, for
all α ∈ L. We use 1 and 0 to denote the greatest element and the least element of
L, respectively.

Definition 2.2. ([1]) A maximal element of a subset S of some partially
ordered set (poset) is an element of S that is not smaller than any other element
in S.

Definition 2.3. ([1]) A lattice L is a distributive lattice, if for any a, b, c ∈ L,

(1) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and
(2) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) hold.

For any two elements a, b of a pseudocomplemented distributive lattice, then the
following properties are due to Grätzer ([6]):

(1) a∗ = max{x ∈ L | a ∧ x = 0};
(2) 0∗∗ = 0;
(3) a ∧ a∗ = 0;
(4) a 6 b implies b∗ 6 a∗;
(5) a 6 a∗∗;
(6) ab = 0 if and only if a 6 b∗ if and only if b 6 a∗;
(7) a 6 b implies a ∧ b∗=0;
(8) a∗∗∗ = a∗;
(9) (a ∨ b)∗ = a∗ ∧ b∗;
(10) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

Throughout this paper, unless otherwise stated, we assume that L is a bounded
pseudocomplemented distributive lattice with a∗ ∨ a∗∗= 1, for all a ∈ L.

Theorem 2.1 ([2]). If L is a pseudocomplemented distributive lattice with a∗∨
a∗∗= 1, for all a ∈ L. Then the following equivalent statements hold for all x, y ∈ L

(1) S(L) is a sublattice of L, where the set S(L) = {x∗∗ | x ∈ L};
(2) (x ∧ y)∗ = x∗ ∨ y∗;
(3) (x ∨ y)∗∗ = x∗∗ ∨ y∗∗.
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Let Mn(L) be the set of n× n matrices over a bounded distributive lattice L,
the elements of Mn(L) denoted by capital letters and suppose A ∈ Mn(L), then
the (i, j)th entry of A is denoted by aij . Y. Giveon [5] calls them lattice matrices.

The following definitions are due to Y. Giveon [5] for the lattice matrices

A = [aij ], B = [bij ], C = [cij ] ∈ Mn(L), where aij , bij , cij ∈ L, 1 6 i, j 6 n

A 6 B if and only if aij 6 bij ;

A+B = C if and only if cij = aij ∨ bij ;

A ∧B = C if and only if cij = aij ∧ bij = aijbij ;

A ·B = AB = C if and only if cij = ∨n
k=1(aik ∧ bkj);

AT = C if and only if cij = aji;

A0 = I, where I is the identity matrix;

A(BC) = (AB)C,AI = IA = A,AO = OA = O.

Theorem 2.2 ([5]). If L is distributive lattice with 0 and 1. A ∈ Mn(L) is in-
vertible if and only if each row and each column of A is an orthogonal decomposition
of 1 in L.

Definition 2.4. ([4]) A lattice vector space V over L(or lattice vector space)
is a system (V, L,+, ·), where V is a non-empty set, L is a distributive lattice with
1 and 0, + is a binary operation on V called addition and · is a map from L × V
to V called scalar multiplication such that the following properties hold: For every
x,y, z ∈ V and a, b ∈ L satisfy ([4]):

(1) x+ y = y+ x;
(2) x+ (y+ z) = (x+ y) + z;
(3) there is an element 0 in V such that x+ 0 = x, for every x in V ;
(4) x+ y = 0 if and only if x = y = 0;
(5) a · (x+ y) = a · x+ a · y;
(6) (a ∨ b) · x = a · x+ b · x;
(7) (ab)x = a · (b · x);
(8) 1 · x = x;
(9) 0 · x = 0.

3. Meet-distributive lattice matrices

In this section, we extend the concept of meet-distributive matrices over Boolean
algebra [3] to meet-distributive matrices over lattice matrices, we find such matrices
for which the multiplication is distributive with respect to meet and we characterize
those matrices.

Definition 3.1. A square matrixA ∈ Mn(L) is said to be left meet-distributive
if it satisfy A(X ∧ Y ) = AX ∧ AY , for all X,Y ∈ Mn(L) and is said to be right
meet-distributive if it satisfy (X∧Y )A = XA∧Y A, for allX,Y ∈ Mn(L). A matrix
is said to be meet-distributive if which is both left meet and right meet-distributive.

