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ANNIHILATOR IDEALS IN

0-DISTRIBUTIVE ALMOST LATTICES

G. Nanaji Rao and R. Venkata Aravinda Raju

Abstract. The concept of annihilator ideal is introduced in a 0−distributive
Almost Lattice (AL) L and gave certain examples of annihilator ideals. We

proved that the set of all annihilator ideals of L forms a complete Boolean al-
gebra. The concept of an annihilator preserving homomorphism is introduced
in L and proved certain properties of annihilator preserving homomorphisms.
We proved that the images and the inverse images of an annihilator ideals

are again annihilator ideals under annihilator preserving homomorphisms. Fi-
nally, a sufficient condition for an AL homomorphism to become annihilator
preserving homomorphism is derived.

1. Introduction

In 1973, William H. Cornish [2] introduced the concept of annihilator ideals in
distributive lattices and studied many properties of annihilator ideals. Mark Man-
delker [3] studied the properties of relative annihilators in lattices and characterized
the distributive lattice in terms of relative annihilators. The concept of almost lat-
tice (AL) was introduced by Nanaji Rao, G. and Habtamu Tiruneh Alemu [4] as a
common abstraction of almost all lattice theoretic generalizations of Boolean alge-
bra like distributive lattices, almost distributive lattices and established necessary
and sufficient conditions for an AL L to become lattice. Also, Nanaji Rao, G.
and Habtamu Tiruneh Alemu [5] introduced the concept of ideals in an AL and
proved that the set I(L) of all ideals in an AL L forms a complete lattice and
proved the PI(L) of all principal ideals of L is a sublattice of the lattice I(L). The
concept of pseudo-complemented almost lattices was introduced by Nanaji Rao,
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G. and R.Venkata Aravinda Raju [6] and proved some basic properties of pseudo-
complementation on an AL L. Also, they proved that pseudo-complementation
on an AL L is equationally definable and proved that there is a one-to-one corre-
spondence between the set of all pseudo-complementations on L and the set of all
maximal elements in L. Later, Nanaji Rao, G. and R.Venkata Aravinda Raju [7]
introduced the concept of annihilator of a nonempty subset of an AL L and proved
certain basic properties of annihilators in L. Also, they introduced the concept of
0-distributive almost lattice and obtained necessary and sufficient conditions for
an AL with 0 to become 0-distributive AL in terms of annihilators, ideals and
pseudo-complementations.

In this paper the concept of annihilator ideals in an AL is introduced and
gave several examples of annihilator ideals and proved some basic properties of
the annihilator ideals. We proved that the set A(L) of all annihilator ideals of
an AL L with 0 form complete Boolean algebra. Next, the concept of annihilator
preserving homomorphism is introduced and gave certain examples of annihilator
preserving homomorphisms. A sufficient condition for an AL homomorphism to
become annihilator preserving homomorphism is derived. Finally, we proved that
the image and the inverse image of an annihilator ideal is again annihilator ideal
under annihilator preserving homomorphisms.

2. Preliminaries

In this section we collect few important definitions and results which are already
known and which will be used more frequently in the text.

Definition 2.1. ([8]) Let (P,6) be a poset. Then P is said to be lattice
ordered set if for every pair x, y ∈ P , l.u.b{x, y} and g.l.b{x, y} exists.

Definition 2.2. ([8]) An algebra (L,∨,∧) of type (2, 2) is called a lattice if it
satisfies the following axioms. For any x, y, z ∈ L,

(1) x ∨ y = y ∨ x and x ∧ y = y ∧ x. (Commutative Law)
(2) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z). (Associative Law)
(3) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x. (Absorption Law)

It can be easily seen that in any lattice (L,∨,∧), x ∨ x = x and x ∧ x =
x (Idempotent Law).

Theorem 2.1 ([8]). Let (L,6) be a lattice ordered set. If we define x ∧ y is
the g.l.b of {x , y} and x ∨ y is the l.u.b of {x , y} (x, y ∈ L), then (L,∨,∧) is a
lattice.

Theorem 2.2 ([8]). Let (L,∨,∧) be a lattice. If we define a relation 6 on L,
by x 6 y if and only if x = x∧ y, or equivalently x∨ y = y. Then (L,6) is a lattice
ordered set.

Important Note. Theorems 2.1. and 2.2. together imply that the concepts
of lattice and lattice ordered set are the same. We refer to it as a lattice in future.

Definition 2.3. ([8]) Let (L,∨,∧) be a lattice. Then L is said to be a bounded
lattice if L is bounded as a poset.
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Definition 2.4. [8] A bounded lattice L with bounds 0 and 1 is said to be
complemented if to each x ∈ L, there exists y ∈ L such that x∧y = 0 and x∨y = 1.