Example 3.1. Consider the lattice L = {0, a, b, c, d, 1} where the Hasse dia-
gram of L is shown in Figure 1
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Figure 1

Let A =

(
d a
a b

)
, X =

(
a d
c b

)
, Y =

(
a c
1 d

)
. So,

A(X ∧ Y ) =

(
d a
a b

) (
a b
c b

)
=

(
a b
c b

)
and

AX ∧AY =

(
a d
c b

)
∧
(

a b
c c

)
=

(
a b
c b

)
.

Clearly A is left meet-distributive matrix.

(X ∧ Y )A=

(
a b
c b

) (
d a
a b

)
=

(
0 c
b c

)
and

XA ∧ Y A =

(
0 c
b c

)
∧
(

a c
d c

)
=

(
o c
b c

)
.

Clearly A is right meet-distributive matrix. Therefore, A is meet-distributive ma-
trix.

Now we characterize the left meet-distributive and right meet-distributive lat-
tice matrices.

Theorem 3.1. If L is a bounded distributive and a square lattice matrix P =
[pij ] over L is left meet-distributive if and only if, for all i, pij ∧ pik=0, j ̸= k.

Proof. Let P = [pij ] ∈ Mn(L). Suppose that P (A ∧ B) = PA ∧ PB, for
all A = [aij ], B = [bij ] ∈ Mn(L). In particular, we choose A = I∗ = [(δ∗)ij ] and
B = I = [δij ], where δij=1 if i = j and 0 if i ̸= j. Consider, P (A∧B) = P (I∗∧I) =
AO = O.
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On the other hand

[PA ∧ PB]ik = [∨j(pijajk)] ∧ [∨l(pilblk)]

= [∨j(pij(δ)
∗
jk)] ∧ [∨l(pilδlk)]

= (∨j ̸=kpij) ∧ pik.

Therefore, the equality gives (∨j ̸=kpij) ∧ pik=∨j ̸=k(pij ∧ pik) = 0. Which implies
that pij ∧ pik= 0, j ̸= k.

Conversely, suppose that pij ∧ pik= 0, j ̸= k, then

[PA ∧ PB]ik = [∨j(pijajk)] ∧ [∨l(pilblk)]

= ∨j,l(pij ∧ ajk ∧ pil ∧ blk)

= ∨j(pij ∧ ajk ∧ bjk

= [P (A ∧B)]ik.

Therefore, P (A ∧B) = PA ∧ PB. �

Similarly, we can obtain the following result:

Theorem 3.2. If L is a bounded distributive and a square lattice matrix P =
[pij ] over L is right meet-distributive if and only if, for all j, pij ∧ pkj= 0, i ̸= k.

Example 3.2. Consider the lattice L = {0, a, b, c, d, e, f, g, h, i, j, 1} where the
Hasse diagram of L is shown in figure 2.

Figure 2
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Let P =

 g a b
0 j a
d 0 c

, here we have, for all j, pij ∧ pkj= 0, i ̸= k and for all

i, pik ∧ pij= 0, j ̸= k. X =

 b c d
e f g
a i h

 and Y =

 d f c
b e a
j i h

. Consider,

P (X ∧ Y ) =

 g a b
0 j a
d 0 c

 b c 0
0 c 0
0 i h

 =

 0 c b
0 e a
b c c


and now

PX ∧ PY =

 a c b
e h i
b c h

 ∧

 b e h
b e a
h f c

=

 0 c b
0 e a
b c c

.

Therefore, P (X ∧ Y ) = PX ∧ PY .

We now denote the set of all left meet-distributive matrices of Mn(L) as M
l
n(L)

and the set of all right meet-distributive matrices of Mn(L) as M
r
n(L).

Corollary 3.1. For any P,Q ∈ M l
n(L)(or Mr

n(L)), A ∈ Mn(L). Then we
have

(a) PQ ∈ M l
n(L)(or Mr

n(L)).
(b) P ∧A ∈ M l

n(L)(or Mr
n(L)).

From Corollary 3.1, it follows that both M l
n(L) and Mr

n(L) forms a subsemi-
group and meet-subsemilattice of Mn(L).

Lemma 3.1. have
(a) If P,Q ∈ M l

n(L), then P ∨Q ∈ M l
n(L) if and only if, for all i,

pij ∧ qik = 0, j ̸= k.

(b) If P,Q ∈ Mr
n(L), then P ∨Q ∈ Mr

n(L) if and only if, for all j,

pij ∧ qkj = 0, i ̸= k.