Theorem 2.3 ([8]). In any lattice (L,∨,∧), for any x, y, z ∈ L, the following
are equivalent:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(2) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
(3) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(4) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)

Definition 2.5. ([8]) A lattice (L,∨,∧) is called a distributive lattice if it
satisfies any one of the four conditions in the theorem 2.3.

Definition 2.6. ([8]) A complemented distributive lattice is called a Boolean
algebra.

Definition 2.7. ([8]) A lattice (L,∨,∧) is called a complete lattice if every
nonempty subset of L has both l.u.b and g.l.b.

Theorem 2.4 ([8]). If P is a partial ordered set bounded above each of whose
non-void subsets R has an infimum, then each non-void subset P will have a supre-
mum, too, and by the definitions

∩
R = infR,

∪
= supR, then P becomes a

complete lattice.

Theorem 2.5 ([1]). Let L be a lattice. Then for any x, y, z ∈ L, the following
conditions are equivalent:

(1) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(3) (x ∨ y) ∧ z 6 x ∨ (y ∧ z)

Definition 2.8. ([4]) An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an AL
with 0 if, for any a, b, c ∈ L, it satisfies the following conditions:

(1) (a ∧ b) ∧ c = (b ∧ a) ∧ c
(2) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(3) (a ∧ b) ∧ c = a ∧ (b ∧ c)
(4) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(5) a ∧ (a ∨ b) = a
(6) a ∨ (a ∧ b) = a
(7) (a ∧ b) ∨ b = b
(8) 0 ∧ a = 0

It can be easily seen that a ∧ b = a if and only if, a ∨ b = b in an AL.

Definition 2.9. ([4]) Let L be an AL and a, b ∈ L. Then we define a is less
than or equal to b and write a 6 b if and only if a∧ b = a or equivalently a∨ b = b.

Theorem 2.6 ([4]). The relation 6 is a partial ordering on an AL L and hence
(L,6) is a poset.

Definition 2.10. ([4]) Let L be any nonempty set. Define, for any x, y ∈ L ,
x ∨ y = x = y ∧ x. Then, clearly L is an AL and is called discrete AL.
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Definition 2.11. ([4]) An AL L is said to be directed above if for any a, b ∈ L
there exists c ∈ L such that a, b 6 c.

Theorem 2.7 ([4]). Let L be an AL. Then the following are equivalent:

(1) L is directed above.
(2) ∧ is commutative.
(3) ∨ is commutative.
(4) L is a lattice.

Definition 2.12. ([1]) Let L and L′ be two ALs with zero elements 0 and 0′

respectively. Then a mapping f : L → L′ is called a homomorphism if it satisfies
the following conditions.

(1) f(a ∨ b) = f(a) ∨ f(b)
(2) f(a ∧ b) = f(a) ∧ f(b)
(3) f(0) = 0′.

Definition 2.13. ([5]) Let L be an AL. Then a nonempty subset I of L is said
to be an ideal of L if it satisfies the following conditions.

(1) If x, y ∈ I, then there exists d ∈ I such that d ∧ x = x and d ∧ y = y.
(2) If x ∈ I and a ∈ L, then x ∧ a ∈ I.

Lemma 2.1 ([5]). Let L be an AL and I be an ideal of L. Then the following
are equivalent:

(1) x, y ∈ I implies x ∨ y ∈ I.
(2) x, y ∈ I implies there exists d ∈ I such that d ∧ x = x and d ∧ y = y.

Corollary 2.1 ([5]). Let L be an AL and a ∈ L. Then (a] = {a ∧ x| x ∈ L}
is an ideal of L and is called principal ideal generated by a.

Corollary 2.2 ([5]). Let L be an AL and a, b ∈ L. Then a ∈ (b] if and only
if a = b ∧ a.

Corollary 2.3 ([5]). Let L be an AL and a, b ∈ L. Then (a ∧ b] = (b ∧ a].

Theorem 2.8 ([5]). Let L be an AL. Then the set I(L) of all ideals of L
form a lattice under set inclusion in which the glb and lub for any I, J ∈ I(L) are
respectively I ∧ J = I ∩ J and I ∨ J = {x ∈ L : (a ∨ b) ∧ x = x for some a ∈ I and
b ∈ J}.

Theorem 2.9 ([5]). Let L be an AL. Then the set PI(L) of all principal ideals
of L is a sublattice of the lattice I(L) of all ideals of L.

Definition 2.14. ([5]) Let L be an AL. Then for any ideal I in L, define
Ie = {(a] : a ∈ I}.

Lemma 2.2 ([5]). Let L be an AL and I, J be ideals of L. Then we have the
following.

(1) Ie is an ideal of the lattice PI(L)
(2) I ⊆ J ⇔ Ie ⊆ Je

(3) (I ∨ J)e = Ie ∨ Je
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(4) (I ∩ J)e = Ie ∩ Je

(5) I is prime ⇔ Ie is prime.