Theorem 3.3. If L is a pseudocomplemented lattice with 0, 1. Let P = [pij ] ∈
M l

n(L) is left meet-distributive, the matrix T = [tij ] ∈ M l
n(L) defined by tij = p∗∗ij ,

j ̸= i and tii = ∧k ̸=ip
∗
ik. Then T is maximal element of set left meet-distributive

matrices, containing P .

Proof. Let P = [pij ] ∈ M l
n(L), then we have pij ∧ (∨k ̸=jpik) = 0, so which

implies that

pij 6 (∨k ̸=jpik)
∗ = ∧k ̸=jp

∗
ik or ∨k ̸=j pik = ∧k ̸=jpik 6 p∗ij .

Now we construct the matrix T = [tij ], where tij = p∗∗ij , j ̸= i and tii = ∧k ̸=ip
∗
ik.

Consider for i ̸= k, tiitik = ∧k ̸=ip
∗
ikp

∗∗
ik = 0. For i ̸= j ̸= k, tijtik = p∗∗ij p

∗∗
ik =

(pijpik)
∗∗= (0)∗∗ = 0. Therefore, T = [tij ] ∈ M l

n(L).
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To prove T is maximal in M l
n(L), consider any X = [xij ] ∈ M l

n(L) such that
T 6 X and we prove T = X (or X 6 T ). Now consider, for i = j,

xii 6 ∧k ̸=ix
∗
ik 6 ∧k ̸=it

∗
ik 6 ∧k ̸=ip

∗∗∗
ik = ∧k ̸=ip

∗
ik = tii.

For i ̸= j,

xij 6 ∧k ̸=jx
∗
ik = x∗

ii ∧ [∧i ̸=j ̸=kx
∗
ik]

6 t∗ii ∧ [∧i ̸=j ̸=kt
∗
ik]

= [∧i ̸=kp
∗
ik]

∗ ∧ [∧i ̸=j ̸=kp
∗
ik]

= [∨k ̸=ip
∗∗
ik ] ∧ [∧i̸=j ̸=kp

∗
ik]

= [p∗∗ij ∨ [∨i ̸=j ̸=kp
∗∗
ik ]] ∧ [∧i ̸=j ̸=kp

∗
ik]

= p∗∗ij ∧ [∧i ̸=j ̸=kp
∗
ik]

6 p∗∗ij

= tij .

So, xij 6 tij , for all i, j and since tij 6 xij , for all i, j which gives xij = tij , for
all i, j. Therefore, T = X. Consequently T is maximal in M l

n(L).
Similarly, if P = [pij ] ∈ Mr

n(L), the matrix T = [tij ] defined by tij = p∗∗ij , j ̸= i
and tii = ∧k ̸=ip

∗
ki. Then T is maximal element of Mr

n(L) containing P . �

Corollary 3.2. If L is a pseudocomplemented lattice with 0, 1. Then T =
[tij ] ∈ M l

n(L) is maximal in M l
n(L) whenever ∨jtij = 1.

Proof. Let T = [tij ] ∈ M l
n(L) is maximal in M l

n(L), then there exist P =
[pij ] ∈ M l

n(L) such that P 6 T and tij = p∗∗ij , j ̸= i and tii = ∧k ̸=ip
∗
ik. Consider

∨jtij = tii ∨ ∨j ̸=itij

= [∧k ̸=ip
∗
ik] ∨ [∨j ̸=ip

∗∗
ij ]

= [∨i ̸=jpij ]
∗ ∨ [∨j ̸=ipij ]

∗∗

= 1.

Suppose T = [tij ] ∈ M l
n(L) and ∨jtij = 1. Since T = [tij ] ∈ M l

n(L), then tii ∧
(∨j ̸=itij) = 0. Which implies that tii 6 (∨j ̸=itij)

∗.
Consider

1 = tii ∨ (∨j ̸=itij)

6 (∨j ̸=itij)
∗ ∨ (∨j ̸=itij)

6 (∨j ̸=itij)
∗ ∨ (∨j ̸=itij)

∗∗

= 1

we obtain from above, tij = t∗∗ij , j ̸= i and tii = ∧j ̸=it
∗
ij . Therefore, T = [tij ] is

maximal in M l
n(L) . �

Similarly, we can prove T = [tij ] ∈ Mr
n(L) is maximal in Mr

n(L) whenever ∨itij
= 1.
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Remark 3.1. If L is a pseudocomplemented distributive lattice with 0, 1. Let
T = [tij ] ∈ Mn(L) is maximal element of both M l

n(L) and Mr
n(L), then tij = p∗∗ij ,

j ̸= i and tii = ∧i ̸=kp
∗
ik = ∧k ̸=ip

∗
ki.

Corollary 3.3. A ∈ Mn(L) is maximal element of both M l
n(L) and Mr

n(L)
if and only if it is invertible.

Example 3.3. Consider the lattice L = {0, a, b, c, d, e, f, g, h, i, j, 1} where the

Hasse diagram of L is shown in figure 2. Let P= [pij ] =

 d 0 c
g a 0
0 c a

, where, for

all j, pij ∧pkj=0, i ̸= k and for all i, pik ∧pij=0, j ̸= k. Then the maximal element

in both M l
n(L) and Mr

n(L) will be T =

 d 0 g
g d 0
0 g d

 and here, for all i,

tijtik = 0, j ̸= k ∨i tij = 1;

for all j,

tijtkj = 0, i ̸= k; ∨jtij = 1.

Therefore, T is invertible.

Now we characterise meet-distributive lattice matrices.

Theorem 3.4. If L is a pseudocomplemented distributive lattice with 0, 1.
Then A ∈ Mn(L) is meet-distributive if and only if there exists an invertible matrix
P ∈ Mn(L) such that A 6 P .

Proof. Suppose A 6 P , where P is invertible, then by Corollary 3.1, we have
A = A ∧ P ∈ M l

n(L) and A = A ∧ P ∈ Mr
n(L). Therefore, A is meet-distributive.

Conversely, suppose A is meet-distributive, then we wish to show that A is
contained in some invertible matrix C. Now we build up systematically a sequence
of matrices

A 6 Nn
1 6 Nn

2 · · · 6 Nn
n (= C say)

in which each Nn
i is meet-distributive and Nn

n (= C) is invertible. Since A is meet-
distributive, we have for all i, aijaik = 0, j ̸= k and for all j, aijakj = 0, i ̸= k
which gives that aij 6 ∧k ̸=ja

∗
ik ∧ ∧k ̸=ia

∗
kj .

Now we observe that the previous former relations remain unaltered if, for a
given aij we replace this aij by the right-hand side of later one. We use this fact
repeatedly in building up the sequence A 6 Nn

1 6 Nn
2 · · · 6 Nn

n (= C) in the
following way. We begin by replacing the leading element of A, then proceed along
the first row and then down the first column. At this stage, we will have the matrix
Nn

1 of the sequence which is meet-distributive, contains A and is such that its first
row and column orthogonal decomposition 1 in L.

We begin, therefore, with the matrix M1
1 defined from A by

[M
(1)
1 ]ij =

{
∧k>1a

∗
1k ∧ ∧k>1a

∗
k1, i = 1, j = 1

aij , i ̸= j
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We now proceed along the first row, defining recursively the sequence

A 6 M1
1 6 M2

1 · · · 6 Mn
1

in the following way:

[M
(r)
1 ]ij =

{ [M
(j)
1 ]1j , i = 1, j < r

∧k<r[M
(k)
1 ]∗1k ∧k>r a

∗
1k ∧ ∧k>1a

∗
kr, j = r, i = 1

aij , otherwise

.

Denoting for convenience Mn
1 by N1

1 we now proceed down the first column,
thus defining the sequence N1

1 6 N2
1 · · · 6 Nn

1 in the following recursive way:

[N
(r)
1 ]ij =

{ [N
(i)
1 ]i1, j = 1, i < r

∧k<r[N
(k)
1 ]∗k1 ∧k>1 a

∗
rk ∧ ∧k>ra

∗
k1, i = r, j = 1

aij , otherwise

.

At this stage, we have the matrix Nn
1 of the sequence A 6 Nn

1 6 Nn
2 · · · 6 Nn

n

(= C), and by its construction it satisfies the meet-distributive conditions and in
which each element of these matrices is a pseudocomplemented of some element.

Consider now the first row of Nn
1 (= B = b∗ij say). Taking the union of this

and using repeatedly the formula a∗ ∨ (a∗∗ ∧ b∗) = a∗ ∨ b∗ and the distributive law,
we have, ∨j [N

n
1 ]1j = ∨j [b

∗
1j ] = (∧j [b1j ])

∗ = (0)∗ = 1.
Similarly, we can obtain that ∨i[N

n
1 ]i1 = 1.