Definition 2.15. ([7]) Let L be an AL with 0. Then L is said to be 0-
distributive if for any a, b, c ∈ L, a ∧ b = 0 and a ∧ c = 0 imply a ∧ (b ∨ c) = 0.

Corollary 2.4 ([7]). Let L be an AL with 0. Then for any ideals I, J of L.
we have the following:

(1) I ∩ I∗ = {0}
(2) I∗ =

∩
a∈I

(a]∗

(3) (I ∩ J)∗ = (J ∩ I)∗

(4) I ⊆ J ⇒ J∗ ⊆ I∗

(5) I∗ ∩ J∗ ⊆ (I ∩ J)∗

(6) I ⊆ I∗∗

(7) I∗∗∗ = I∗

(8) I∗ ⊆ J∗ ⇔ J∗∗ ⊆ I∗∗

(9) (I ∪ J)∗ = I∗ ∩ J∗ = (J ∪ I)∗

Corollary 2.5 ([7]). Let L be an AL with 0. Then for any ideals I, J of L,
we have the following.

(1) (I ∩ J)∗∗ = I∗∗ ∩ J∗∗

(2) I ∩ J = (0] ⇔ I ⊆ J∗ ⇔ J ⊆ I∗

Corollary 2.6 ([7]). Let L be an AL with 0. If {Ii : i ∈ ∆} is a family of
ideals of L, then (

∩
i∈∆

Ii)
∗∗ =

∩
i∈∆

(Ii)
∗∗.

3. Annihilator ideals

In this section, we introduce the concept of annihilator ideal in an AL L,
give certain examples of annihilator ideals. Also, we establish a necessary and
sufficient condition for an ideal in L to become annihilator ideal. Finally, we prove
that the set A(L) of all annihilator ideals in L forms a complete Boolean algebra.
First, we begin this section with the following definition.

Definition 3.1. Let L be an AL with 0 and I be an ideal of L. Then I is
called an annihilator ideal of L if I = A∗ for some non-empty subset A of L.

It can be easily seen that if I is an annihilator ideal in an AL L then I = I∗∗.
Also, seen that for any ideal I in L, I∗ is an annihilator ideal. Note that, the set
of all annihilator ideals in an AL L with 0 is denoted by A(L). In the following we
give certain examples of annihilator ideals.

Example 3.1. Let X be a discrete AL with 0 and with atleast two elements,
other than 0. Then (Xn,∨,∧, 0′) is an AL with 0′ = (0, 0, ..., 0), where ∨, ∧ are
defined coordinate-wise. Now, put I = {(0, a1, a2, ..., an−1) : ai ∈ X}. Then clearly
I is an ideal of L and also, I = I∗∗. Hence I is an annihilator ideal of L.
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Example 3.2. Let (L,+, ., 0) be a commutative regular ring with unity. For
any a ∈ L, let a0 be the unique idempotent element in L such that aL = a0L. For
any x, y ∈ L, define x∧ y = x0y and x∨ y = x+(1−x0)y. Then clearly (L,∨,∧, 0)
is an AL with 0. Now, consider I = (x0] and J = (1 − x0]. Then clearly I, J are
an annihilator ideals in L.

Example 3.3. Let L = {0, a, b, c} and define ∨ and ∧ on L as follows:

∨ 0 a b c
0 0 a b c
a a a b b
b b b b b
c c b b c

and

∧ 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
c 0 0 c c

Then clearly (L,∨,∧, 0) is an AL with 0. Now, put I = {0, a}. Then clearly I is
an ideal in L. Now, I∗ = {0, c} and also I∗∗ = {0, a} = I. Thus I is an annihilator
ideal in L.

Recall that for any ideal I of an AL L, Ie = {(a] : a ∈ I} is an ideal of the
lattice PI(L). In the following we derive a necessary and sufficient condition for
an ideal in an AL to become annihilator ideal.

Lemma 3.1. Let L be an AL with 0. Then an ideal I of L is an annihilator
ideal in L if and only if Ie is an annihilator ideal in PI(L).

Proof. Suppose I is an annihilator ideal in L. Then we have I = I∗∗. Now,
we shall prove that Ie = (Ie)∗∗. Clearly, Ie ⊆ (Ie)∗∗. Let (a] ∈ (Ie)∗∗ and b ∈ I∗.
Then for any c ∈ I, (b]∩(c] = (b∧c] = (0]. Hence (b] ∈ (Ie)∗. Since (a] ∈ (Ie)∗∗, we
get (a]∩ (b] = (0]. This implies (a∧ b] = (0]. It follows a∧ b = 0. Thus a ∈ I∗∗ = I.
Hence a ∈ I. Therefore (a] ∈ Ie. Thus (Ie)∗∗ ⊆ Ie. Therefore Ie = (Ie)∗∗. Hence
Ie is an annihilator ideal in PI(L).

Conversely, suppose Ie is an annihilator ideal in PI(L). Then (Ie)∗∗ = Ie.
Now, we prove that I = I∗∗. We have I ⊆ I∗∗. Let a ∈ I∗∗ and (b] ∈ (Ie)∗.
Now, for any c ∈ I, (c] ∈ Ie. Hence (b] ∩ (c] = (0]. This implies (b ∧ c] = (0].
Hence b ∧ c = 0. Thus b ∈ I∗. Now, let a ∈ I∗∗. Then a ∧ b = 0. It follows that
(a ∧ b] = (0]. This implies (a] ∩ (b] = (0]. Thus (a] ∈ (Ie)∗∗ = Ie. Hence (a] ∈ Ie.
Therefore (a] = (t] for some t ∈ I. Now, a ∈ (a] = (t] and hence a = t ∧ a ∈ I.
Thus a ∈ I. Therefore I∗∗ ⊆ I. Thus I∗∗ = I and hence I is an annihilator ideal
in L. �

Theorem 3.1. Let L be a 0-distributive AL. Then for any ideal I of L, (Ie)∗

is an annihilator ideal in PI(L).

Proof. Suppose I is an ideal of L. Then we have Ie is an ideal of PI(L).
Now, we prove that (Ie)∗ is an ideal of PI(L). Since (0] ∩ (a] = (0 ∧ a] = (0]
for all (a] ∈ Ie, (0] ∈ (Ie)∗. Hence (Ie)∗ is non empty subset of PI(L). Let
(x], (y] ∈ (Ie)∗. Then (x] ∩ (a] = (0] and (y] ∩ (a] = (0] for all (a] ∈ Ie. This
implies (x∧ a] = (0] and (y ∧ a] = (0] for all (a] ∈ Ie. It follows that x∧ a = 0 and
y ∧ a = 0 for all a ∈ I. Since L is 0-distributive AL, we get (x ∨ y) ∧ a = 0 for all
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a ∈ I. This implies ((x ∨ y) ∧ a] = (0] for all a ∈ I. It follows that (x ∨ y] ∩ (a] =
((x]∨(y])∩(a] = (0] for all (a] ∈ Ie. Therefore (x]∨(y] ∈ (Ie)∗. Let (x] ∈ (Ie)∗ and
(r] ∈ PI(L). Then (x] ∩ (a] = (0] for all (a] ∈ Ie. Now, for any (t] ∈ Ie, consider
((x] ∩ (r]) ∩ (t] = ((x] ∩ (t]) ∩ (r] = (x ∧ t] ∩ (r] = (0] ∩ (r] = (0 ∧ r] = (0]. Thus
(x] ∩ (r] ∈ (Ie)∗. Therefore (Ie)∗ is an ideal. Clearly, (Ie)∗ is an annihilator ideal
in the lattice PI(L). �

Corollary 3.1. Let L be a 0-distributive AL. Then for any annihilator ideal
I in L, (Ie)∗ is an annihilator ideal in PI(L).

Recall that the set I(L) of all ideals of an AL L is a lattice. But, the set A(L)
of all annihilator ideals in L is not a sublattice of I(L). For, consider the following
example.

Example 3.4. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is as follows:

Figure 1

Now, put I = {0, a} and J = {0, b}. Then clearly I and J are ideals of
L. Now, I∗ = {0, b} = J and J∗ = {0, a} = I. It follows that I and J are
annihilator ideals in L. Now, I ∨ J = {0, a, b, c}. Therefore (I ∨ J)∗ = {0}. Hence
(I ∨ J)∗∗ = {0}∗ = L ̸= I ∨ J . Therefore I ∨ J is not an annihilator ideal in L.

However, we prove that the set A(L) of all annihilator ideals in an AL L is a
complete Boolean algebra. For, this first we need the following.
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Lemma 3.2. Let L be 0-distributive AL. Then for any I, J ∈ A(L), I ∩ J =
(I∗ ∨ J∗)∗.

Proof. Suppose I, J ∈ A(L). Since I∗ ⊆ I∗∨J∗, we get (I∗∨J∗)∗ ⊆ I∗∗ = I.
Similarly, we get (I∗ ∨ J∗)∗ ⊆ J . Hence (I∗ ∨ J∗)∗ ⊆ I ∩ J .