We may now re-start the process of substitution and build up the matrix Nn
2

from Nn
1 exactly as we built up Nn

1 from A, though in this case we leave the first
row and column alone and deal with the second row and second column. We then
build up Nn

3 from Nn
2 by concentrating on the third row and column of Nn

2 and so
on.

The entire sequence of matrices is given by

A 6 M1
1 6 M2

1 · · · 6 Mn
1 = N1

1 6 N2
1 · · · 6 Nn

1 =M1
2 6 M2

2 · · · 6 Mn
2 =

N2
2 6 N3

2 · · · 6 Nn
2 = M2

3 6 M3
3 · · · 6 Mn

3 = N3
3 6 N4

3 · · · 6 Nn
3 = · · · Mn−2

n−1

6 Mn−1
n−1 6 Mn

n−1 = Nn−1
n−1 6 Nn

n−1 = Mn−1
n 6 Mn

n = Nn
n (= C).

In this way, we construct the sequence A 6 Nn
1 6 Nn

2 · · · 6 Nn
n (= C) and

eventually arrive at the matrix Nn
n (= C) which is meet-distributive, contains A

and satisfies the condition ∨i[N
n
n ]ij = 1 = ∨j [N

n
n ]ij . Consequently, Nn

n (= C) is
invertible. �

For simulation,consider the matrix

A =

(
a11 a12
a21 a22

)
6

(
a∗12a

∗
21 a12

a21 a22

)
=

(
b11 a12
a21 a22

)
6

(
b11 b∗11a

∗
22

a21 a22

)
=

(
b11 b12
a21 a22

)
6

(
b11 b12

b∗11a
∗
22 a22

)
=

(
b11 b12
b21 a22

)
6

(
b11 b12
b21 b∗12b

∗
21

)
=

(
b11 b12
b21 b22

)
= B.
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Consider

b11 ∨ b12 = a∗12a
∗
21 ∨ (a∗12a

∗
21)

∗(a∗22)

= (a12 ∨ a21)
∗ ∨ (a12 ∨ a21)

∗∗(a∗22)

= (a∗12a
∗
21) ∨ (a∗22)

= (a12a22)
∗ ∨ (a21a22)

∗

= 1

b11 ∨ b21 = a∗12a
∗
21 ∨ (a∗12a

∗
21)

∗(a∗22)

= (a12 ∨ a21)
∗ ∨ (a12 ∨ a21)

∗∗(a∗22)

= (a∗12a
∗
21) ∨ (a∗22)

= (a12a22)
∗ ∨ (a21a22)

∗

= 1

b12 ∨ b22 = (a∗12a
∗
21)

∗(a∗22) ∨ [(a∗12a
∗
21)

∗(a∗22)]
∗

= [(a12 ∨ a21)
∗∗](a∗22) ∨ (a12 ∨ a21)

∗ ∨ (a∗22)

= [(a12 ∨ a21)
∗∗] ∨ [(a12 ∨ a21)

∗] ∨ (a∗22)

= 1 ∨ (a∗22)

= 1

and

b21 ∨ b22 = (a∗12a
∗
21)

∗(a∗22) ∨ [(a∗12a
∗
21)

∗(a∗22)]
∗

= [(a12 ∨ a21)
∗∗](a∗22) ∨ (a12 ∨ a21)

∗ ∨ (a∗22)

= [(a12 ∨ a21)
∗∗] ∨ [(a12 ∨ a21)

∗] ∨ (a∗22)

= 1 ∨ (a∗22)

= 1

with b11b12 = b21b22 = 0 = b11b21 = b12b22.
Therefore, B is invertible and A 6 B.