Conversely, suppose x ∈ I ∩ J and y ∈ I∗ ∨ J∗. Then y = (a ∨ b) ∧ y for
some a ∈ I∗ and b ∈ J∗. It follows that x ∧ a = 0 and x ∧ b = 0. Now, consider
x ∧ y = x ∧ ((a ∨ b) ∧ y) = (x ∧ (a ∨ b)) ∧ y = 0 ∧ y = 0. Therefore x ∈ (I∗ ∨ J∗)∗.
Hence I ∩ J ⊆ (I∗ ∨ J∗)∗. Thus I ∩ J = (I∗ ∨ J∗)∗. �

Theorem 3.2. Let L be a 0-distributive AL with 0. Then the set A(L) of all
annihilator ideals of L forms a complete Boolean algebra.

Proof. Let L be an AL with 0. Then clearly, A(L) is non empty, since
(0], L ∈ A(L). Also, clearly A(L) is a poset with respect to the set inclusion. Let
I, J ∈ A(L). Then I = I∗∗ and J = J∗∗. Now, consider (I∩J)∗∗ = I∗∗∩J∗∗ = I∩J .
Therefore I ∩ J ∈ A(L) and clearly I ∩ J is the g.l.b of I, J in A(L). Define
I∨J = (I∗ ∩ J∗)∗. Now, consider (I∨J)∗∗ = ((I∗ ∩ J∗)∗)∗∗ = (I∗ ∩ J∗)∗∗∗ =
(I∗ ∩ J∗)∗ = I∨J . Thus (I∨J)∗∗ = I∨J . Hence I∨J is an annihilator ideal.
Therefore I∨J ∈ A(L). Let x ∈ I and y ∈ I∗ ∩ J∗. Then x ∈ I and y ∈ I∗. It
follows that x ∧ y ∈ I ∩ I∗ = (0]. Thus x ∧ y = 0. Hence x ∈ (I∗ ∩ J∗)∗. Therefore
I ⊆ (I∗ ∩ J∗)∗ = I∨J . Similarly, we get J ⊆ I∨J . Therefore I∨J is an upper
bound of I, J in A(L).

Suppose H ∈ A(L) such that H is an upper bound of I, J . Then I ⊆ H and
J ⊆ H. This implies H∗ ⊆ I∗ and H∗ ⊆ J∗. Hence H∗ ⊆ I∗ ∩ J∗. Therefore
(I∗ ∩ J∗)∗ ⊆ H∗∗ = H. Thus I∨J ⊆ H. Therefore I∨J is the l.u.b of I, J . Hence
(A(L),∧,∨) is a lattice. Clearly, (0] and L are the least and greatest elements in
A(L) respectively. Hence A(L) is a bounded lattice. Let I ∈ A(L). Then, we
have I∗ ∈ A(L) and I ∩ I∗ = (0]. Now, consider I∨I∗ = (I∗ ∩ I∗∗)∗ = (0]∗ = L.
Thus every element in A(L) has a complement in A(L). Therefore A(L) is a
complemented lattice.

Now, we shall prove A(L) is a distributive lattice. Let I, J,K ∈ A(L). Since
A(L) is a lattice, I∨(J∩K) ⊆ (I∨J)∩(I∨K). First we shall prove that (I∨J)∩K ⊆
I∨(J∩K). We have I∩(K∩(I∗∩(J∩K)∗)) = (0]. This impliesK∩(I∗∩(J∩K)∗) ⊆
I∗. Also, we have J∩(K∩(I∗∩(J∩K)∗)) = (0]. Therefore K∩(I∗∩(J∩K)∗) ⊆ J∗

. Hence K ∩ (I∗ ∩ (J ∩K)∗) ⊆ I∗ ∩ J∗. Thus (K ∩ (I∗ ∩ (J ∩K)∗))∩ (I∗ ∩ J∗)∗ ⊆
(I∗∩J∗)∩ (I∗∩J∗)∗ = (0]. Therefore (K∩ (I∗∩ (J ∩K)∗))∩ (I∗∩J∗)∗ = (0]. This
implies (I∗∩(J∩K)∗)∩(K∩(I∗∩J∗)∗) = (0]. ThusK∩(I∗∩J∗)∗ ⊆ (I∗∩(J∩K)∗)∗.
It follows that (I∗ ∩ J∗)∗ ∩K ⊆ (I∗ ∩ (J ∩K)∗)∗. Hence (I∨J) ∩K ⊆ I∨(J ∩K).
Now, (I∨J) ∩ (I∨K) ⊆ I∨(J ∩ (I∨K)) = I∨((I∨K) ∩ J) ⊆ I∨(I∨(K ∩ J)) =
(I∨I)∨(K ∩ J) = I∨(J ∩ K). Thus (A(L),∩,∨,∗ , (0], L) is a Boolean algebra.
Also, by theorem 2.4. and by corollary 2.6., we get A(L) is a complete Boolean
algebra. �
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4. Annihilator Preserving homomorphisms

In this section, we introduce the concepts of an annihilator preserving homo-
morphism and dense AL and give examples of annihilator preserving homomor-
phisms in terms of dense ALs. Next, we prove certain basic properties of annihi-
lator preserving homomorphisms. Finally, we derive sufficient condition for an AL
homomorphism to become annihilator preserving homomorphism. For, this first
we need the following.