Example 3.4. Consider the lattice

L = {0, a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, 1}

where the Hasse diagram of L is shown figure 3:

Consider the matrix A =

 g a c
c m a
d c g

, here we have, for all i, aij ∧ akj=0,

i ̸= k and for all j, aik ∧ aij=0, j ̸= k. Then

A =

 g a c
c m a
d c g

6

 a∗c∗d∗ a c
c m a
d c g

 =

 m a c
c m a
d c g
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Figure 3

6

 m m∗c∗ c
c m a
d c g

 =

 m d c
c m a
d c g

 6

 m d m∗d∗a∗g∗

c m a
d c g


=

 m d c
c m a
d c g

 6

 m d c
m∗d∗a∗ m a

d c g

 =

 m d c
c m a
d c g


6

 m d c
c m a

m∗c∗g∗ c g

 =

 m d c
c m a
d c g

 6

 m d c
c d∗c∗a∗ a
d c g


=

 m d c
c m a
d c g

 6

 m d c
c m c∗m∗g∗

d c g

 =

 m d c
c m d
d c g


6

 m d c
c m d
d d∗m∗g∗ g

=

 m d c
c m d
d c g

 6

 m d c
c m d
d c d∗c∗


=

 m d c
c m d
d c m

 = P .

Clearly P is invertible and A 6 P .

Definition 3.2. Let V be a lattice vector space. An inner product on V is a
function <,>: V × V → L which satisfy:

(1) < x,x > > 0, for all x ∈ V and < x,x > = 0 iff x = 0V ;
(2) < x+ y, z > = < x, z > ∨ < y, z >, for all x,y, z ∈ V ;
(3) < αx,y > = α < x,y >, for all x,y ∈ V and α ∈ L;
(4) < y,x > = < x,y >, for all x,y ∈ V .
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Definition 3.3. A vector space V together with an inner product <,> is
called an inner product space which is denoted by (V,<,>).

Example 3.5. Let V = Vn(L) = {x ∈ V |x = (x1, x2, . . . xn)}(set of all n-
tuples). By defining “+” on V as (x1, x2, . . . xn) + (y1, y2, . . . yn) = (x1 ∨ y1, x2 ∨
y2, . . . , xn ∨ yn) and scalar multiplication · on V as a(x1, x2, . . . xn) = (ax1, ax2,
. . ., axn), Vn(L) forms a vector space over L. For any x,y ∈ V , by defining
< x,y >= xTy or yTx, (Vn(L), <,> ) forms an inner product space.

Now we will see another characterization of meet-distributive lattice matrices.

Theorem 3.5. If L is a pseudocomplemented distributive lattice with 0, 1 and
a matrix in Mn(L) is meet-distributive lattice matrix if and only if it is a product
of an orthogonal and a diagonal matrices.

Proof. Let A = [a]ij ∈ Mn(L) be a meet-distributive lattice matrix, then by
Theorem 3.4 there exist an invertible (orthogonal) matrix Q = [q]ij ∈ Mn(L) such
that A 6 Q. Let the columns of A be a1,a2, · · · ,an and the columns of Q be
q1,q2, · · · ,qn. Now we construct a matrix D = [d]ij as dij =< qi,aj > , for all
i, j. Then we can obtain that, < qi,aj > = 0, for i ̸= j. Therefore, A = QD and
QTA = D.

Converse obvious, that is, the product of an orthogonal and a diagonal lattice
matrices is a meet-distributive lattice matrix. �

Example 3.6. Consider the lattice L = {0, a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p,
q, r, s, t, u, v, 1} where the Hasse diagram of L is shown in Figure 3.

Consider the matrix A = [a1 a2 a3] =

 g a c
c m a
d c g

, here we have, for all

i, aij ∧ akj=0, i ̸= k and for all j, aik ∧ aij=0, j ̸= k. Then by Theorem 3.4,

there exists a invertible (orthogonal) matrix Q = [q1 q2 q3] =

 m d c
c m d
d c m


and construct D =

 < q1,a1 > 0 0
0 < q2,a2 > 0
0 0 < q3,a3 >

. So,

QD =

 m d c
c m d
d c m

  < q1,a1 > 0 0
0 < q2,a2 > 0
0 0 < q3,a3 >


=

 m d c
c m d
d c m

  u 0 0
0 v 0
0 0 r

 =

 g a c
c m a
d c g

 = A.

Conclusion. In this paper, we extended and studied the notion of meet-
distributive lattice matrices. The properties of meet-distributive lattice matrices
and various characterizations of them are given. Also, as an analogue to T. S.
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Blyth [3], we generalize the concept of meet-distributive Boolean matrices to meet-
distributive lattice matrices and characterize those matrices. It is proved that, the
meet-distributive lattice matrix can be decomposed into a product A = QD of an
invertible (orthogonal) matrix Q and a diagonal matrix D.
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