Lemma 4.1. Let L and L′ be two ALs with zero elements 0 and 0′ respectively
and f : L → L′ a homomorphism. Then we have the following.

(1) If f is onto, then for any ideal I of L, f(I) is an ideal of L′.
(2) If J is an ideal of L′, then f−1(J) is an ideal of L.
(3) ker(f) is an ideal of L.

Proof. (1) Suppose I is an ideal of L. Then we have f(I) = {f(x) : x ∈ I}.
Clearly f(I) is non empty, since f(0) ∈ f(I). Let f(a), f(b) ∈ f(I) where a, b ∈ I.
Then a, b ∈ I and hence a∨b ∈ I. Therefore f(a∨b) ∈ f(I). It follows f(a)∨f(b) ∈
f(I). Again, let f(a) ∈ f(I) and r ∈ L′. Since f is onto and r ∈ L′, there exist
t ∈ L such that f(t) = r. Now, since a ∈ I and t ∈ L, a ∧ t ∈ I. Therefore
f(a ∧ t) ∈ f(I). It follows f(a) ∧ f(t) ∈ f(I). Hence f(a) ∧ r ∈ f(I). Therefore
f(I) is an ideal in L′.

(2) Suppose J is an ideal in L′. Then f−1(J) = {x ∈ L : f(x) ∈ J}. Since
f(0) = 0′ ∈ J , we get 0 ∈ f−1(J). Therefore f−1(J) is non empty subset of L. Let
a, b ∈ f−1(J). Then f(a), f(b) ∈ J . Since J is an ideal in L′, f(a)∨ f(b) ∈ J . This
implies f(a ∨ b) ∈ J . Hence a ∨ b ∈ f−1(J). Again, let a ∈ f−1(J) and x ∈ L.
Then f(a) ∈ J and f(x) ∈ f(L) ⊆ L′. Since J is an ideal in L′, f(a) ∧ f(x) ∈ J .
Therefore f(a ∧ x) ∈ J . Hence a ∧ x ∈ f−1(J). Thus f−1(J) is an ideal in L.

(3) We have {0′} is an ideal of L′. Therefore by condition (2), we get f−1({0′})
is an ideal of L. But, f−1({0′}) = {x ∈ L : f(x) ∈ {0′}} = {x ∈ L : f(x) = 0′} =
ker(f). Thus ker(f) is an ideal of L. �

Lemma 4.2. Let f : L → L′ be a homomorphism. Then for any non empty
subset A of L, f(A∗) ⊆ (f(A))∗.

Proof. Let a ∈ f(A∗) and y ∈ f(A). Then there exists b ∈ A∗ and x ∈ A
such that a = f(b) and y = f(x). Now, since b ∈ A∗ and x ∈ A, b ∧ x = 0.
Therefore a∧ y = f(b)∧ f(x) = f(b∧x) = f(0) = 0′. Thus a ∈ (f(A))∗. Therefore
f(A∗) ⊆ (f(A))∗. �

But, the converse of the lemma 4.2. is not true. For, consider the following
example.

Example 4.1. Let L = {0, a, b, c} be a discrete AL. Define a mapping f :
L → L by f(x) = 0 for all x ∈ L. Then clearly f is a homomorphism. Now, put
A = {a, b}. Then clearly A∗ = {0} and f(A) = {0}. Hence f(A∗) = {0} and
(f(A))∗ = L. Thus (f(A))∗ * f(A∗).
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In view of above observation, we introduce the concept of annihilator preserving
homomorphism.

Definition 4.1. Let L and L′ be two ALs with 0 and 0′ respectively. Then a
homomorphism f : L → L′ is called annihilator preserving if it satisfies f(A∗) =
(f(A))∗, for any {0} ⊂ A ⊂ L.

In the following we give an example of annihilator preserving homomorphism.

Example 4.2. Let A = {0, a} and B = {0, b1, b2} be two discrete ALs. Write
L = A × B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)}. Then (L,∨,∧, (0, 0)) is
an AL under point-wise operations with the zero element (0, 0). Also, put L′ =
{0′, a′, b′, c′} and define the operations ∨′ and ∧′ on L′ as follows.

∨′ 0′ a′ b′ c′

0′ 0′ a′ b′ c′

a′ a′ a′ c′ c′

b′ b′ c′ b′ c′

c′ c′ c′ c′ c′

and

∧′ 0′ a′ b′ c′

0′ 0′ 0′ 0′ 0′

a′ 0′ a′ 0′ a′

b′ 0′ 0′ b′ b′

c′ 0′ a′ b′ c′

Then clearly (L′,∨′,∧′, 0′) is an AL with zero. Now, define a mapping f : L → L′ by
f((0, 0)) = 0′, f((a, 0)) = a′, f((0, b1)) = f((0, b2)) = b′, f((a, b1)) = f((a, b2)) =
c′. Then clearly f is a homomorphism from L onto L′ and also, clearly f is an
annihilator preserving homomorphism.

Next, we introduce the concept of dense AL and give an example of dense AL.
Also, we establish an example of annihilator preserving homomorphism interms of
dense ALs. For, this first we need the following.

Definition 4.2. An element a of an AL L is called a dense element if [a]∗ =
{0}.

It can be easily observed that every maximal element is dense. But, dense
element need not be maximal. For, consider the following example.

Example 4.3. Let A = {0, a} and B = {0, b1, b2} be two discrete ALs. Now,
put L = A× B = {(0, 0), (0, b1), (0, b2), (a, 0), (a, b1), (a, b2)} and define operations
∨ and ∧ on L as follows.

∨ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, b1) (0, b1) (0, b1) (0, b1) (a, b1) (a, b1) (a, b1)
(0, b2) (0, b2) (0, b2) (0, b2) (a, b2) (a, b2) (a, b2)
(a, 0) (a, 0) (a, b1) (a, b2) (a, 0) (a, b1) (a, b2)
(a, b1) (a, b1) (a, b1) (a, b1) (a, b1) (a, b1) (a, b1)
(a, b2) (a, b2) (a, b2) (a, b2) (a, b2) (a, b2) (a, b2)

and
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∧ (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, b1) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(0, b2) (0, 0) (0, b1) (0, b2) (0, 0) (0, b1) (0, b2)
(a, 0) (0, 0) (0, 0) (0, 0) (a, 0) (a, 0) (a, 0)
(a, b1) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)
(a, b2) (0, 0) (0, b1) (0, b2) (a, 0) (a, b1) (a, b2)

Then clearly, (L,∨,∧, (0, 0)) is an AL with (0, 0) as its zero element. Now, let
L′ = {(0, 0), (0, b1), (0, b2), (a, b1), (a, b2)}. Then L′ is a sub AL of (L,∨,∧, (0, 0)).
In L′, (a, b1), (a, b2) are only maximal elements. Now, [(0, b1)]

∗ = {(0, 0)}. So
that (0, b1) is a dense element, but not a maximal element in L′. Because (0, b1) ∧
(a, b1) = (0, b1) ̸= (a, b1). Similarly (0, b2) is also a dense element but not a maximal
element.

Definition 4.3. Let L be an AL with 0. Then L is said to be dense AL if
every nonzero element in L is dense.

It can be easily seen that every discrete AL is a dense AL. More generally,
we have the following theorem.

Theorem 4.1. Let L and L′ be two dense ALs. Then every homomorphism
from L into L′ is an annihilator preserving homomorphism.

Proof. Suppose L and L′ are two dense ALs and f : L → L′ is a homo-
morphism. Suppose {0} ⊂ A ⊂ L. Now, we shall prove that f(A∗) = (f(A))∗.
Since L is dense and A∗ =

∩
a∈A

[a]∗, A∗ = {0}. Therefore f(A∗) = f({0}) = {0}.

On the other hand (f(A))∗ =
∩

f(a)∈f(A)

[f(a)]∗ = {0}, since L′ is dense. Therefore

f(A∗) = (f(A))∗. Thus f is an annihilator preserving homomorphism. �

Now, we prove some properties of annihilator preserving homomorphisms.

Theorem 4.2. Let L and L′ be two ALs with zero elements 0 and 0′ respectively
and let f : L → L′ be an annihilator preserving homomorphism such that ker(f) =
{0}. Then for any non empty subsets A and B of L, A∗ = B∗ if and only if
(f(A))∗ = (f(B))∗.

Proof. Suppose A and B are two non empty subsets of L such that A∗ = B∗.
Then clearly f(A∗) = f(B∗). Since f is annihilator preserving, (f(A))∗ = (f(B))∗.
Conversely, suppose (f(A))∗ = (f(B))∗.

Now, t ∈ A∗ ⇒ t ∧ a = 0 for all a ∈ A.
⇒ f(t ∧ a) = f(0)
⇒ f(t) ∧ f(a) = 0′ for all a ∈ A
⇒ f(t) ∈ (f(A))∗

⇒ f(t) ∈ (f(B))∗

⇒ f(t) ∧ f(b) = 0′ for all b ∈ B
⇒ f(t ∧ b) = 0′ for all b ∈ B
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⇒ t ∧ b ∈ ker(f) = {0} for all b ∈ B
⇒ t ∧ b = 0 for all b ∈ B
⇒ t ∈ B∗.

Therefore A∗ ⊆ B∗. Similarly, we get B∗ ⊆ A∗. Therefore A∗ = B∗. �

Theorem 4.3. Let L and L′ be two ALs with zero elements 0 and 0′ respectively
and let f : L → L′ be a homomorphism. Then we have the following.

(1) If f is annihilator preserving and onto, then f(I) is an annihilator ideal
of L′ for every annihilator ideal I of L.

(2) If f−1 preserves annihilators, then f−1(J) is an annihilator ideal of L for
every annihilator ideal J of L′.

Proof. (1) Suppose I is an annihilator ideal of L. Then by lemma 4.1(1),
f(I) is an ideal of L′. Since f is annihilator preserving, (f(I))∗∗ = f(I∗∗) = f(I).
Therefore f(I) is an annihilator ideal in L′.

(2) Suppose J is an annihilator ideal of L′. Then by lemma 4.1(2), f−1(J) is
an ideal of L. Since f−1 preserves annihilators, (f−1(J))∗∗ = f−1(J∗∗) = f−1(J).
Therefore f−1(J) is an annihilator ideal in L. �

Corollary 4.1. Let L and L′ be two ALs with zero elements 0 and 0′ respec-
tively and let f : L → L′ be a homomorphism such that f−1 preserves annihilators.
Then ker(f) is an annihilator ideal of L.

Proof. By lemma 4.1(3), we get ker(f) is an ideal of L. Also, we have
{0′} is an annihilator ideal in L′. Now, we have ker(f) = f−1({0′}). There-
fore (ker(f))∗∗ = (f−1({0′}))∗∗ = f−1({0′}∗∗) = f−1({0′}) = ker(f). Therefore
ker(f) is an annihilator ideal. �

It can be easily seen that if f : L → L′ is homomorphism such that f is one-one,
then ker(f) = {0}. But, converse need not be true. For, consider the following
example.

Example 4.4. Let L = {0, a, b} and L′ = {0′, c′} be two discrete ALs. Define
a mapping f : L → L′ by f(0) = 0′ and f(a) = f(b) = c′. Then clearly f is a
homomorphism from L into L′ such that ker(f) = {0}. Now, we have f(a) = f(b),
but a ̸= b. Hence f is not one-one.

Finally, we give sufficient condition for a homomorphism to become annihilator
preserving.

Theorem 4.4. Let L and L′ be two ALs with zero elements 0 and 0′ respectively
and let f : L → L′ be a homomorphism. If ker(f) = {0} and f is onto, then both
f and f−1 are annihilator preserving.

Proof. Suppose f is onto and ker(f) = {0}. Let A be a non empty subset of
L such that {0} ⊂ A ⊂ L. Then we have f(A∗) ⊆ (f(A))∗. Now, let x ∈ (f(A))∗.
Since f is onto, there exists y ∈ L such that f(y) = x. This implies f(y)∧f(a) = 0′

for all a ∈ A. Hence f(y ∧ a) = 0′ for all a ∈ A. Therefore y ∧ a ∈ ker(f) = {0}
for all a ∈ A. Hence y ∧ a = 0 for all a ∈ A. It follows that y ∈ A∗. This
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implies x = f(y) ∈ f(A∗). Therefore (f(A))∗ ⊆ f(A∗) and hence f(A∗) = (f(A))∗.
Therefore f is annihilator preserving homomorphism.

We shall prove that f−1 preserves annihilators. Let B be a non empty subset
of L′. Let x ∈ (f−1(B))∗. Then x ∧ b = 0 for all b ∈ f−1(B). This implies
f(x) ∧ f(b) = f(x ∧ b) = 0′ for all f(b) ∈ B. It follows that f(x) ∈ B∗. Hence
x ∈ f−1(B∗). Therefore (f−1(B))∗ ⊆ f−1(B∗). Conversely, suppose x ∈ f−1(B∗)
and b ∈ f−1(B). Then f(x) ∈ B∗ and f(b) ∈ B. Hence f(x∧ b) = f(x)∧f(b) = 0′.
Therefore x ∧ b ∈ ker(f) = {0} and hence x ∧ b = 0 for all b ∈ f−1(B). Hence
x ∈ (f−1(B))∗. Thus f−1(B∗) ⊆ (f−1(B))∗. Therefore f−1(B∗) = (f−1(B))∗.
Thus f−1 preserves annihilators. �

Corollary 4.2. Let L and L′ be two ALs with zero elements 0 and 0′ respec-
tively and let f : L → L′ be a homomorphism. If f is one-one and onto, then both
f and f−1 are annihilator preserving.
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